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I. SUPPLEMENTARY MATERIAL: FAST PREPARATION OF A SUPER-TONK

GAS BY LASER COOLING

A. Experimental Details

133Cs atoms are loaded from a magneto-optical trap (MOT) into a standing-wave trap

operated at wavelength λ = 1064 nm with waist wx = 17 µm and 100 mW of power (x-

trap). The lattice is created by a vertically polarized beam and its retroflection with the

polarization rotated by about 83◦, set to obtain trapping frequencies of ωx = 2π × 50 kHz

along the lattice and ω⊥x = 2π × 1.5 kHz transverse to the beam propagation, with a

calculated trap depth of Ux/h = 2.2 MHz. After loading into the trap and polarization

gradient cooling to a temperature of T=6 µK, the phase space density (PSD, defined below)

is PSD' 4×10−3 [1], and the peak density is n0 ' 2×1013cm−3. We then perform degenerate

Raman sideband cooling (dRSC) of the 2D gas by applying a magnetic field of about 150

mG to match the energy of the |ν; 6S1/2,F = 3,mF = 3〉 and |ν− 1; 6S1/2, 3, 2〉 states, where

ν represents the vibrational level of an atom in the direction of tight confinement. In this

configuration the trapping light drives the |ν; 6S1/2,F = 3,mF = 3〉 → |ν − 1; 6S1/2,F =

3,mF = 2〉 Raman transition, with calculated Rabi frequency of 2π×2 kHz. Unlike previous

realizations of laser cooling to quantum degeneracy in 87Rb [2, 3], we use light resonant with

the |6S1/2,F=3〉 → |6P3/2,F’=2〉 transition to optically pump the atoms from the |3, 2〉 state

back to |3, 3〉 using spontaneous Raman scattering, removing entropy from the system (see

Fig. 1b of the main text for the atomic level structure). The pump light, with an intensity of

6 µW/cm2, is mostly σ+ polarized with a small component of π-light, to empty all magnetic

sublevels other than the lowest-energy state |3, 3〉. At the end of this first cooling stage after

100 ms, the trap contains N = 4000 atoms with a peak occupancy of N ' 90 atoms per

lattice site at a temperature of T=2.5 µK. At this point we have reached PSD∼0.1, and

if we continue the cooling in this geometry, we observe that the PSD decreases due to the

strong light-induced atom loss.

To prepare the atoms in a quasi-1D trapping geometry we proceed as follows: we adia-

batically turn on a second lattice trap (y-trap) transverse to the first one with wy = 6.5 µm

waist and detuned from the x-trap by 160 MHz. This configuration creates a two dimen-

sional array of elongated cigar-shaped traps along the z direction (see Fig. 1 of the main
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text). This second lattice is created by a vertically polarized beam and its retroflection with

polarization rotated by 70◦. We use 5.5 mW of power to achieve trapping frequencies of

ωy = 2π×50 kHz along the lattice and ω⊥y = 2π×2.5 kHz transverse to it, with a calculated

trap depth of Uy/h = 0.47 MHz.

Before the y-trap turns on, the cold atoms in the x-trap are distributed at the bottom of

the potential with a root-mean-square radius of 1.3 µm in the y-direction, so that most of

the atoms are loaded into 3 lattice sites along the y-trap (see Fig. 1a of the main text for

reference to the coordinate system and Fig. 1c for the trap geometry). Immediately after

switching on the y-trap, we adiabatically turn off the x-trap while increasing the power of

the y-trap, allowing us to further compress the atoms in the x-direction, and to remove the

atoms that are not confined to the overlap region of the two traps. The y-trap power is then

increased by a factor of ten, producing a transverse frequency of ω⊥yc = 2π× 8 kHz. At this

point the temperature of the atoms has risen to about 20 µK, leading to a root-mean-square

cloud size of 0.7µm along x. After 10 ms of thermalization the x-trap is adiabatically turned

on. Finally, the y-trap power is adiabatically ramped back down to its previous value (Fig.

1c of the main text). The entire process of compressing the atoms along both lattices takes

40 ms, without significant reduction of the PSD. At the end of this stage we have about 1000

atoms at 5 µK distributed in a 2D array with rms size ∼ 1.3× 2.5 lattice sites in the x and

y directions, respectively, obtaining a peak occupation of N ' 50 atoms per cigar-shaped

trap.

The final cooling stage follows the same dRSC scheme as the pre-cooling stage, but now

in two dimensions (x and y). The trapping frequencies are ωx,y = 2π × 50 kHz in the

transverse directions and ωz =
√
ω2
⊥x + ω2

⊥y = 2π × 2.9 kHz along the weakly confined

vertical direction. After 200 ms of cooling, we reach a kinetic energy of the free expansion

that corresponds to the ground-state kinetic energy of the tightly confined direction, i.e. we

cool to the 2D ground state in the xy-plane. During cooling, atoms are lost at a moderate

rate due to light-assisted inelastic collisions; once the atoms are cooled to the 2D ground

state, the loss rate substantially reduces, presumably due to the lower cooling and associated

optical pumping rates.

The loss during the cooling is due to two-body collisions, with more loss occurring in

the traps in the central region containing initially more atoms. We simulate the atom

number distribution in each trap at fixed total loss for the ensemble during the final cooling
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Trap wavelength 1064 nm

x-beam power 100 mW

y-beam power 5.5 mW

x-beam waist 17 µm

y-beam waist 6.5 µm

ωx,y 2π × 50 kHz

ωz 2π × 2.9 kHz

Trap depth U h× 2.7 MHz

Magnetic field B 0.15 G

TABLE I. Experimental parameters.

(Ninitial = 1000 atoms and Nfinal = 300 atoms), and find that this leads to a rather flat

distribution in atom number, with most traps containing N1 = 6 atoms.

B. Atom Number Distribution

During the last stage of cooling the atoms are lost mainly due to light-induced collisions,

which for a given laser intensity and detuning depend on the probability of finding two

atoms near each other while one of the atoms is not in the dark state |F = 3,m = 3〉. We

can model light-induced losses as a two-body process, where the reduction of the number of

atoms is given by the solution of the differential equation Ṅ = −αN2, namely

N(t) =
N0

αN0t+ 1
. (1)

Here N0 is the initial number of atoms and α is light-assisted two-body loss rate. We model

the density profile of the atoms remaining in the trap by starting with a Gaussian distribution

and letting it evolve following Eq. (1). Fig. 1 shows the evolution during cooling of

Ninitial = 1000 atoms in a Gaussian distribution with a width given by the geometric average

of the rms size of the sample after compression in the x and y direction (
√

0.7µm× 1.3µm),

which corresponds to 1.8 lattice sites. By the time the atoms are cooled down to the

transverse ground state there are about Nfinal = 300 atoms. In this case we predict an

almost flat density distribution of about 50 tubes in two dimensions with 6 atoms per tube.

The atoms contained in tubes outside the flat distribution make up about 20% of the signal.
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Moreover, due to the low atom number they are expected to contribute very little to the

two- and three-body correlation signals.
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FIG. 1. Atom number distribution per lattice site at different cooling times. After loading into

the 2D array of traps, the ensemble contains a 1000 atoms in a Gaussian distribution of the atom

number per lattice site (solid black). As the atom number in each trap is reduced by two-body

loss to a distribution with 500 atoms (dashed blue) and 300 atoms (dotted red), the nonlinearity

of the loss leads to a flat distribution of atom numbers.

C. Magnetic Field Dependence

We apply a magnetic field rotated from the y axis by a small angle α. To optimize the

optical pumping into the |6S1/2,F = 3,mF = 3〉 state, we scan the angle α by minimizing

the atom loss at large optical pumping power. For the thusly obtained angle α ≈ 10◦, Fig.

2 shows the performance of dRSC versus magnetic field. We observe that the minimum

temperature is reached near B = 150 mG, consistent with a Zeeman frequency splitting

that equals the trapping frequency ωx,y in the directions of tight confinement.

D. Calculation of Phase Space Density

The (classical) phase space density is defined as the probability for a single atom to

populate the three-dimensional quantum ground state of the system, multiplied by the

number of atoms per trap N1,

PSD = N1P0 = N1p0,xp0,yp0,z, (2)
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FIG. 2. Number of atoms (red circles) and temperature (blue triangles) as a function of magnetic

field after 100 ms of cooling.

where p0,i is the ground-state occupation along the i-direction, given by p0,i = 1 − e−
~ωi
kBTi .

The kinetic energy observed in time-of-flight is half of the total energy and given by

Ki =
1

2
~ωi

(
1

2
+

1

e
~ωi
kBTi − 1

)
. (3)

This leads to a relative ground state occupation of

p0,i =
2

4Ki
~ωi + 1

, (4)

and a phase space density given by

PSD = N1

∏
i=x,y,z

2
4Ki
~ωi + 1

(5)

E. Thermalization Rate

At the end of the cooling, the quasi-1D gas tends to be colder in the transverse direction

than in the longitudinal one. This happens because the cooling is perform in the direction

of tight confinement and relays on thermalization two lower the temperature in the other

direction. It is know that at low temperatures thermalization slows down [4], because two-

body collisions that can take enough energy to excite the atoms are high reduce. We can

estimate the thermalization rate due to two-body collisions in our system. Neglecting the

effects of correlation, we expect a behavior similar to the one shown in Fig. 3 [5]. For

our system, thermalization should virtually stop at temperatures near 0.8 µK, while the

6



temperature in the transverse direction can get much colder, as mentioned in the main text.

Correlations between the atoms will tend do further reduce the thermalization rate at low

temperatures. Thermalization can also be achieved by three-body collisions, but this tend

to be even further reduced by correlations in a strongly interacting gas, proportional to γ−12.

[5].
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FIG. 3. Thermalization rate as a function of temperature for a quasi-1D gas.

F. Characterization of Time-of-Flight Distributions

We characterize the velocity distribution of the sample using time-of-flight measurements.

We let the gas expand for 800 µs before an absorption image is taken. We integrate over

the vertical or horizontal direction of the image to obtain the velocity distribution along the

direction of tight or weak confinement, respectively. We fit a Gaussian distribution to all

the data points and then eliminate all the points within one standard deviation of that fit

(see Fig. 4). We then fit a Gaussian distribution to the remaining tails. In the direction of

tight confinement we always observe a distribution that is well approximated by a Gaussian.

On the other hand, the momentum distribution along the direction of weak confinement

has a non-Gaussian central part. We consider these characteristic non-Gaussian momentum

distributions as a signature of a quantum degenerate gas. We fit the non-Gaussian fraction

of the data to a Thomas-Fermi distribution (inverted parabola) with reasonable agreement,

although the exact momentum distribution near zero-momentum in general does not have

an analytic functional form. However, we can quantify the fraction of atoms that do not

follow a thermal distribution by the ratio of the area under the inverted parabola to the

total area.
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FIG. 4. Velocity distribution of the atoms normalized by the recoil velocity. (a) Velocity distri-

bution along the tightly confined direction, fit to a Gaussian. (b) Velocity distribution along the

weakly confined direction. The vertical dashed lines correspond to plus and minus one standard

deviation. The solid black curve is the fit to a Gaussian distribution considering only the darker

data points and the gray dashed curve in (b) is a Gaussian distribution plus an inverted parabola.

G. Photo-induced Losses and g(2) Correlation Function

In the regime where the loss and temperature change are small, i.e., the average density

〈n〉 is approximately constant, we can describe the atom number loss due to photo-induced

two-body inelastic collisions as an exponential decay determined by the differential equation

Ṅ = −ΓN. (6)

The loss rate Γ = Gg(2)〈n〉 depends on the three-dimensional average atomic density 〈n〉,

the photo-association rate constant G, and normalized probability to find two atoms at

vanishing interatomic distance g(2)(r = 0).

The atom-atom correlation function g(2) can be evaluated by comparing densities and

decay rates for the cases of one- and two-dimensional gases, by turning on or off one of the

trapping lattices. The ratio of g(2) in both cases is

g
(2)
1D

g
(2)
2D

=
Γ1D

Γ2D

〈n〉2D

〈n〉1D

G2D

G1D

, (7)

where the densities can be calculated from the measured atomic average kinetic energy and

the trapping frequencies. We fit the data to the solution of Eq. (6) to extract the value of

Γ. The quantity Γ1D〈n〉2D

/
Γ2D〈n〉1D is shown in Fig. 4a of the main text. If we assume

that the two-dimensional gas is approximately thermal, for which g
(2)
2D = 2, we obtain

g
(2)
1D ' 0.1

G2D

G1D

. (8)
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In an ideal experiment, the photo-association rates are constant, allowing to extract the

value of g(2) for different trap geometries, but in practice they may differ. One possibility

explanation for having G1D 6= G2D are the different heating and cooling rates in both con-

figurations, however we measure both rates to be similar in 1D and 2D. We hypothesize

that the main mechanism for having G1D 6= G2D is the reduction of on-resonance photo-

association due to the tight confinement. Two atoms photo-associate with resonant light

if they are separated by a distance close to the Franck-Condon point [6]. In the case of a

1D trap this holds true only for atoms along the z direction, since the transverse confine-

ment length scate is smaller than the Franck-Condon point for our conditions. In 2D, the

resonant condition is satisfied for atoms on a circle in the two-dimensional plane. We can

calculate the geometrical factor that differentiates the photoassociation rates in 1D and 2D

geometries. Assuming Gaussian density distributions in all directions we can calculate the

probability of having two atoms at a distance between rc and rc + ∆ apart. In 1D this is

P1D ≈ a⊥
2πσ1D

(
Ei
(
− (rc+∆)2

4σ2
1D

)
− Ei

(
− r2

c

4σ2
1D

))
, where a⊥ and σ1D are the rms widths in the

direction of tight and weak confinement, respectivel,y (a� σ1D), and Ei is the exponential

integral function. Assuming ∆ > rc, this can be further simplified as P1D ≈ a
2πσ1D

Γ
(

0, r2
c

4σ2

)
,

where Γ(0, x) is the incomplete Euler Gamma function. The same probability in 2D, under

the same approximations, gives P2D ≈ 1
2π
e
− r2c

4σ2
2D . The ratio of these geometric factor that

modify the photoassociation rates is P2D ≈ 1
π
e
− r2c

4σ2
2D

(
1− e

−∆2

4σ2
2D

)
. In general ∆ is bigger

than σ2D, but the number of atoms separated by more than 2σ2D is small, cutting off the

actual value of ∆. This can be written as

P2D/P1D = G2D/G1D ≈
σ1D

a

e
− r2c

4σ2
2D

Γ
(

0, r2
c

4σ2
1D

) (9)

Considering rc ∼ λ̄ = 135 nm, the transverse confinement of the trap a⊥ = 39 nm, and a

thermal widths σ1D = 475nm and σ2D = 550nm, all obtained from experimental measure-

ments, we get G2D ≈ 3.6G1D, then

g
(2)
1D ∼ 0.4. (10)

For our parameters, the estimated temperature T , normalized to the degeneracy tempera-

ture TD = ~2n2
1D/(2mkB) = 46 nK of the repulsive Lieb-Liniger model [7], is τ = T/TD = 26.

For this temperature and γ = 8 we expecct g
(2)
1D ≈ 0.4 [7].
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We estimate the linear density n1D assuming a thermal Gaussian distribution of atoms,

consistent with our system with temperatures above the degeneracy temperature [8]. Al-

though the generated Super-Tonks gas is in a meta-stable state, this state is long lived, and

the gas can be approximated as being in thermal equilibrium throughout all experimentally

relevant time scales.

H. Three-Body Losses and g(3) Correlation Function

The density evolution of an atomic ensemble in a trap with three-body loss is governed

by

ṅ = −Kn3, (11)

where K is the three-body loss rate coefficient, and n is the local density. This equation can

be re-written in terms of total atom number as

Ṅ = −CN3, (12)

where for a harmonic trap the coefficients are related by

K =
33/2

ρ2
3D

C, (13)

where ρ3D is the single-atom peak density in a trap given by

ρ3D =
1

(2π)3/2x0y0z0

, (14)

where x0, y0, and z0 are the root-mean-square size of the atomic distribution in each indi-

vidual trap given by the temperature and the trapping frequencies.

The solution of the differential equations is

N(t) =
N1√

2CN2
1 t+ 1

, (15)

with N1 being the initial number of atoms in the trap. Since all traps are almost equally

filled due to the two-body loss during the preparation, the evolution of total atom number

is governed by the same equation. This is the expression we use for our fits to obtain the

three-body loss rate (Fig. 4b of the main text).

The three-body loss rate is proportional to the overlap of the wavefunction of three atoms,

characterized by the correlation function g(3)(r = 0). We consider K = K0g
(3) and compare
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the cases for one- and two-dimensional gases, assuming that K0 is a constant, independent

of the dimensionality of the problem. If we also assume that the two-dimensional gas is

approximately in a thermal distribution, where g
(3)
2D = 6, then our measurements of three-

body loss yields

g
(3)
1D ' 0.05. (16)

Analogously to g(2), g(3) can be calculated from theory even at finite temperature, and

for our parameters (γ = 8, τ = 22) is given by g
(3)
1D ' 0.06 [7].

The main source of systematic errors for measuring g
(3)
1D comes from the uncertainty of

the atomic density in the case of a 2D traps (1D lattice). We observe neighboring traps

getting populated while atoms are held in the dark (without cooling). This effects decreases

the density of atoms by a factor of 4, and adds a uncertainty of 50 percent in determining

the value of K2D.
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