Skip to content
-
-
-
- Increased Atom-Cavity Coupling through Cooling-Induced Atomic Reorganization. C. Shu, S. Colombo, Z. Li, A. Adiyatullin, E. Mendez, E. Pedrozo-Peñafiel, and V. Vuletić, Phys. Rev. Research 6, L032049 (2024).
- Bose-Einstein condensation by polarization gradient laser cooling. W. Xu, T. Šumarac, E.H. Qiu, M.L. Peters, Z. Li, S.H. Cantu, A. Menssen, M.D. Lukin, S. Colombo, and V. Vuletić, Phys. Rev. Lett. 132, 233401 (2024).
- Machine-learning-accelerated Bose-Einstein condensation. Z. Vendeiro, J. Ramette, A. Rudelis, M. Chong, J. Sinclair, L. Stewart, A. Urvoy, and V. Vuletić, Phys. Rev. Res. 4, 043216 (2022).
- Motional Quantum Ground State of a Levitated Nanoparticle from Room Temperature. U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, Science 367, 892-895 (2020).
- Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity. P. Samutpraphoot, T. Djordjevic, P.L. Ocola, H. Bernien, C. Senko, V. Vuletić, and M.D. Lukin, Phys. Rev. Lett. 124, 063602 (2020); supplemental information.
- Strongly Correlated Quantum Gas by Direct Laser Cooling. Solano, Y. Duan, Y.-T. Chen, A. Rudelis, C. Chin, and V. Vuletić, Phys. Rev. Lett. 123, 173401 (2019); supplemental information.
- Direct laser cooling to Bose-Einstein condensation in a dipole trap. A. Urvoy, Z. Vendeiro, J. Ramette, A. Adiyatullin, and V. Vuletić, Phys. Rev. Lett. 122, 203202 (2019); Supplemental Material; selected as Editors’ Suggestion.
- Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. Delić, M. Reisenbauer, D. Grass, N. Kiesel, V. Vuletić, and M. Aspelmeyer, Phys. Rev. Lett. 122, 123602 (2019); Supplemental Material; selected as Editors’ Suggestion; selected as Physics Viewpoint, Physics 12, 34 (2019).
- Geometrically asymmetric optical cavity for strong atom-photon coupling. A. Kawasaki, B. Braverman, E. Pedrozo, C. Shu, S. Colombo, Z. Li, O. Ozel, W. Chen, L. Salvi, A. Heinz, D. Levonian, D. Akamatsu, Y. Xiao, and V. Vuletić, Phys. Rev. A 99, 013437 (2019); selected as Editors’ Suggestion.
- Single-Atom Heat Machines Enabled by Energy Quantization. D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik, and V. Vuletić, Phys. Rev. Lett. 120, 170601 (2018), supplemental information.
- Creation of a Bose-condensed gas of rubidium 87 by laser cooling. J. Hu, A. Urvoy, Z. Vendeiro, V. Crepel, W. Chen, and V. Vuletić, Science 358, 1078-1080 (2017), supplemental information.
- Cavity cooling of many atoms. M. Hosseini, Y. Duan, K.M. Beck, Y-T. Chen, and V. Vuletić, Phys. Rev. Lett. 118, 183601 (2017); supplemental information; selected for Physics Synopsis (web, pdf).
- Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. M. Endres, H. Bernien, A. Keesling, H. Levine, E. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletić, M. Greiner, and M.D. Lukin, Science 10.1126/science.aah3752 (2016), supplemental material.
- Two-Color Magneto-Optical Trap with Small Magnetic Field for Ytterbium. Akio Kawasaki, Boris Braverman, Qinsi Yu, and Vladan Vuletić, J. Phys. B: At. Mol. Opt. Phys. 48, 155302 (2015).
- Coherence and Raman Sideband Cooling of a Single Atom in an Optical Tweezer. Jeff.D. Thompson, Tobias G. Tiecke, Alexander S. Zibrov, Vladan Vuletić, and Mikhail D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).
- Optomechanical Cavity Cooling of an Atomic Ensemble. Monika H. Schleier-Smith, Ian D. Leroux, Hao Zhang, Mackenzie A.Van Camp, and Vladan Vuletić, Phys. Rev. Lett. 107, 143005 (2011).
- Interaction between Atomic Ensembles and Optical Resonators: Classical Description. Haruka Tanji-Suzuki, Ian D. Leroux, Monika H. Schleier-Smith, Marko Cetina, Andrew T. Grier, Jonathan Simon, and Vladan Vuletić, Adv. At. Mol. Opt. Phys. 60, 201 (2011), quant-ph/1104.3594.
- Trapping and Manipulation of Isolated Atoms Using Nanoscale Plasmonic Structures. Darrick E. Chang, James D. Thompson, Hongkun Park, Vladan Vuletić, Alexander S. Zibrov, Peter Zoller, and Mikhail D. Lukin, Phys. Rev. Lett. 103, 123004 (2009).
- Cavity Sideband Cooling of a Single Trapped Ion. David R. Leibrandt, Jaroslaw Labaziewicz, Vladan Vuletić, and Isaac L. Chuang, Phys. Rev. Lett, 103, 103001 (2009); Supplementary Information.
- selected as Editors’ Suggestion, Synopsis.
- External-Feedback Laser Cooling of Gases. Vladan Vuletić, Jonathan Simon, Adam T. Black, and James K. Thompson, Phys. Rev. A. 75, 051405(R) (2007).
- Collective light forces on atoms in resonators. Adam T. Black, James K. Thompson, and Vladan Vuletić, J. Phys. B: At. Mol. Opt. Phys. 38, (2005) (special issue Einstein year).
- Atomic Samples in Resonators: Forces, Photons, Feedback. James K. Thompson, Adam T. Black, and Vladan Vuletić, in Proceedings of the XIX. International Conference on Atomic Physics (ICAP 2004, Rio de Janeiro), edited by V. Bagnato, (World Scientific 2005).
- Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering. Adam T. Black, Hilton W. Chan, and Vladan Vuletić, Phys. Rev. Lett. 91, 203001 (2003).
- Self-Organization of Atomic Samples in Resonators and Collective Light Forces. Adam T. Black, Hilton W. Chan, and Vladan Vuletić, Proceedings of the 16th International Conference on Laser Spectroscopy (ICOLS 2003, Palm Cove), edited by P. Hannaford, A. Sidorov, H. Bachor, and K. Baldwin, pp. 345-352 (World Scientific, Singapore 2004).
- Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity. Hilton W. Chan, Adam T. Black, and Vladan Vuletić, Phys. Rev. Lett. 90, 063003 (2003).
- Cooling of Cesium Atoms by Collective Emission inside an Optical Resonator. Adam T. Black, Hilton W. Chan, and Vladan Vuletić, in Proceedings of the XVIII. International Conference on Atomic Physics (ICAP 2002, Boston), edited by H. Sadeghpour, R. Heller, and D. Pritchard, pp. 91-98, (World Scientific, Singapore 2003).
- Three-dimensional cavity Doppler cooling and cavity sideband cooling. Vladan Vuletić, Hilton W. Chan, and Adam T. Black, Phys. Rev. A 64, 033405 (1-7) (2001).
- Cavity Cooling with a Hot Cavity. Vladan Vuletić, in Laser Physics at the Limits, edited by H. Figger, D. Meschede, and C. Zimmermann, pp. 67-74, (Springer 2001).
- Laser Cooling: Beyond optical molasses and beyond closed transitions. Vladan Vuletić, Andrew J. Kerman, Cheng Chin, and Steven Chu, in Proceedings of the XVII. International Conference on Atomic Physics (ICAP 2000, Florence), edited by E. Arimondo, P. De Natale, and M. Inguscio, pp. 356-366, (American Institute of Physics, Melville, New York 2001).
- Laser Cooling of Atoms, Ions, or Molecules by Coherent Scattering. Vladan Vuletić and Steven Chu, Phys. Rev. Lett. 84, 3787 (2000).
- Beyond Optical Molasses: 3D Raman Sideband Cooling of Atomic Cesium to High Phase-Space Density.Andrew J. Kerman, Vladan Vuletić, Cheng Chin, and Steven Chu, Phys. Rev. Lett. 84, 439 (2000).
- Raman Sideband Cooling in An Optical Lattice.Vladan Vuletić, Andrew J. Kerman, Cheng Chin, and Steven Chu, in Proceedings of the 14th International Conference on Laser Spectroscopy (ICOLS 1999, Innsbruck), edited by R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, pp. 207-216, (World Scientific, Singapore, 1999).
- Degenerate Raman Sideband Cooling of Trapped Cesium Atoms at Very High Atomic Densities. Vladan Vuletić, Cheng Chin, Andrew J. Kerman, and Steven Chu, Phys. Rev. Lett. 81, 5768 (1998).
- Microscopic Magnetic Quadrupole Trap for Neutral Atoms with Extreme Adiabatic Compression. Vladan Vuletić, Thomas Fischer, Michael Praeger, Theodor W. Hänsch, and Claus Zimmermann, Phys. Rev. Lett. 80, 1634 (1998).
- Steep Magnetic Trap for Ultracold Atoms. Vladan Vuletić, Theodor W. Hänsch, and Claus Zimmermann, Europhys. Lett. 36, 349 (1996).