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Abstract

We analyze laser cooling of polarizable particles (classical light scat-
terers) using continuous dispersive position detection and active feedback
with an optical resonator. We derive a simple expression for the cool-
ing force, and show that its magnitude is proportional to the Rayleigh
scattering rate into the detector. The velocity dependence of the force is
determined exclusively by the frequency dependence of the loop gain. In
particular, it is possible to design simple feedback loops that significantly
outperform the Doppler force in terms of the combination of velocity
capture range and final temperature.

In proton-antiproton accelerators, a significant increase in beam brightness and
collision rates has been attained with stochastic cooling. This method, proposed by
van der Meer [1], is essentially a feedback scheme where corrective forces are applied in
response to observed thermal fluctuations of the particle beam. Although the applied
forces are electrostatic, and as such conservative, the conditional application of such
forces in response to an observed signal renders them dissipative. Stochastic cooling
does not violate the second law of thermodynamics, since the observation increases the
entropy of the total world by more than the cooling of the beam reduces it, as shown
by Szillard [2]. Nevertheless, one may wonder how the cooling is reconciled with
Liouville’s theorem that forbids compression in phase space by conservative forces.
One answer is that a finite-number system is represented by a point in phase space,
and that it is possible to observe the location of this point, and move it towards a
desired region in phase space [1].

The name ‘stochastic cooling’ is associated with a many-particle viewpoint in which
stochastic fluctuations of the sample are measured, and subsequently reduced by an
applied force. However, the technique is not any more ‘random’ than other cool-
ing methods. In stochastic cooling, a measured signal deterministically propagates
through a (linear) feedback loop to generate a correction force, and the total signal
from the sample is simply a superposition of the signals generated by the individual
particles. Viewed from this single-particle viewpoint, each particle generates its own
feedback signal. However, the random motion of the other particles generates noise
at the signal frequencies of the test particle, thereby limiting the maximum loop gain
and cooling speed [1].

Since its conception, stochastic cooling has been proposed and analyzed for different
objects, both in the classical and quantum domains [3, 4, 5, 6, 7, 8, 9, 10]. It has
been demonstrated experimentally in several systems, including a resonant gravity
gradiometer [11], a vibration mode of a mirror [12, 8], and the axial oscillation of a
single electron in a Penning trap [13]. For atoms, Mark Raizen and coworkers have
proposed to measure fluctuations in the center-of-mass velocity of a sample by means of



Raman transitions between different velocity classes, and to apply optical dipole forces
with far detuned, focused laser beams to reduce the center-of-mass momentum [14].
Their numerical simulations indicate that such a scheme should produce observable
cooling, and that the necessary cooling time could be shortened with finer spatial
resolution of the measurement and the correction force.

Here we analyze cooling by active feedback of a sample of polarizable particles
inside a resonator. The basic idea is the same as in Raizen’s optical stochastic cooling
method [14], and in a recent quantum mechanical simulation of single-atom cooling
inside an optical resonator in the strong coupling limit [10]. However, we calculate
the cooling force in the classical limit of coherent scattering, i.e., low saturation of
atomic transitions, and derive simple analytical formulas that can be easily interpreted
in terms of the frequency-dependent loop gain. Our analysis shows that, similar
to cooling by coherent scattering inside a resonator without active feedback (cavity
Doppler cooling [15, 16, 17]), the cooling force is proportional to the rate at which
the atom coherently scatters photons into free space (Rayleigh scattering rate), but
it is otherwise independent of the atomic level structure. In particular, we show
that for active-feedback cooling the velocity dependence of the cooling force and its
sign are determined exclusively by the frequency-dependent loop gain. Surprisingly,
it is possible to design simple feedback loops that significantly outperform Doppler
cooling in that they combine a large zero-velocity friction coefficient (i.e., low final
temperatures) with a very wide velocity capture range.

We also find that the performance of external-feedback cooling is determined by
the single-atom optical density for the chosen size of the detection beam. Therefore,
as already noted by Raizen [14], the cooling performance improves with increased
spatial resolution. The dependence on the single-atom optical density implies that
cooling in free space, as proposed in Ref. [14], will be very difficult to observe, and
that it is more promising to use an optical resonator to enhance the signal. In this
case the optical density transforms into the cooperativity parameter; i.e., the signal is
enhanced by the finesse of the cavity as the light interacts repeatedly with the atom
while circulating in the resonator.

We begin by sketching the basic concepts proposed here. The first requirement for
active-feedback cooling is to measure the time evolution of the atomic position. This
is accomplished by monitoring the transmission of a probe laser through a standing-
wave cavity (figure 1). The cavity transmission varies with atomic position because
the polarizable atom can be associated with a position-dependent index of refraction
that changes the round-trip optical path length inside the cavity [15]. When the atom
is at an antinode, it tunes the resonator frequency by a maximum amount, whereas
the presence of the atom at a node, where the resonator field is zero, has no influence
on the resonator frequency. The atom’s time-dependent position along the cavity axis
can be determined from the modulation of the transmitted intensity as the cavity
tunes closer to or further from resonance with the fixed-frequency probe laser. The
frequency of the modulation determines the atomic velocity while the phase of the
modulation determines the atomic position with respect to the intracavity standing
wave.

Having measured the atom’s position and velocity, a corrective force must be gener-
ated to reduce the velocity. This cooling force is produced by modulating the power of
the detection beam in order to create a modulation of the intensity of the intracavity
standing wave. The polarizable atom experiences the optical dipole potential of the
standing wave, that in the absence of modulation would yield no net force when aver-
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Figure 1: Proposed setup for continuous active-feedback cooling of polarizable parti-
cles inside an optical resonator. The moving atom periodically detunes the standing-
wave resonator by an amount δat(t). The modulation of the cavity transmission, as
measured by a fixed-frequency probe beam, is propagated through a linear electronic
feedback loop with gain H(s) in the Laplace domain, and applied to the intensity of
the probe beam. The modulated probe beam generates a time-varying optical dipole
force on the atom, that for appropriate choice of loop gain H(s) cools the atom.

aged over several nodes and antinodes. However, by modulating the potential depth
with fixed phase relative to the atomic motion, the atom can be made to move up a
larger potential hill than it experiences when moving downhill, leading to a reduction
of the atomic velocity [15, 16]. We will show that the required frequency and phase
of the desired modulation are related to the measured cavity transmission signal by a
simple phase shift.

In most schemes for feedback cooling, the detection signal and the corrective force
are generated by physically separate mechanisms (e.g., separate pick-up coils and de-
flector plates in accelerators). In contrast, here the cooling force is exerted by the
probe laser that also serves to define the error signal. While slightly complicating the
analysis, this scheme has the advantage that the measurement and applied force are
automatically spatially matched, such that no separate interferometric phase stabi-
lization of the detector and corrective force light is required.

Figure 1 shows the setup that we propose in order to implement active-feedback-
induced cooling of arbitrary polarizable particles. The gaseous sample is placed inside
a resonator supporting a TEM00 Gaussian mode of waist size w. The resonator has
finesse F and field decay rate constant γc. A laser beam of frequency ω = ck is
incident onto the resonator. For this analysis, we assume that this probe beam is far
detuned from any atomic transition. If the electric field inside the cavity on axis has
amplitude 2Ec at an antinode, an atom with complex polarizability α will experience
a dipole potential U0 cos(2kxat) of depth U0 = −|Ec|2Re(α)/2. The same atom at
position xat will detune the resonator by an amount δat = ζγc cos(2kxat), where
ζ = h̄ηΓsc/U0 is a dimensionless parameter. Here η = 6F/(πk2w2) is the single-
atom cooperativity parameter, which can be interpreted as the fraction of photons
scattered into one direction of the resonant cavity, and Γsc = k3|Re(α)Ec|2/(6πε0h̄) is
the photon scattering rate into free space, averaged over one period of the intracavity
field.

In order to ignore cavity-induced forces [15, 16], we assume that the light field
inside and the transmission through the resonator adjust quickly to any changes of
the incident light power or cavity tuning by the atom. We take the incident light to
be detuned relative to the resonator on average by an amount δi = −γc. The slope of
the cavity line is the largest at this point, so that the motion of the atom results in the
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largest transmission modulation signal. If the resonator is detuned by the atom by an
amount δat(t) with |δat| � γc, the transmitted power changes by a fraction ε(t) with
|ε| � 1. The change in transmitted power (measured with a low-noise photodiode) is
used as an error signal in a linear feedback loop to adjust the incident intensity by an
amount −εfb(t). The fractional change of the intracavity power from its unperturbed
value is given by [18]

ε(t) = −γ−1
c δat(t)− εfb(t). (1)

In this linear approximation to the cavity transmission, the moving atom modulates
the cavity detuning by an amount δat(t), while the feedback loop adjusts the incident
intensity by a fraction −εfb(t). If the atom’s kinetic energy far exceeds the depth
of the optical potential U0, the atom’s unperturbed motion xat = vt can be used to
calculate the resonator frequency modulation to lowest order, δat(t) = ζγc cos(2kvt).

To simplify loop stability analysis, we define the feedback loop in terms of the trans-
formed quantities ε̃(s) = L[ε(t)], ε̃fb(s) = L[εfb(t)], where L indicates the Laplace
transform. The feedback loop gain H(s) is defined via the relation

ε̃fb(s) = H(s)ε̃(s). (2)

In the frequency domain, the complex loop gain at frequency ω is given by H(iω),
where the real part H1(ω) = Re(H(iω)) is the in-phase gain, and the imaginary part
H2(ω) = Im(H(iω)) is the quadrature gain, i.e., the gain out of phase with the error
signal. If the feedback loop is stable, the steady-state solution of Eq. 1 in the time
domain exists, and is given by

ε(t) = −ζ

(
1 + H1(2kv)

)
cos(2kvt) + H2(2kv) sin(2kv)t

|1 + H(2ikv)|2 . (3)

The moving atom in the absence of feedback modulates the resonator transmission
as cos(2kvt). If the feedback loop has non-zero quadrature gain at the Doppler fre-
quency 2kv of the moving atom, it will produce a delayed component sin(2kvt) out
of phase with the atomic motion. This phase-shifted component introduced by the
feedback loop is essential in producing a friction force and cooling. Note that while in
conventional laser cooling the delay is due to the atomic response [19], and in cavity
cooling due to the resonator [15, 16], here the atom and cavity are assumed to react
instantaneously, and the delay essential to cooling is produced by the programmable
external feedback loop. This delayed component is proportional to the quadrature
gain H2 at the signal frequency 2kv. The characteristic denominator in Eq. (3) arises
from the fact that the closed-loop gain, rather than the open-loop gain, determines
the system response and cooling force.

Given the modulation of intracavity power ε(t), it is straightforward to calculate the
velocity-dependent force on the atom. In the limit where the atom’s kinetic energy far
exceeds the potential depth U0, work is done on the atom by the modulated periodic
potential V (x, t) = (1 + ε(t))U0 cos(2kx) at a rate Ẇ = ε(t)2kvU0 sin(2kvt) to lowest
order. We see that only the quadrature term in Eq. 3 produce a non-zero force when
averaged over several nodes and antinodes. The spatially averaged dissipative force
f=〈Ẇ 〉/v is given by the simple expression

f(v) = −h̄kηΓsc
H2(2kv)

|1 + H(2ikv)|2 . (4)

The dissipative force is given by the rate at which photons are scattered into the
cavity via single-particle Rayleigh scattering ηΓsc, times the momentum transfered to
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Figure 2: Plots of the cooling force versus velocity to demonstrate the increase in
velocity capture range compared to conventional Doppler cooling. Three examples
are given: (thin line) conventional Doppler cooling, (thick solid line) feedback with a
differentiator loop H(s) = s , and (dashed line) feedback with a modified differentiator
loop with even larger velocity capture range H(s) = s(1 + s/10)(1 + 8s/10). The
unity-gain velocity u has been chosen such that all three forces have the same velocity
dependence for small velocities v. At large velocities v � u the feedback force can
exceed the Doppler force by many orders of magnitude.
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the atom per photon h̄k, times a dimensionless function of the atomic velocity that
is determined by the frequency dependence of the quadrature gain in closed loop.
While the magnitude of the cooling force depends on the strength of the light-atom
interaction via the coherent scattering rate Γsc, the sign and velocity dependence of the
cooling force are determined exclusively by the frequency-dependent loop gain H(iω).
Note that since we have assumed in deriving Eq. 3 that a steady-state solution ε(t)
exists, Eq. 4 should only be used to calculate the force for a gain H(s) that results in
a stable loop.

It is instructive to analyze the velocity dependence of the friction force f(v) in the
case of a loop with zero in-phase gain H1 = 0, as is the case for a differentiator,
characterized by loop gain H(s) = s (see Fig. 2). (A positive-feedback integrator
H(s) = −1/s would according to Eq. 4 also produce a friction force, but does not
correspond to a stable loop.) For H1 = 0, the cooling force can be written as

f(v) = −h̄kηΓsc
H2

1 + H2
2

, (5)

where the gain H2 is evaluated at the Doppler frequency for backscattering 2kv. We
see that the feedback force approaches zero for both very small H2 � 1 and very
large H2 � 1 quadrature loop gain. The force is maximized for unity open-loop gain
H2 = 1. If we plot the cooling force for the differentiator loop,

f(v) = −h̄kηΓsc
uv

u2 + v2
, (6)

as shown in Fig. 2a, we see that the force has a dispersive line shape, and is max-
imized at the unity-gain velocity u defined by H2(2ku) = 1. For large velocities v
the differentiator cooling force approaches zero as v−1, much more slowly than the
conventional Doppler force that scales as v−3 for large v (Fig. 2b).

A simple modification of the differentiator loop results in significantly extended
velocity capture range (Fig. 2a, dashed line). If we plot a Bode diagram of the
differentiator loop gain (thin straight line in Fig. 3), we recognize that it is possible
to increase the force at large velocities v � u without changing the low-velocity
behavior of the cooling force. To this end, we modify the loop gain in such a way that
at high frequencies ω � 2ku the gain is lower than for the differentiator loop, while
maintaining approximately the same phase. This can be achieved by rolling off the
loop gain above the unity gain point ω1 to proportional gain at frequency ω2, and back
to differentiator gain above some frequency ω3. For atoms at velocities v � ω3/(2k),
this loop appears to be a simple differentiator with some higher unity-gain frequency
ω4. Because of the reduced gain at v � u, the result is a force of greater magnitude
than the original differentiator loop with unity-gain frequency u = ω1/(2k). As Fig.
2b shows, such a feedback loop (dashed line) has significantly larger capture range
than a differentiator loop (thick solid line), that already is significantly better than
the regular Doppler force (thin solid line). By adding more proportional-differentiator
steps, it appears possible to arbitrarily extend the cooling force to larger velocities.
For this analysis, a velocity limit is given by the initial assumption that the cavity
linewidth be much larger than the atomic Doppler effect γc � 2kv. At velocities
exceeding γc/(2k), the analysis must be extended to include delays associated with
the cavity linewidth, and the associated cavity cooling forces [15, 16].

In Eq. 4, we have written the feedback-induced force in terms of the photon mo-
mentum and the photon scattering rate, while, in fact, we have performed a purely
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Figure 3: Bode diagram of the open-loop gain illustrating how the velocity capture
range can be increased over that of a simple differentiator loop gain H(s) = s (thin
straight line). For the differentiator, the cooling force is maximum at the unity-gain
point ω1. To extend the cooling force to higher velocities, a modified differentiator
loop (thick line) has the gain rolled off to proportional gain at frequency ω2 and
rolled back to differentiator gain at frequency ω3. For atoms at Doppler effects much
larger than 2kv � ω3, the loop is equivalent to a differentiator with larger unity-gain
frequency ω4 (dashed line), and consequently larger cooling force at large velocity
v � ω3/(2k).
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classical analysis. This is more obvious if we write the cooling force in the form

f(v) = −ηPsc

c

H2(2kv)

|1 + H(2ikv)|2 , (7)

where ηPsc is the Rayleigh-scattered power into the resonator. Classically, any signal,
no matter how small, will produce a corresponding cooling force. However, taking
the granular nature of the light field into account, the signal will not emerge from the
photon shot noise until the classically calculated power emitted into the cavity cor-
responds to at least one photon energy. The measurement of the cavity transmission
can thus be thought of as a homodyne measurement of the forward-scattered field that
represents the real signal. Homodyne detection can, however, not be used to improve
over the shot-noise limit associated with the direct detection of the forward-scattered
photons. This noise limit, arising even if one attempts to cool only one atom, is the
main reason we propose to use a resonator for signal enhancement. In free space,
very high spatial resolution near the diffraction limit would be necessary to obtain
low temperatures with active-feedback cooling.

If one attempts to cool a thermal sample, rather than a single atom, another limit
typical of stochastic cooling arises. Namely, for any probe atom moving at velocity v
that we attempt to cool at its characteristic frequency 2kv, the motion of the other
N atoms will produce noise by randomly modulating the cavity frequency. The noise
component at 2kv will heat the probe atom. Fortunately, the ensemble-averaged force
exerted on the probe particle is zero. Heating of the probe atom results from the
fluctuations of the force from zero. The corresponding force fluctuation heating can
be calculated using a standard approach [18]. For the differentiator loop we find that
the cooling rate is maximized for u ≈ vth, and is given by

γd ≈
kvth

6N
(2Γ̄cav − Γ̄2

cav) (8)

where the unitless parameter Γ̄cav=2NηΓsch̄/(kBT ) is just the total scattering rate
into the cavity normalized by the sample temperature T , and vth is the thermal
velocity. If the collective scattering rate Γ̄cav becomes too large ( Γ̄cav ≥ 2), the
single-atom picture breaks down since the heating exceeds the cooling. However, it
is possible that at this point collective self-organization of the atoms will set in, as
observed for cavity-induced forces [20, 21], with dramatic consequences for the light-
induced force. Outside this collective regime, the cooling rate is maximized for Γ̄cav=1,
yielding a rate constant γd = kvth/(6N). This expression shows that the Doppler
broadening 2kvth takes the role of the stochastic-cooling bandwidth, meaning that
hotter ensembles can be cooled more quickly. The inverse dependence on the atom
number N also shows that the cooling of smaller subsamples can proceed faster, as
already noted by Raizen and coworkers [14].

In conclusion, we have derived analytic expressions for the force and cooling rate
expected when external feedback is applied to a gaseous sample inside an optical
resonator. The cooling force magnitude is proportional to the atom-light interaction,
as quantified by the Rayleigh scattering rate into the resonator, while the velocity
dependence of the force is determined by the frequency dependence of the quadrature
loop gain. In particular, it is possible to design simple feedback loops that significantly
outperform the Doppler force in terms of the combination of low-velocity friction
coefficient and velocity capture range. The fact that the cooling force relies only on
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Rayleigh scattering implies that particles in different internal states can be cooled
simultaneously as long as all states involved have sufficiently large polarizability.

This work was supported in parts by the NSF, the ARO, and the Sloan foundation.
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