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Machine learning is emerging as a technology that can enhance physics experiment execution and data
analysis. Here, we apply machine learning to accelerate the production of a Bose-Einstein condensate (BEC)
of 87Rb atoms by Bayesian optimization of up to 55 control parameters. This approach enables us to prepare
BECs of 2.8 × 103 optically trapped 87Rb atoms from a room-temperature gas in 575 ms. The algorithm achieves
the fast BEC preparation by applying highly efficient Raman cooling to near quantum degeneracy, followed by
a brief final evaporation. We anticipate that many other physics experiments with complex nonlinear system
dynamics can be significantly enhanced by a similar machine-learning approach.
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Recently, researchers have begun applying machine-
learning techniques to atomic physics experiments, e.g., to
enhance data processing for imaging [1–5], determine the
ground state and dynamics of many-body systems [6,7], or to
identify phases and phase transitions [8–10]. One promising
practical application of machine learning to atomic physics
is in the optimization of control sequences with many pa-
rameters and nonlinear dynamics [11–16], and in particular
to one of the workhorses of atomic physics, Bose-Einstein
condensates (BECs) [11,13–16].

With few exceptions [17], experiments on BECs end with
a destructive measurement, which requires repeated BEC
preparation. Approaches to increase the BEC production rate,
and associated signal-to-noise ratio of the experiments, have
generally relied heavily on hardware improvements [18–22]
or have used atomic species with narrower optical transitions
[18,21,22] than offered by the most widely utilized alkali-
metal atoms. For alkali-metal atoms, the tight confinement
of atom-chip magnetic traps has enabled fast evaporation se-
quences, with a complex multilayer atom-chip achieving BEC
preparation times of 850 ms for 4 × 104 atoms [19]. Non-
alkali-metal atoms featuring narrow optical transitions can
be used to reach lower temperatures in narrow-line magneto-
optical traps (MOTs) [18,21,22]. That approach, combined
with a dynamically tunable optical dipole trap, has recently
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been used to prepare BECs of 2 × 104 erbium atoms in under
700 ms [22].

In this article, we demonstrate a complementary approach
where, in a simple experimental setup with a broad-line
MOT for a standard alkali-metal atom, machine learning is
leveraged to optimize a complex nonlinear laser and evapo-
rative cooling process to quantum degeneracy. Controlling a
sequence with up to 55 interdependent experimental parame-
ters, Bayesian optimization [11,12,23] finds parameter values
which cool a gas from room temperature into the quantum
degenerate regime in 575 ms, creating a BEC containing
NBEC = 2.8 × 103 atoms.

We identify some of the physical strategies discovered by
the algorithm and also investigate how the choice of cost
function impacts the trade-off between final atom number and
the purity of the created BEC.

Our apparatus employs only a single MOT directly loaded
from a 87Rb background vapor, a crossed optical dipole trap,
and two Raman cooling beams as depicted in Fig. 1(a). No
Zeeman slower, two-dimensional MOT, atom chip [19], dy-
namic trap shaping [21], or strobing [22,24] are necessary.
Using Raman cooling in a crossed optical dipole trap (cODT),
a method that can reach very high phase-space density and
even condensation [25], the algorithm achieves a cooling
slope of 16 orders of magnitude improvement in phase space
density (PSD) per order of magnitude in atom loss (γ = 16)
up to the threshold to quantum degeneracy. This is signif-
icantly better than the γ = 7 value we could obtain with
extensive manual optimization under similar conditions [25].

I. ATOMIC PHYSICS METHODS

The Raman cooling implementation used in this work is
similar to that of Ref. [25]. Cooling proceeds in a cODT
formed by intersecting two noninterfering 1064-nm beams,
one horizontal and one vertical [see Fig. 1(a)]. Two 795-
nm beams drive the Raman cooling: the optical pumping
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FIG. 1. (a) Setup showing 1064-nm horizontal (waist wh =
18 μm, beam slightly tilted downward) and vertical (wv = 14
μm) optical-trapping, 795-nm Raman coupling (wR = 500 μm)
and optical pumping (wx = 30 μm, wy ≈ 1 mm), and 780-nm
absorption-imaging beams. (b) Absorption image used to extract the
cost function for a set of parameter values X. (c) Bayesian optimiza-
tion with a neural network. The model Cp(X) (orange solid line)
attempts to predict the actual system performance C(X) (blue dashed
line). The algorithm uses the model to predict optimal parameter
values Xi+1 (open diamond), tests those values, and performs a new
iteration with an updated model.

beam and the Raman coupling beam. Raman cooling [26]
provides sub-Doppler cooling by driving velocity-selective
Raman transitions between hyperfine states, here the |F =
2, mF = −2〉 and |2,−1〉 states of 87Rb [25]. The Raman
transitions are nondissipative so entropy is removed from the
atomic gas in the form of spontaneously scattered photons as
atoms are optically pumped back to the dark state |2,−2〉.
Light-assisted collisions, which typically prohibit laser cool-
ing at high atomic densities, are suppressed by detuning the
optical pumping light 4.33 GHz to the red of the D1 F = 2 →
F ′ = 2′ transition, where a local minimum of light-induced
loss was observed [25].

The cooling dynamics are controlled via five actuators: (i)
the horizontal Py and (ii) vertical Pz trap beam powers which
set the trap depth and frequencies, (iii) the Raman coupling
beam power PR which tunes the Raman rate, (iv) the power Pp

of the optical pumping beam which sets the optical-pumping
rate (and also Raman rate), and (v) the magnetic field Bz which
adjusts the resonant velocity class for the Raman transition.
The cooling procedure is divided into stages during which the
controls are linearly ramped, with the endpoints of each ramp
constituting the optimization parameters.

II. OPTIMIZATION SCHEME

The optimization problem can be formulated as the mini-
mization of a cost function C, which maps a set of parameter
values X ∈ RM to a corresponding cost value C(X) ∈ R,
where M is the number of optimization parameters. The cost

C quantifies the results and is generally a priori unknown, but
can be extracted from measurements. Bayesian optimization
is well-suited for this type of problem as it can tolerate noise in
the measured cost and typically requires testing fewer values
of X than other optimization methods [11–16].

Bayesian optimization begins with collecting a training
dataset by experimentally measuring the cost Cm(Xi ) for vari-
ous values of sets of parameter values Xi. The Xi values used
to construct the training dataset are chosen by a training algo-
rithm, which can implement another optimization algorithm
or can select Xi randomly. A model of the cost function is then
fit to the training dataset which approximates the unknown
true cost function C(X). Although Bayesian optimization typ-
ically uses a Gaussian process for its model [23], the present
work uses neural networks [12,27], which were chosen for
their significantly faster fitting time for our typical number of
optimization parameters. Once the model is fit, a standard nu-
merical optimization algorithm is applied to the modeled cost
function Cp(X) to determine which value Xi+1 for the next
iteration is predicted to yield the minimal cost, as depicted in
Fig. 1(c). Optionally this numerical optimization can be con-
strained to a trust region (a smaller volume of parameter space
centered around the Xi which yielded the best cost measured
thus far). The predicted optimal value Xi+1 is then tested by
experimentally measuring the corresponding cost Cm(Xi+1).
The next iteration begins by retraining the model with the new
result, and making a new prediction for the optimal value of X
with the updated model. The algorithm iterates until it reaches
a termination criterion, such as a set maximum number of
iterations or a set number of consecutive iterations that fail
to return better results. All optimization in this work was
performed with the open-source packages M-LOOP [11,12] to
implement the Bayesian optimization and LABSCRIPT [28] for
experimental control. Additional implementation details are
included in Appendix A.

III. COST FUNCTION

Since the optimization transitions the gas from the classical
into the quantum degenerate regime, the final state of the gas
depends strongly on how the cost function is chosen as a
combination of the two experimentally accessible parameters:
atom number N and temperature T . The classical phase space
density PSDc is defined as PSDc ≡ ncpλ

3
dB, where λdB is the

thermal de Broglie wavelength and ncp is the calculated peak
number density neglecting bosonic statistics (see Appendix B
for calculation details). The value of PSDc is nearly equal
to the true PSD when PSD � 1, while at the threshold to
condensation PSDc ∼ 1. Since the temperature T is more dif-
ficult to determine in the quantum degenerate regime, and also
requires a fit to the data with potential convergence problems,
we instead measure N and the peak optical depth (OD) in an
absorption image. Generally ensembles with larger PSDc have
a larger atom number N and less expansion energy, which
leads to a larger peak OD for a given N . Guided by this, we
explored cost functions of the form

C(X) ∝ − f (N/N1)OD3Nα−9/5, (1)

where f (N/N1) is a smoothed Heaviside step function with
N1 chosen near the detection noise floor (see Appendix A).
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The parameter α in the cost function tunes the trade-off
between optimizing for larger atom number or lower tem-
perature. For a pure BEC after sufficient time-of-flight (TOF)
expansion, |C/ f | scales as (NBEC)α (see Appendix C). For a
thermal cloud, |C/ f | is proportional to PSDc when α = −1/5,
although that value of α is unsuitable for condensation as
increasing the atom number in the BEC requires α > 0.

IV. OPTIMIZATION PROCEDURE

The sequence begins with a separately optimized 99-ms-
long MOT loading and compression period. The trap beam
powers are ramped to their initial Raman cooling values dur-
ing the last 10 ms of the MOT compression and then the
magnetic field is adjusted to its initial Raman cooling value
in 1 ms, at which point the horizontal dipole trap holds typi-
cally N = 2.7 × 105 atoms. We then added 100-ms stages of
Raman cooling one by one and optimized them individually.
After five stages, the algorithm tended to turn off the Raman
cooling by turning down Pp or PR or by tuning the magnetic
field Bz such that the Raman transition became off-resonant.
We then added up to six shorter 30-ms-long stages in which
the optical pumping and Raman coupling beams were turned
off, and the algorithm performed evaporative cooling. Due
to the reduced number of parameters, we were able to opti-
mize the evaporation stages simultaneously, which produced
a BEC. Subsequently we shortened the Raman cooling and
evaporation stages with parameter values fixed until only a
small and impure BEC was produced, and then we ran a global
reoptimization. In this global optimization stage, all 42 of the
Raman cooling and evaporation parameters were reoptimized
simultaneously using the previous values as the initial guess
for X. Often a trust region set to one-tenth of the allowed range
for each parameter was used. This kept the optimizer focused
in regions of parameter space which produced a measurable
signal, as adjusting even a single parameter too far would
often result in the loss of all atoms. We repeated this sequence
shortening and reoptimization procedure until the algorithm
failed to find parameters that could produce sufficiently pure
BECs.

The required beam powers generally varied over several
orders of magnitude, so the logarithms of their powers were
used as entries in X, while the magnetic-field control parame-
ter Bz was kept a linear parameter. A feedforward adjustment
was included in the Bz control values to account for the light
shift of the |2,−1〉 state by the optical pumping beam. We
averaged over five repetitions of the experiment for each set
of parameter values tested. The number of iterations per opti-
mization varied but was typically ∼1000 (including the initial
training) and required several hours, both for the single-stage
optimizations and the full-sequence optimizations. A simpler
optimization procedure was also attempted which did not in-
volve optimizations of individual stages. Instead the sequence
was divided into ten 100-ms stages and all 55 parameters
were optimized from scratch simultaneously. That approach
combined with the shortening and reoptimizing procedure
successfully produced a similar BEC, albeit in slightly longer
time (650 vs 575 ms), possibly due to the optimization becom-
ing trapped in a local optimum (see Appendix A for further
discussion).

FIG. 2. Control wave forms [panels (a) and (b)] and measured
trap and atomic-gas properties [panels (c)–(e)] of the optimized
sequence. Gray, blue, and orange shadings mark the MOT loading,
Raman cooling, and evaporation periods, respectively. The Raman
beam power has been multiplied by 103 for better visibility. νx , νy, νz,
and νh are the trap vibration frequencies in the x, y, and z directions
and in the horizontal trap, respectively; νc is the atomic collision
rate. PSDc does not account for bosonic statistics and changes slowly
while the BEC forms quickly above threshold. Calculations assume
thermal equilibrium.

V. RESULTS AND PHYSICAL INTERPRETATION

The best discovered 575-ms-long control sequence and
corresponding results are depicted in Figs. 2 and 3. Notably,
the algorithm discovered gray molasses [29,30] in the MOT
phase, which it applies at the end of the compression se-
quence. This outperforms the bright molasses [31,32] that
was previously used in the manually optimized compression
sequence, with the gray molasses loading a similar number of
atoms ten times faster. After the MOT loading stage and trans-
fer into the cODT, five ∼63-ms-long stages of Raman cooling
follow, and then the optical pumping and Raman beams are
ramped off, followed by six ∼27-ms-long evaporation stages.
As observed in previous work [12–14], the ramps produced by
Bayesian optimization are nonmonotonic and appear nonin-
tuitive, but they outperform the routines we found by manual
optimization. A reason for the nonmonotonic wave forms may
be that the cost function includes many local minima. The
optimization can settle into any one of these local optima
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FIG. 3. Results of the 575-ms optimized sequence. (a) PSDc

vs atom number N . Initial cooling until PSDc ∼ 10−1 is very effi-
cient with γ ≈ 16 (gray line). The performance of the much slower
(3-s-long) manually optimized sequence of Ref. [25] is shown for
comparison (γ ≈ 7). (b) Cross section of 24-ms TOF image (inset)
shows a BEC (orange fit) with small thermal wings.

randomly and produce complex but specific wave forms, as
observed in Ref. [12]. Despite the nonmonotonic ramps, PSDc

increases smoothly exponentially during this part of the se-
quence [Fig. 2(e)], due in part to the finite thermalization rate.

By shortening the sequence we are asking the algorithm to
maximize the cooling speed, which is limited by the lower
of the collisional rate νc and the trap vibration frequencies
νx,y,z [33]. When the gas is still hot, we have νc � νx,y,z, and
the algorithm employs Raman cooling to increase the density
and collision rate [Fig. 2(d)]. However, when νc approaches
the lowest trap vibration frequency νy near the time t = 225
ms, the algorithm starts to reduce the Raman rate, and a little
later the optical pumping rate, in order to reduce light-induced
collisions that scale with νc, rather than the trap vibration
frequency. Subsequently, for times t > 225 ms, the cooling
proceeds near optimally, with the collision rate close to, but
a little below, the trap vibration frequencies. Furthermore,
as the system approaches condensation near t = 410 ms, the
collision rate is somewhat lowered to reduce light-induced
atom loss [Fig. 2(c)].

Another effect limiting the cooling speed is the loading of
the atoms from the single horizontal trap, in which the sample
is initially prepared, into the crossed dipole trap (see the movie
in the Supplemental Material [34]). Initially, the vertical-beam
power Pz is held low to avoid creating a high-density dimple
region which would lead to excess loss during Raman cooling.
Later, Pz is ramped up to gather atoms from the horizontal
trap beam into the overlap region of the cODT in order to
increase the collision rate and speed up evaporative cooling.
The relatively sudden ramping of the trap power up and then
back down visible in Fig. 2(a) likely involves an optimal-
control-like process since the trap compression and relaxation
are faster than the axial period of the horizontal trap of
∼200 ms.

The optimization tended to turn off the Raman cooling af-
ter five stages because the cloud temperature T was below the
effective recoil temperature [25] where Raman cooling, even
with optimal parameters, becomes too slow, while leading
to trap loss and heating due to light-assisted collisions [35].
The Bayesian optimization recognized this and shut down
the Raman cooling at this point, with the atomic gas close
to condensation. Subsequently, at higher compression, which
is primarily achieved by increasing the vertical beam power,

FIG. 4. Cross sections of 24-ms TOF images (200 averages) opti-
mized for different values of the cost function parameter α (see main
text) with 1-s-long sequences, demonstrating the trade-off between
optimizing for atom number or temperature. Also plotted are the
results of optimizing for atom number N only. Inset: Condensate
fraction NBEC/N vs N for different α’s.

the horizontal trap power is reduced and atoms are efficiently
evaporated along the direction of gravity in the tilted potential
[20] (see the movie in the Supplemental Material [34]). Note
also that, once the atoms have been loaded into the crossed-
trap region (after t = 350 ms), the algorithm makes all trap
vibration frequencies similar, which provides the fastest over-
all thermalization and hence the fastest cooling speed.

The BEC is fully prepared at the end of the evaporation
stages, 575 ms after the start of the MOT loading. The final
cloud contains 3.7 × 103 total atoms and is shown in Fig. 3(b).
A bimodal fit of the cloud indicates that 2.8 × 103 atoms
(76%) are in the BEC. Although the sequence was optimized
for speed rather than efficiency, the initial cooling occurs with
a logarithmic slope γ = d (log PSDc)/d (log N ) ≈ 16.

VI. COST FUNCTION IMPACT

The atomic gases produced by sequences optimized for
different values of α are presented in Fig. 4, as well as the
results when optimizing for total atom number (N). Larger
values of α result in more atoms, but at higher temperature and
lower condensate fraction, while smaller values of α produce
purer BECs, but with fewer atoms overall. Setting α to 0.5
was found to make a reasonable compromise (orange curve
in Fig. 4); so this value was used for the final full-sequence
optimization which yielded the data presented in Fig. 2.

VII. OUTLOOK

In conclusion, we have demonstrated that Raman cooling
with far-detuned optical-pumping light combined with a final
evaporation can rapidly produce BECs with a comparatively
simple apparatus, even with a standard alkali-metal atom
which lacks narrow optical transitions. Bayesian optimiza-
tion greatly eased the search for a short sequence to BEC,
quickly discovering initially unintuitive yet high-performing
sequences. Inspection of the parameters chosen by the algo-
rithm reveals several physical strategies, such as adjusting a
collision rate close to, but below, the trap vibration frequencies
to maximize the thermalization and cooling speed while min-
imizing density-dependent atom loss, nonadiabatic loading
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into the crossed-trap dimple, and creating a nearly isotropic
trap for efficient evaporation. In future applications, faster
condensation can likely be achieved by including dynamical
tuning of the trap size [21], while user intervention may be
further reduced by factoring the sequence length into the as-
signed cost [14]. We anticipate that many other experimental
procedures in atomic physics and beyond can be improved by
machine learning.
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APPENDIX A: BAYESIAN OPTIMIZATION
IMPLEMENTATION

In M-LOOP’s implementation of Bayesian optimization, the
training algorithm used to pick parameters and generate a
training dataset is also run periodically even after the train-
ing dataset is complete [11,12]. In particular, once sufficient
training data are acquired, three independent neural networks
are trained. Each neural net is fully connected and consists of
an input layer with one node for each optimization parameter,
followed by five hidden layers with 64 nodes each and then
an output layer with a single node. Once the training has
completed, each neural network is used to generate a set of
parameter values X which it predicts to be optimal, and each
of those three X’s is experimentally tested. Then another iter-
ation of the training algorithm is performed and the X value
it suggests is also tested. The results from all four of these
measurements are included in the next training of the neural
nets for the subsequent Bayesian optimization iteration. The
additional iterations of the training algorithm are intended to
encourage parameter space exploration and provide unbiased
data [11,12].

In this work, the absorption images used to measure the
cost function were generally taken after 1.5 to 8 ms of time-of-
flight (TOF) expansion. We averaged over five repetitions of
the experiment for each set of parameter values tested, which
took ∼10 s accounting for experimental and analysis over-
head. Simply taking the largest optical depth measured in any
single pixel of an absorption image as the OD makes it prone
to noise, so the OD was set to the average OD of several pixels
with the largest OD to reduce noise. To compare different
sequences on an equal footing during optimizations, the trap
beams were always ramped to a fixed power setting before
releasing the atoms for TOF imaging. This final fixed ramp is
only necessary during optimizations and is omitted from the
sequence once the optimizations are complete. The smoothed
Heaviside step function f (N/N1) included in the cost function
ensures that the cost does not diverge at low N , while having
little effect when N is above the measurement noise floor. The
form of f (N/N1) is inspired by the expression for the excited

state population of a two-level system in thermal equilibrium
and it is defined as

f (N/N1) =
{(

2
eN1/N +1

)
N > 0,

0 N � 0.
(A1)

For many of the optimizations in this work, particularly
those with tens of parameters, the cost function landscape is
“sparse” in the sense that most sets of parameter values yield
poor results with a signal below the measurement noise floor.
Thus the actual performance for such X cannot be measured,
and testing them provides little information to the model.
This leads to large regions of parameter space where there is
no measurable signal and the direction towards better values
cannot be inferred. There are two notable consequences of
this. First, for such optimizations it is generally necessary to
provide initial values to the optimization which give a nonzero
signal. Without a good starting point, the training dataset will
often only include measurements dominated by noise, making
it exceedingly unlikely for the Bayesian optimization to suc-
ceed. Second, for such optimizations it is generally helpful to
specify a trust region. This limits the extent of excursions as
the optimizer explores parameter space, making it more likely
to test parameter values which yield a measurable signal.
However, this does come at the cost that it makes it less likely
for the optimizer to jump from one local minimum to another
better minimum. We often performed the same optimization
with and without a trust region in parallel. This could be done
without significantly extending the duration of optimizations
because the analysis for each iteration typically took longer
than the time required to perform the experiment. Thus one
optimization could run experiments while the other analyzed
its most recent results. For optimizations with many parame-
ters, the results with a trust region were typically as good as or
better than those without. This is likely a consequence of that
fact that, given the sparsity of the cost function landscape, it is
unlikely for the optimizer to discover another local optimum.
Thus, it is better for the optimizer to focus on modeling the
region of parameter space around the local optimum rather
than fruitlessly searching for another local optimum.

The sparsity of the cost landscape and necessity for pro-
viding initial parameters which produce measurable results
posed a difficulty when we optimized an entire sequence from
scratch at once (rather than initially adding one cooling stage
at a time). We resolved this by reducing the time of flight to
1.5 ms for the first optimization. With such a short time of
flight, even poor parameter values could produce clouds with a
peak optical depth above the measurement noise floor. Due to
the finite dynamic range of the absorption imaging, the results
of this first optimization produced a cloud which saturated
the measurement and thus made it impossible to accurately
quantify performance for the best-performing values. The
next optimizations were performed with the same sequence
duration, but the time of flight increased to 5 ms and then
to 8 ms. This made it possible to better discern differences
between high-performing sets of parameter values at the cost
of increasing the performance required to produce a signal
above the noise floor and thus increasing the sparsity of the
cost function landscape. The procedure of shortening and then
reoptimizing the sequence was then applied, resulting in the
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FIG. 5. (a) The control wave forms for the 1-s sequences corresponding to the results presented in Fig. 4, as well as the initial wave form
used as the starting point for each of those optimizations. (b) The control wave forms for the 650-ms ten-stage sequence optimized from scratch
rather than stage-by-stage initially, which was optimized with α = 0.5. Note the differing limits for the x axes between panels (a) and (b). The
sequences in panel (a) include a 50-ms magnetic coil ramp duration which was later reduced to 1 ms. The MOT sections of the sequences
have been omitted for simplicity. Note that the wave forms in panel (a) are mostly qualitatively similar despite being optimized for different
cost functions. The wave forms in panel (b) are more qualitatively distinct from those in panel (a), even for the orange curves which were also
optimized with α = 0.5. This suggests that the independent optimizations likely become trapped around disparate local minima. On the other
hand, tuning the cost function while providing the same initial parameter values each time typically causes only smaller deviations around the
initial values.

sequence presented in Fig. 5(b), which produced a BEC in
650 ms. The parameter α was set to 0.5 throughout this pro-
cedure.

Although it is not strictly fair to do so due to the differing
parametrizations, it is still informative to compare the control
wave forms of the independently optimized 650-ms sequence
to those from Fig. 4. These wave forms are presented in
Fig. 5. The sequences of Fig. 4 optimized for different α’s
all had fairly similar wave forms. On the other hand, the
650-ms sequence had a qualitatively different wave form.
For example, it lacks the sudden rise and drop in vertical
trap power towards the end of the sequence present in the

other wave forms. This suggests that it has converged to a
qualitatively different local optimum. On the other hand, the
sequences of Fig. 4 were all optimized with a trust region
and the same initial X. Thus, those optimizations primarily
performed a local search, only slightly tuning X to tailor the
sequence for their particular value of α. Although there are
small differences in parametrization, the fact that two different
optimizations with the same value of α produce sequences
that differ more than optimizations with the same initial X
but different α’s supports the notion that the cost function
landscape includes multiple local minima, as suggested in the
main text.
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APPENDIX B: CALCULATIONS OF ATOMIC
GAS PROPERTIES

The classical phase-space density is defined as PSDc =
ncpλ

3
dB, where ncp is the peak number density calculated for

a classical gas (i.e., neglecting Bosonic statistics) and λdB =
h/

√
2πmkBT is the de Broglie wavelength. Here h is the

Planck constant, m is the mass of an atom, and kB is the
Boltzmann constant. To calculate PSDc for a cloud, its atom
number N and temperature T are measured and it is assumed
to be in thermal equilibrium. The value of λdB is easily calcu-
lated from the measured temperature. The partition function
Z = ∫

fB(x)dV is then calculated by numerically integrating
the Boltzmann factor fB(x) = exp[−U (x)/(kBT )] over the
trap volume, where U (x) is the trap potential at position x.
The U (x) is taken to be the sum of two Gaussian beams, one
for each cODT beam, and gravity is neglected for simplicity.
Each Gaussian beam, with peak depth Ui.0 and waist wi,0,
contributes a potential of the form

Ui(x) = Ui,0

(
wi,0

wi(z′)

)2

exp

(−2(r′)2

wi(z′)2

)
, (B1)

where wi(z′) = wi,0

√
1 + (z′/zR)2 is the spatially varying

beam width and zR = πw2
i,0/λ is the Rayleigh range. The

primed coordinates z′ and r′ are taken to be along and perpen-
dicular to the beam’s propagation direction, respectively. The
value of ncp can be calculated as N fB(x0)/Z , where x0 is the
position of the bottom of the trap. Finally PSDc is evaluated
from its definition in terms of ncp and λdB. Notably, for much
of the sequence the atomic cloud extends out of the cODT
region and into the wings of the horizontal ODT, in which case
the trap potential seen by the cloud is not harmonic. Thus the
well-known result PSDc = N (h̄ω̄)3/(kBT )3 for a harmonic
trap with geometric mean trap frequency ω̄ cannot be used
for most of the sequence.

Calculation of the mean collision rate νc requires averaging
the collision rate ncσvrms over the cloud, where σ is the
atomic collision cross section and vrms is the root-mean-square
relative velocity of atoms in the cloud. The value of nc varies
over the trap and obeys nc(x) = N fB(x)/Z , again neglecting
Bosonic statistics. From equipartition for a three-dimensional
gas, (1/2)μv2

rms = (3/2)kBT , where μ = m/2 is the reduced
mass for two atoms. Thus the value of vrms is given by√

6kBT/m. The local collision rate is averaged by integrating
ncσvrms over the cloud, weighted by the one-atom number
density nc/N , yielding

νc = Nσ

√
6kBT

m

∫ (
fB(x)

Z

)2

dV. (B2)

The above calculations assume that the cloud is in thermal
equilibrium, which is often a good approximation. However,
after about 440 ms of the final optimized 575-ms sequence, the
power in the vertical trapping beam Pz is rapidly increased, as
can be seen in Fig. 2(a). This change is likely nonadiabatic
for atoms in the wings of the horizontal ODT and the cloud
may no longer be in thermal equilibrium. This is likely why
the calculated PSDc appears to increase beyond ∼1 before the
appearance of a BEC. Notably this nonadiabatic portion of the
sequence occurs only after PSDc has reached 0.4, and thus it

does not affect the cooling efficiency estimate of γ ≈ 16 for
the cooling up to PSDc = 0.1.

The peak trap depth Ui,0 for each beam was determined
from the beam waist wi,0 and the radial trap frequency ωi,r

measured for each beam. The beam waists, defined as the
radius at which the intensity falls to 1/e2 of its peak value,
were measured by profiling the trap beams on a separate test
setup which focused the light outside of the vacuum chamber.
The trap frequencies were directly measured by carefully per-
turbing the position of a cloud in the cODT and observing its
oscillations. Before perturbing the cloud, it was first cooled
sufficiently to make it well confined to the central region of
the cODT so that the potential was approximately harmonic.
The peak trap depth for each beam could then be calculated as
Ui,0 = mω2

i,rw
2
i,0/4. This expression can be derived by equat-

ing the spring constant for the trap in the radial direction
k = d2Ui(x)/(dr′)2|x=x0 to its value for a harmonic oscillator
k = mω2

i,r .

APPENDIX C: COST SCALING

The peak optical depth (OD) of a pure BEC after suffi-
cient time-of-flight expansion scales as OD ∝ NBEC/A, where
A is the area of the cloud in the image. The area scales in
proportion to v̄2, where v̄ is the expansion velocity, which
is related to the BEC chemical potential via (1/2)mv̄2 =
(2/7)μ in a harmonic trap [36]. Thus, A ∝ μ. Furthermore,
the chemical potential for a harmonically trapped BEC scales
as μ ∝ N2/5

BEC [36], so A ∝ N2/5
BEC and OD ∝ N3/5

BEC. The expres-
sion OD3Nα−9/5 then scales as (NBEC)α . Notably this scaling
also applies to a harmonically trapped BEC when imaged in
situ. There, the BEC radius R scales as R ∝ N1/5

BEC [36]. In
that case, A ∝ R2 ∝ N2/5

BEC as before. The same arguments then
apply again, indicating that OD3Nα−9/5 scales as (NBEC)α for
a harmonically trapped BEC in situ just as it does for a BEC
after a long time-of-flight expansion.

The scaling of OD3Nα−9/5 for a purely thermal cloud is
also of note. For a harmonically trapped thermal cloud, the
RMS size in a given direction for any time of flight is propor-
tional to T 1/2, so A ∝ T . Thus OD ∝ N/T and OD3Nα−9/5

scales in proportion to Nα+(6/5)/T 3. Clouds with smaller tem-
peratures are favored by the cost function, and clouds with
larger atom numbers are favored as long as α > −6/5. For the
case α = −1/5, the value of OD3Nα−9/5 scales in proportion
to N/T 3, which is proportional to PSDc. That choice of α was
often used when optimizing individual stages before reaching
the threshold to BEC. However, note that this choice of α leads
to the scaling OD3Nα−9/5 ∝ N−1/5

BEC for a pure BEC and is thus
not a good choice when the cloud reaches condensation.

APPENDIX D: RAMAN COOLING LASER

Standard Doppler cooling requires a laser with a linewidth
narrow compared to the optical transition linewidth in order to
achieve optimal temperatures. This places stringent technical
requirements for Doppler cooling on narrow optical transi-
tions. By contrast, Raman cooling can achieve similar velocity
resolution and associated temperatures with a comparatively
broad laser. In this work, the light for the Raman coupling
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and optical pumping beams, which drive the up-leg and
down-leg of the Raman transition, respectively, was derived
from the same laser. This ensures that any laser frequency
noise is common mode between the two legs of the Raman
transition and makes it possible to resolve Doppler shifts
much smaller than the laser linewidth. A Distributed Bragg
Reflector (DBR) laser diode (Photodigm PH795DBR180TS)

without an external cavity was sufficient to generate the
Raman cooling light. The forgiving laser linewidth require-
ments further simplify implementation of our BEC production
approach compared to schemes which require Doppler cool-
ing on narrow optical transitions. Thus our approach may
be useful even for species which include narrow optical
transitions.
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