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Quantization of energy is a quintessential characteristic of quantum systems. Here we analyze its effects
on the operation of Otto cycle heat machines and show that energy quantization alone may alter
and increase machine performance in terms of output work, efficiency, and even operation mode. We show
that this difference in performance occurs in machines with inhomogeneous energy level scaling, while
quantum machines with homogeneous level scaling behave like classical machines. Our results
demonstrate that quantum thermodynamics enables the realization of classically inconceivable Otto
machines, such as those with an incompressible working substance. We propose to measure these effects
experimentally using a laser-cooled trapped ion as a microscopic heat machine.
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The discrepancy between classical and quantum
mechanics, together with the fast progress on the control
of open quantum systems such as ion traps [1–5], super-
conducting quantum interference devices (SQUIDs) [6–8],
quantum dots [9], and molecules [10], has ignited efforts to
clarify the capabilities and thermodynamic limitations of
quantum heat machines [11–14] under quantum effects,
such as coherences [15–17], quantum correlations [18,19],
quantum statistics of particles [20], squeezed thermal baths
[21–23], many-body effects [24], and quantized work
reservoirs [25–27]. Although these effects may offer
classically inaccessible capabilities for machines, there
has been no clear evidence that adiabatic quantum
machines can outperform their classical counterparts once
all nonequilibrium effects [28] and preparation costs are
considered [29,30]. Among the thermal machines, one of
the most studied is the Otto machine [31,32]. For this
machine, most of the analyses have been limited to
potential deformations that homogeneously scale all the
energy levels. In this regime, a quantum and a classical heat
machine have the same efficiency [32]. The few analyses
that consider an inhomogeneous energy scaling [33,34],
have not shown a clear advantage of a quantum heat
machine over its classical counterpart.
In this Letter, we compare the performance of two

identical heat machines based on trapped particles (work-
ing substance): one governed by classical mechanics and
the other by quantum mechanics. We show that the

discreteness of energy levels due to quantization, can
increase the efficiency of a heat machine provided that
the potential deformation creates an inhomogeneous shift
of energy levels. We show that energy quantization can then
(i) improve work extraction, cooling, or efficiency relative
to the classical counterpart, even reaching the Carnot
bound, (ii) change the operation mode, e.g., a heat machine
classically expected to operate as a refrigerator, may
operate as an engine once energy quantization is consid-
ered, and (iii) enable operation at Carnot efficiency even
in regimes where, classically, neither work extraction nor
refrigeration are expected. The origin of the quantum
enhanced performance can be traced to the change in
relation between temperature and population distribution
for adiabatic potential transformations with inhomo-
geneous energy level shifts. We emphasize that this
analysis relies only on energy quantization and constant
level populations in adiabatic potential transformations,
and that it does not make use of any hidden resources like
nonequilibrium or entangled baths [28].
Our results rely on the sensitivity of quantized energies

to the boundaries, which classical systems are insensitive
to. We illustrate this with an example of an Otto engine
operated with an ideal gas contained in a one-dimensional
(1D) infinite well potential [see Fig. 1(a)]. The adiabatic
introduction of a δ function barrier at the center does not
alter the volume nor the classical energy, but by affecting
the quantum wave functions, it changes the energies of
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select quantum states. We show that this difference can
result in superior performance of quantum heat engines.
Operated as a heat engine, an Otto machine [see Fig. 1(b)

and Supplemental Material (SM) [35]] transforms incom-
ing heat from the hot bath, Qh ≥ 0, into extracted work,
W < 0, with efficiency ηen ¼ ð−W=QhÞ. It consists of two
adiabatic processes where the engine is decoupled from
thermal baths, and two isochoric (constant volume) proc-
esses where the engine is coupled to two thermal baths at
temperatures Th, Tc. Note that the efficiency of the Otto
engine is not affected by the fact that the isochoric strokes
are irreversible (see SM [35] Sec. VII and [37,38]).
Operated as a refrigerator it consumes work, W > 0, in
order to cool down the cold bath by extracting heat from it,

Qc > 0, with efficiency ηref ¼ ðQC=WÞ. We term heater
the case where the heat flows in its “natural” direction
from hot to cold, Qh > 0 and Qc < 0, while no work is
extracted, W ≥ 0.
For a classical ideal gas in a uniform potential the

compression ratio r ¼ ðVc=VhÞ defines the operation mode
of the Otto cycle [VcðhÞ is the container volume when
the ideal gas is at equilibrium with the cold (hot) bath]:
(i) for r ≤ 1 the machine is a heater, (ii) for 1 < r <
rCar ≡ ½ðTh=TcÞ�ð1=γ−1Þ it is an engine, and (iii) for r > rCar
it operates as a refrigerator. If run like an engine, the
classical efficiency is

ηenOtto ¼ 1 −
1

rγ−1
≤ 1 −

1

rγ−1Car

≡ ηenCar; ð1Þ

where γ ¼ ðCp=CvÞ is the specific heat ratio and ηenCar is the
Carnot efficiency limit for an engine. For an incompressible
gas, r ¼ 1 and ηenOtto ¼ 0. Classically, a compressible work-
ing substance is needed for work extraction, as it has
been shown for classical rubber engines [39,40] and
classical continuum media [41,42]. We show below that
these paradigms break down once energy quantization is
included in the analysis.
We first show that if the adiabatic potential deformation

during the Otto cycle (from Vc to Vh and vice versa) is such
that the energy levels scale as En;h ¼ qEn;c, where q is a
positive constant independent of n (homogeneous scaling),
then the classical and quantum heat machines always
operate in the same mode with the same efficiency.
Examples of this type of deformation are the frequency
change of a 1D harmonic trap or the change of length of a
1D infinite square well potential. Under this assumption,
the work (see SM [35] Sec. I) is

W ¼ ð1 − qÞ
q

Z
Th

qTc

CvdT; ð2Þ

where Cv ≡ ð∂hHhiT=∂TÞ is the heat capacity when the
potential is Vh, and hiT is the expected value in the thermal
Boltzmann distribution at temperature T. Similarly, the
expressions for the heat transfers are: Qh ¼

R Th
qTc

CvdT and

Qc ¼ −ð1=qÞ R Th
qTc

CvdT. These expressions can also be
derived from a completely classical treatment [43], where
Cv is then the classical heat capacity. Efficiencies, being the
ratio between work and heat, do not depend on the heat
capacity for homogeneous energy scaling and, under this
condition, are the same for classical and for quantum
heat machines. However, the efficiency and even the
operation mode can change when adiabatic potential
deformations result in inhomogeneously scaled eigenener-
gies, En;h ≠ qEn;c.
To illustrate this, consider the Otto cycle shown in

Fig. 1(b) where the potential is a 1D infinite well with

VcVh

Qc Qh

W

WAB
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D

Tc Th

Classical Quantum

C

(b)

(a)

CD

Lc Lh

gδ(x)

gδ(x)

Δh

ΔhΔc

Δc

VcVh

FIG. 1. (a) The adiabatic introduction of an infinite δ function
barrier does not change the energy of a classical ideal gas (left),
precluding classical work extraction, but shifts the energy of the
quantum ground state (right) due to the nonzero amplitude of its
wave function at the barrier position, enabling quantum work
extraction. (b) A quantum Otto cycle heat engine using the
infinite well potential and the δ barrier. The cycle is composed of
two adiabatic strokes (connecting states A and B, and C and D)
where the potential is adiabatically deformed and the ion does not
interact with any thermal bath, and two “isochoric” or “isopara-
metric” strokes [31] (connecting states B and C, and D and A)
where the potential is kept constant while the ion equilibrates
with the cold and the hot bath, respectively see the SM [35]
Sec. VII. Work exchange results from the energy shift of the
ground state, while the excited state remains unshifted (for
Lc ¼ Lh): work extraction WCD takes place after thermalization
with the cold bath and therefore at high ground-state population,
whereas work injectionWAB takes place after thermalization with
the hot bath and therefore at lower ground-state population. The
difference between the ground-state populations results in net
work extraction jWCDj > jWABj at constant volume [36].
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variable length L, with a thin barrier of width ϵ that
can be adiabatically turned up to a height V0 at the
center of the well. Here, the energy of a classical
particle in thermal equilibrium at temperature T is
hHi ≈ 1

2
kBT þ V0ðϵ=LÞe−ðV0=kBTÞ. In the limit of an infini-

tesimally thin barrier ϵ → 0 but constant g ¼ V0ϵ, the
barrier becomes a δ function, the energy hHi → 1

2
kBT

becomes independent of the barrier, and the classical work
output, cooling, and efficiency correspond to the classical
Otto cycle with r ¼ ðLc=LhÞ, where LcðhÞ is the well length
at equilibrium with the cold (hot) bath.
By contrast, under quantum treatment, the even and odd

eigenenergies are modified differently by introducing the
delta barrier, gδðxÞ [see Fig. 1(a)] [44]. Odd wave functions
[ψðxÞ ¼ −ψð−xÞ] remain unperturbed, En;c ¼ En;h, but
En;c ≠ En;h for even wave functions [ψðxÞ ¼ ψð−xÞ]. In
this case, the compression ratio remains r ¼ 1 and the
classical efficiency is zero, while the quantum engine
performs nearly at Carnot efficiency for a high repulsive
barrier [see Fig. 2(a)]. Measuring the work extraction

during this potential deformation, or other transformations
that do not change the “bulk” properties of the working
substance, could be used to determine if the working
substance is governed by classical or quantum laws.
Figure 2(b) shows that, as one decreases the temperature

of the baths at fixed temperature ratio, Th=Tc, the system
transitions from a classical regime, where many quantum
states are populated, to a quantum regime with higher
efficiency. In the limit of low temperature, where only the
two lowest energy levels are appreciably populated, the
work extraction condition and efficiency can be written as
(see SM [35] Sec. II)

Th

Tc
≥
Δh

Δc
> 1; η ¼ 1 −

Δc

Δh
¼ 1 −

1

r2

�
1

1 − ΔEc;δ

Δc

�
; ð3Þ

where Δh ¼ E1;h − E0;h and Δc ¼ E1;c − E0;c are the
energy gaps between excited and ground state when the
system is in thermal contact with the hot and cold bath,
respectively, and ΔEc;δ ≤ Δc is the gap shift produced by
the δ barrier. Equation (3) shows that the quantum Otto
engine may extract work, at Carnot efficiency, for r ¼ 1
(fixed volume) or any other value of r [see dotted green
line in Fig. 2(a)]. A large g even enhances the efficiency
at r < 1, effectively turning a classical heater into an
engine. A negative g reduces the efficiency for r < rCar,
but turns a classically expected refrigerator into a highly
efficient quantum engine for r > rCar. Carnot efficient
quantum engines for any compression ratio can be achieved
beyond the two-level approximation. This requires extra
control parameters, such as additional δ barriers, that will
ensure that all the energy levels have the appropriate values.
In the same way, g could be optimized for reaching
maximum work extraction at any compression ratio or
for producing maximum heat extraction, Qc, or refriger-
ation efficiency ηref.
The effects of quantization-induced work enhancement

and operation mode change can be experimentally tested.
To tune a given machine from quantum to classical, one
can increase the potentials and temperatures by the same
multiplicative factor, ξ2. This effectively decreases the
quantization scale relative to the bath temperature, and
as we show in SM [35] Sec. IV, this scaling is equivalent to
reducing ℏ to zero as ℏeff ¼ ℏ=ξ [see Fig. 3(c)].
As a potential experimental platform, we consider a

trapped, laser-cooled ion in the combined electrostatic
harmonic potential of a Paul ion trap and a sinusoidal
potential of an optical lattice [2–4]. This potential can be
used to mimic the infinite well with and without the δ
barrier. The potential has the form

ViðxÞ ¼ mω2
i a

2

�
1

2
ðx=aÞ2 þ κi

4π2
(1þ cosð2πx=aÞ)

�
; ð4Þ
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FIG. 2. (a) Efficiency normalized to Carnot efficiency for a
classical (see SM [35] Sec. III) and quantum (see SM [35] Sec. I)
Otto engine with a barrier of the form gδðxÞ [see Fig. 1(b)]. The
plane is divided into three areas depending on the classical
operation mode [see Eq. (1) and the discussion below it]. The
temperature ratio is ðTh=TcÞ ¼ 12, γ ¼ 3, g is given in units of
the critical value gcri ¼ ð2ℏ2=mLcÞ, and units are assumed such
that ð2ℏ2=mLhÞ ¼ 1. (b) Classical (dashed) and quantum (con-
tinuous) normalized efficiency as function of Tc, for r ¼ 1.4
(thick) and r ¼ 1 (thin), and fixed ratio ðTh=TcÞ for an ideal gas.
The temperature dependence is a signature of the quantum
machine. The number of populated levels depends on the
temperature.
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where κi ¼ ω2
L;i=ω

2
i is the dimensionless parameter con-

trolling the shape of the potential [see Fig. 3(a)], given by
the squared ratio of lattice vibrational frequency ωL;i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2π2Ui=ma2Þ

p
to the harmonic trap vibrational frequency

ωi. Here Ui is the depth of the lattice potential. For κi ¼ 1,
the potential is a single well while for κi > 1, the potential
is a double-well or, equivalently, a single well with a barrier
in the middle. The parameter κi can be tuned by tuning Ui
(via laser power) and/or the vibrational frequency of the
harmonic potential ωi (by applying voltage to the Paul trap
electrodes). In Fig. 3(b), we show computational results
based on discrete variable representation (DVR) calcula-
tions [45] for the work extraction and efficiency of the
classical and quantum versions of the Otto cycle shown in
Fig. 1(b), but implemented with the ion-trap potential

[Eq. (4)] by adiabatically tuning κi and ωi in order to
generate a double-well and flat-bottom potential. As shown
by the marked “X,” there are parameters for which a
classical heater operates as a quantum engine once energy
quantization is considered. Figure 3(c) shows the DVR
results as function of ð1=ξÞ for the parameters of the point X
on Fig. 3(b). The sign of work flips from positive (work
injection) to negative (work extraction) when going from
the classical to the quantum limit. Thus, the turning of a
heater into an engine by energy quantization is directly
observable in a realistic experimental setup.
During the isochoric strokes, the ion is continuously

laser-cooled; at steady-state its temperature is fixed at a
stable point where the laser cooling rate balances the
heating rate by the environment. The occupation of energy
levels then approximately follows a thermal distribution,
and the system can be considered to be in contact with a
thermal bath [46,47]. Contact to a cold thermal bath is
achieved by optimizing laser cooling parameters to reduce
the steady-state temperature of the ion, whereas contact to a
hot thermal bath is achieved by choosing suboptimal
cooling parameters. Raman sideband cooling of 174Ybþ
in an ωL;i ∼ 2π × 10 MHz lattice has been shown to
reach near ground-state occupation n̄ ∼ 0.1, and the tem-
perature has been increased controllably by up to a factor of
10 [2–4]. This range could be further increased by reducing
external heating sources and using a narrow optical
transition to precisely measure the motional quantum state
populations and ion temperature [48]. The total energy
stored in the system ET ¼ P

npnEn at different times can
thus be measured via resolved vibrational mode spectros-
copy to determine the energy eigenspectrum En and
populations pn [46]. From these measurements, the total
work output per cycle can be obtained, and the experiment
can be performed in the quantum and classical limits to
identify the effects of quantization.
For the adiabatic strokes the laser cooling is disconnected.

Perfect adiabaticity has been assumed in the calculation
above. In practice, potential deformations during the Otto
cycle have to be performed at a finite speed, and to avoid
excitations that perturb the population distribution, the total
adiabatic ramp time must be longer than the inverse of the
smallest energy spacing. Yet, the ramp time must be shorter
than the thermalization time set by the background heating in
the range ∼1–1000 motional quanta per second [49]. These
two conditions can be fulfilled simultaneously for trap
vibration frequencies in the MHz range.
We have shown that a quantum Otto engine can be more

efficient than its classical counterpart, but that both are
subject to the Carnot limit. This performance difference may
be significant since the efficiency of real heat engines [50] is
limited by the practical difficulty to reach large compression
ratios. Moreover, we have shown that classically well-
established paradigms no longer hold in the quantum regime,
where energy quantization allows engines to operate at
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FIG. 3. (a) The proposed experimental potential [see Eq. (4)].
(b) The calculated work (top) and normalized efficiency (bottom)
for the classical (left) and quantum limit (right). Here κh ¼ 1 and
ωh ¼ 1 MHz have been chosen. The white areas correspond to
the heater. The X indicates the parameters used for Fig. 3(c),
κc ¼ 1.7 and ωc ¼ ωh, where the classical heater operates as a
heat engine in the quantum limit. (c) The calculated work and
efficiency. The classical limit is obtained at ð1=ξÞ → 0, where
the work becomes constant and positive (work injection). In
contrast, at the quantum limit, ð1=ξÞ ¼ 1, work is extracted.
Cycle parameters: Th=Tc ¼ 41.6, n̄c ¼ 0.033.
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Carnot efficiency even for compression ratios r < 1, r >
½ðTh=TcÞð1=γ−1Þ� and r ¼ 1 (fixed volume), which could
enable the realization of Otto engines with incompressible
working substances. These results still hold for a simple
model of finite time or imperfect thermalization during the
isochoric strokes (see SM [35] Sec. VI), but more detailed
studies are needed to clarify the difference between quantum
and classical finite time heat machines.
Since a heat machine operating at given bath temper-

atures is only characterized by two parameters, the effi-
ciency η and the workW, it is always possible to construct a
classical machine that mimics a quantum machine with the
same η and W, by choosing a different compression ratio,
working fluid, potential deformation, etc. However, here
we are interested in differentiating performance changes
based on the quantum or classical nature of the working
substance from those originating from other parameter
differences. As we have shown, energy quantization, of
purely quantum origin, can give rise to a marked difference
in performance.
Energy quantization depends on boundary effects, that

generally can be neglected for classical thermodynamic
systems, but at the quantum regime, they allow for work
extraction without changing any bulk property of the
working substance such as length for a 1D system (or
volume for 3D).
Finally, we have shown that for the studied system

nonclassical results can be only found when energy levels
are inhomogeneously scaled. This regime has rarely been
analyzed and requires further investigation. Some potential
future research paths include the performance of other
thermodynamic cycles (i.e., Carnot, Stirling, etc.), or the
use of a working substance composed of interacting particles
or indistinguishable particles (fermions and bosons).
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