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SUPPLEMENTAL MATERIAL

Rate equation

The cooling force generated by the light scattered into the cavity mode is given by [S1]:

Fc = h̄kΓcav
4δik · v

(κ/2)2 + δ2sc
, (S1)

where

δsc = δi − k · v (S2)

is the detuning of the scattered light relative to the cavity resonant frequency, k = kx̂ is the wavevector of the incident
light, and Γcav is the single-atom scattering rate into the cavity. The enhancement of the cavity scattering rate over
free-space scattering rate is Γcav/Γsc = η/(1 + (2δi/κ)

2). Since the atoms are confined in the Lamb-Dicke regime
along the cavity (ẑ) direction, only the force in the x̂ direction is responsible for the cavity cooling process.
From the cooling force, we can calculate the rate at which thermal energy is removed from one atom:

d

dt
W = (Fc · v)Γcav + 2Erec

[

1 +
η

1 + (2δi/κ)2

]

Γsc +Htrap, (S3)

where W = 3
2kBT is the thermal energy of individual atoms. The rate equation can be written as:

d

dt

3

2
kBT = −kv

4h̄kv

κ

2δi/κ

[1 + (2δi/κ)2]2
ηΓsc +

2Erec

[

1 +
η

1 + (2δi/κ)2

]

Γsc +Htrap. (S4)

By redefining Htrap = 3
2kBhtrap, we arrive at Eq. 1.

Photon-photon correlation function

For the light emitted from a large number of uncorrelated emitters, there is a simple relation between the first and
second-order auto-correlation functions [S2]:

g(2)(τ) = 1 + |g(1)(τ)|2, (S5)

where g(1) is defined as

g(1)(τ) =
〈E∗(t)E(t+ τ)〉

〈E∗(t)E(t)〉
. (S6)

We consider N atoms with a Doppler width ωD. The electric field of the scattered light field can be written as

〈E∗(t)E(t + τ)〉 = E2
0

N
∑

j=1

exp i(ω0 + kvxj)τ

1 +
[

2(δi + kvxj)/κ
]2

= NE2
0

∫

∞

−∞

exp i(ω0 + kvx)τ

1 +
[

2(δi + kvx)/κ
]2 exp

(

−
k2v2x
2ω2

D

)

dvx, (S7)

where E0 is the electric field amplitude scattered from an atom. The correlation function g(2) of the light scattered
into the cavity mode is fit with Eqs. S5-S7 to obtain the Doppler width. The relation between Doppler width and

temperature in one dimension (x̂), ωD = k
√

kBT
M , is used to extract the temperature of the atoms.
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Heterodyne measurement

We interfere the emerging light from the cavity with a local oscillator 2 MHz detuned from the incident light on
a 50/50 beam splitter. The output light from two ports of the beamsplitter is collected using SPCM-AQRH Single
Photon Counting Modules from Excelitas Technologies, and its Fourier transform is calculated to extract the power
spectrum of the light exiting the cavity. The average frequency shift δω of the scattered light into the cavity relative
to the incident light is a direct evidence of cavity cooling. Thermal energy is removed from individual atoms at a
rate of Γcavh̄δω, which equals the first term in the right hand side of Eq. S4. The linewidth of the spectrum is a

product of the Doppler emission spectrum of the atoms I(ω) = I0 exp
[

− (ω−ω0)
2

2ω2

D

]

and the cavity transmission profile

T (ω) = 1
1+[2(ω−ωc)/κ]2

, where ω0 is the frequency of the incident light, ωc is the cavity resonance frequency, and ωD

is the Doppler width of the atomic ensemble. The temperature extracted from the emission spectrum of the cavity
scattering light agrees well with that obtained from the g(2) function.

Cross thermalization

We rely on cross thermalization to realize 3D cooling with one incident beam. If the thermalization rate is not
much higher than the cooling rate, Eq. 1 does not hold. The evolution of the temperature in the three directions is
then determined by the following equations:

1

2
kB

dTx

dt
= −

3

2
kBRcηΓscTx + ErecΓsc

[7
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η

1 + (2δi/κ)2

]

+
1

2
kBhtrap +

R

2
kB(Ty − Tx) +

R

2
kB(Tz − Tx)
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=

1
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ErecΓsc +
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2
kB

dTz
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= ErecΓsc
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5
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]

+
1

2
kBhtrap +

R

2
kB(Tx − Tz),

(S8)

where R is the cross thermalization rate which is proportional to the elastic collision rate. We make the assumption
that R is a constant during the cooling procedure.
First, we study the evolution of the temperature far from equilibrium. In this regime, the heating terms are

negligible compared to the other terms. The equations for temperature in the ŷ and ẑ directions then reduce to be
the same. We now denote T⊥ = Ty = Tz, and arrive at:

dTx

dt
= −

(

3RcηΓsc + 2R
)

Tx + 2RT⊥

dTy

dt
= R

(

Tx − T⊥

)

.

(S9)

The solution to Eq. S9 is a double exponential function for the temperature in both of the directions Tx,⊥ =
ax,⊥ exp (−γ1t) + bx,⊥ exp (−γ2t). The rate constants are

γ1,2 = 3RcηΓsc + 2R−
4R2

−(R+ 3RcηΓsc)±
√

(R + 3RcηΓsc)2 + 8R2
, (S10)

while the coefficients ax,⊥ and bx,⊥ are decided by the boundary conditions. The final temperature is obtained by
adding the heating terms back, and it is the same as what we have from Eq. 1. In the limit of R ≫ 3RcηΓsc, the
two rate constants become RcηΓsc (temperature drop) and 3R (cross thermalization), and the solution reduces to
Eq. 1. With our experimental parameters (RcηΓsc ∼ R), the time constant for temperature drop deviates less than
45% from that provided in Eq. 1.

3D cooling with two cooling beams

As discussed in the main text, in the weak-confinement regime, one cooling beam along the x̂ direction is generating
a cooling force in the x-z plane, thereby realizing 2D cooling. Any second cooling beam not parallel to the x̂ axis will
thus generate 3D cooling. Here we present the data when we simultaneously and continuously send light from the x̂
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FIG. S1. Temperature in the x̂ (red circles) and the r̂ direction (black squares) as a function of cooling time when cooling
beams are applied along both directions simultaneously.

and r̂ direction and monitor the photon-photon correlation functions separately to extract the atomic temperatures
in the two directions. The result shown in Fig.S1 shows a similar temperature reduction in both directions.
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