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I. OTTO CYCLE

The Otto cycle is composed of four strokes that connect
different states of the system (A, B, C, D), as follows:
1) At A, the particle of mass m is in the confining po-

tential Vh. The Hamiltonian is Hh = p2

2m + Vh(x), where
p is the momentum operator. The system is at thermal
equilibrium with the hot bath at temperature Th, hence

the population of the nth level is Pn,A = Z−1
h e

−
En,h
kBTh ,

where En,h is the nth-level eigenenergy of Hh and Zh =∑
n e
−
En,h
kBTh . The potential can be parametrized by a gen-

eralized volume Vh [1]. The system is decoupled from the
hot bath and the trap is adiabatically deformed until the
potential Vc(x) with generalized volume Vc is obtained

at B. The Hamiltonian at B is Hc = p2

2m + Vc(x). Adia-
baticity ensures that the level populations do not change,
Pn,B = Pn,A. The change in energy of the system can be
attributed purely to work, WAB .
2) Next, the system is coupled to a cold thermal bath
at temperature Tc and it reaches thermal equilibrium at

C (see SI-VII). Thus, Pn,C = Z−1
c e

− En,c
kBTc , where En,c

is the nth-level eigenenergy of Hc and Zc =
∑
n e
− En,c
kBTc .

The trapping potential and its volume do not change; the
change in energy of the system can be attributed to heat
exchange with the cold bath Qc.
3) Next, the system is decoupled from the cold bath and
the potential is adiabatically transformed, returning to
Vh with volume Vh at D. The level populations do not
change, Pn,D = Pn,C , and all energy exchanged is work,
WCD.
4) The system is coupled to the hot bath, ending at ther-
mal equilibrium with it at A, and closing the thermo-
dynamic cycle. The potential is kept constant and the
exchanged energy is heat with the hot bath, Qh.

The heat exchanged with the baths is given by the
energy difference between the initial and final states of
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the isochoric strokes (see SI-VII):

Qh = 〈Hh〉A − 〈Hh〉D =
∑
n

En,h

e− En,h
kBTh

Zh
− e
− En,c
kBTc

Zc

 ,

Qc = 〈Hc〉C − 〈Hc〉B =
∑
n

En,c

e− En,c
kBTc

Zc
− e
−
En,h
kBTh

Zh

 .

(S1)

After completing a cycle, the energy of the system re-
turns to its initial value. Therefore, by energy conserva-
tion, the net work is

W = −Qh −Qc =
∑
n

(En,c − En,h)

e− En,h
kBTh

Zh
− e
− En,c
kBTc

Zc

 .

(S2)

Positive work or heat implies an energy flow into the
system and a negative value signifies an energy flow out of
the system. If the potential deformation does not change
the expected value of the energies, no work is extracted.

For an homogenous scaling of the energies, En,h =
qEn,c, the expression for the work can be rewritten as

W =
∑
n

(1− q) En,h
q

e− En,h
kBTh

Zh
− e
−

En,h
kBqTc

Zc

 =
(1− q)
q
×

(fh − fqTc) =
(1− q)
q

∫ Th

qTc

dfT
dT

dT =
(1− q)
q

∫ Th

qTc

CvdT,

(S3)

where ZT =
∑
m e
−
Em,h
kBT , fT ≡

∑
nEn,h

e
−
En,h
kBT

ZT
, Cv ≡

∂〈Hh〉T
∂T is the heat capacity, and 〈〉T is the expected value

in the thermal Boltzmann distribution at temperature T .

II. WORK AND EFFICIENCY FOR A TWO
LEVEL SYSTEM

If only the first two levels are populated Eq. (S2) can
be simplified to
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W = (Eg,c − Eg,h)× e
−
Eg,h
kBTh

e
−
Eg,h
kBTh + e

−
Ee,h
kBTh

− e
− Eg,c
kBTc

e
− Eg,c
kBTc + e

− Ee,c
kBTc

+

(Ee,c − Ee,h)

 e
−
Ee,h
kBTh

e
−
Eg,h
kBTh + e

−
Ee,h
kBTh

− e
− Ee,c
kBTc

e
− Eg,c
kBTc + e

− Ee,c
kBTc


=

(∆h −∆c)(e
−(

Eg,h
kBTh

+
Ee,c
kBTc

) − e−(
Eg,c
kBTc

+
Ee,h
kBTh

)
)

(e
−
Eg,h
kBTh + e

−
Ee,h
kBTh )(e

− Eg,c
kBTc + e

− Ee,c
kBTc )

,

where ∆i = Ee,i−Eg,i. Therefore, the condition for work
extraction, W < 0, is

Th
Tc

>
∆h

∆c
> 1.

In a similar way, the heat exchanged with the hot bath
is

Qh = ∆h
e
−(

Eg,h
kBTh

+
Ee,c
kBTc

) − e−(
Ee,c
kBTc

+
Ee,h
kBTh

)

(e
−
Eg,h
kBTh + e

−
Ee,h
kBTh )(e

− Eg,c
kBTc + e

− Ee,c
kBTc )

,

and the efficiency is

ηen = −W
Qh

= 1− ∆c

∆h
.

For the cycle shown in figure 1B in the main text, ∆h =
3~2π2

2mL2
h

and ∆c = ∆c,box + ∆Ec,δ, where ∆c,box = 3~2π2

2mL2
c
.

Therefore,

∆c

∆h
=

∆c,box

∆h

(
∆c

∆c,box

)
=

1

r2

(
∆c

∆c −∆Ec,δ

)
=

1

r2

(
1

1− ∆Ec,δ
∆c

)
, (S4)

where we have used the fact that r2 = ∆h

∆c,box
=

L2
c

L2
h

. From

here the right side of Eq. 3 in the main text is derived.

III. THERMODYNAMIC CALCULATIONS FOR
THE CLASSICAL HEAT MACHINE

There are multiple alternative methods to calculate the
Qh, Qc and W for the classical heat machine studied in
the main text. All of them give the same results:

1. Doing the quantum calculation using Eqs. (S1) and
(S2), and effectively reducing ~ until the result con-
verges. In the studied cases the convergences was
obtained for ~eff/~ = 10−2;

2. Considering the same scaling for the potential and
temperatures, Vi → ξ2Vi and Tc(h) → ξ2Tc(h) and
taking the limit ξ →∞;

3. In the case of the infinite square well, the δ−barrier
does not change the energy at the classical limit,
the standard Otto cycle calculation can be used,
neglecting the δ−barrier.

IV. EXPERIMENTAL SIMULATION OF THE
CLASSICAL LIMIT

In this section we show that the classical limit of the
extracted work, (S2), is equivalent to the work obtained
after scaling the potential and the temperature. A similar
proof can be used for the heats.

In order to find the classical limit, in the Schrodinger
equation ~ is replaced by ~eff = ~

ξ , where ξ is scaling pa-

rameter in the range between 1 and∞. The Schrodinger
equation is

[
−
(
~2

ξ2

)
1

2m

∂2

∂2x
+ V (x)

]
ψn(x) =

En

(
~eff =

~
ξ
, V (x)

)
ψn(x), (S5)

where the eigenenergies depend on ~eff and on V (x). By
multiplying both side by ξ2,

[
− ~2

2m

∂2

∂2x
+ ξ2V (x)

]
ψn(x) =

ξ2En

(
~eff =

~
ξ
, V (x)

)
ψn(x). (S6)

Therefore, we conclude that,

En
(
~eff = ~, ξ2V (x)

)
=

ξ2En

(
~eff =

~
ξ
, V (x)

)
. (S7)

The work is a linear combination of terms of the form,

∑
n

En

(
~eff =

~
ξ
, Va(x)

)
e
−
En(~eff= ~

ξ
,Vb(x))

kBT

ZT,~eff= ~
ξ ,Vb(x)

, (S8)

where Va(x) and Vb(x) may be the same or different

potentials and ZT,~eff= ~
ξ ,Vb(x) =

∑
n e
−
En(~eff= ~

ξ
,Vb(x))

kBT

. Using Eq. (S7) we get

∑
n

En
(
~eff = ~, ξ2Va(x)

)
ξ2

e
−
En(~eff=~,ξ2Vb(x))

kBξ
2T

Zξ2T,~eff=~,ξ2Vb(x)
.
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From this we conclude that

W (~eff =
~
ξ
, Va(x), Vb(x), Th, Tc) =

W (~eff = ~, ξ2Va(x), ξ2Vb(x), ξ2Th, ξ
2Tc)

ξ2
. (S9)

The classical limit is obtained for large ξ when
W (~eff = ~

ξ , Va(x), Vb(x), Th, Tc) becomes a constant as

function of ~eff = ~
ξ . Thus, by scaling the potential and

the temperature by a large factor, ξ → ∞, it is possible
to experimentally simulate the classical limit, ~→ 0.

The scaling of a potential and the temperature has
been achieved in ion traps setups [2–6]. Therefore, we
consider them as the ideal platform to test the classical
and quantum limit of the same heat machine.

V. CARNOT LIMIT

In this section we prove that the efficiency of the Otto
quantum heat machine is bounded by the Carnot limit,
ηencar = 1− Tc

Th
. We focus on the heat engine efficiency but

the bounds for the performance of a refrigerator can be
derived in the same way. The efficiency of a heat engine
is

ηen =
−W
Qh

.

Work extraction requires W < 0 and Qh > 0. The
expression for the heat and the work are given by Eqs.
S1 and S2 on the SI-I. As a first step, assume that the
work and heat are produced by a single level,

Wn = (Ec,n − Eh,n)

e− Eh,n
kBTh

Zh
− e
− Ec,n
kBTc

Zc

 ;

Qh,n = Eh,n

e− Eh,n
kBTh

Zh
− e
− Ec,n
kBTc

Zc

 . (S10)

Work extraction requires
Eh,n
Th

<
Ec,n
Tc

, otherwise, W >
0. Therefore, the single level efficiency is bounded,

ηenn = 1− Ec,n
Eh,n

≤ 1− Tc
Th
. (S11)

Next we consider two levels, n and m. We prove that
the efficiency in the case of two levels can not be greater
that the efficiency of a single level and therefore the two
level case is also bounded by the Carnot limit. Assume
that the efficiency of the two levels is greater than the
single level efficiency,

−Wn −Wm

Qh,n +Qh,m
>
−Wn

Qh,n
. (S12)

Work extraction requires Qh,n + Qh,m > 0, thus Qh,n
or Qh,m should be positive. Without loss of generality
we assume Qh,n > 0 and ηenn ≥ ηenm . Hence, Eq. (S12)
can be rewritten as

−Wm

Qh,m
>
−Wn

Qh,n
. (S13)

Equation (S13) contradicts the assumption ηenn ≥ ηenm .
Thus, the inequality on Eq. (S12) does not hold. This
can be generalized for a multilevel system. Therefore,
the efficiency of a multilevel system can not be greater
than the highest single-level efficiency. The latter, and
therefore the whole multilevel efficiency, is bounded by
the Carnot limit, (see Eq. (S11)).

VI. FINITE TIME OTTO CYCLE

We consider a simple model of a finite time Otto cy-
cle where the system does not fully equilibrate with the
thermal baths during the isochoric strokes. Instead, we
assume that the isochoric strokes are interrupted before
equilibration and the system ends in a mixture of the
initial state and the thermal state, i.e.,

ρno−th = pρ0 + (1− p)ρth,

where ρo is the initial state of the system at the begin-
ning of the isochoric stroke and ρth is the equilibrium
state it would have reached after infinite time. p is a
constant that represents the degree of thermalization and
goes from 0 for a fully equilibrium state, to 1 for a state
that did not thermalize at all. For simplicity we assume
that the degree of thermalization is symmetric, i.e., it is
the same for the two isochoric strokes. The heat transfer
from the hot bath is

Qinch = 〈Hh〉ρno−th − 〈Hh〉ρ0 =

Tr[Hh(pρ0 + (1− p)ρth)]− Tr[Hhρ0] =

Tr[Hh(pρ0 + (1− p)ρth)]− Tr[Hh(p+ 1− p)ρ0] =

(1− p) (Tr[Hhρth]− Tr[Hhρ0]) = (1− p)Qh, (S14)

where Qh is the heat exchanged if the system fully ther-
malizes (see Eq. S1). A similar expression is found for
Qincc . Therefore, the work extracted during this cycle is

W inc = −Qinch −Qincc = −(1− p)W,

but the efficiency, being the ration between W inc and
Qinchc , remains the same, and the operation mode of the
heat machine does not change. Therefore, if the degree
of thermalization is symmetric, the effects shown in the
main text do not change. More complex finite time cycles
could be considered, but they are out of scope of this
paper and are left for future works.
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VII. IRREVERSIBILITY OF THE ISOCHORIC
PROCESS

During the isochoric process the working substance is
coupled to a thermal bath which not necessary is close
to the working substance temperature which makes the
process irreversible. In addition, in the quantum system,
the state after the adiabatic step prior to the isochoric
process is in general not a thermal state. However, the
fact that the isochoric process is irreversible does not
change the efficiency of the Otto engine. The efficiency
is defined in terms of the work done by the engine, and
the heat received by the engine from the hot reservoir

[7]. No work is done during the isochoric process, and
therefore the work done is not affected by irreversibility.
Furthermore, the heat exchanged during each isochoric
process is given by the internal energy difference of the
working substance between the beginning and the end of
the isochoric process, and is path independent. Therefore
the heat exchanged by the engine and the reservoir is also
not affected by irreversibility. Consequently the efficiency
of the Otto engine is not affected by the irreversibility of
the isochoric process. This is also the conclusion reached
after Eq. 17 of Ref. [8]. Note that this argument does not
hold for other processes where work is exchanged while
the system is coupled to a bath.
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