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SUPPLEMENTAL MATERIAL

Theory

Assuming that the total electric field is a sum of the tweezer field and the subsequently generated cavity field, the
Hamiltonian of the dipole interaction from the main text is:

Ĥdip = −1

2
α
∣∣∣ ~Ecav + ~Etw
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, (S1)

where α = 3ε0V
εn−1
εn+2 is the polarizability of a nanosphere with volume V and relative dielectric permittivity εn. The

electric fields are given as:
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where ϕG(z) = − arctan(z/zR) is the Gouy phase of the tweezer electric field with the Rayleigh range zR = WxWyπ/λ
and the waists of the elliptical tweezer focus Wx and Wy, Ptw is the tweezer power, ωtw and ωcav are the tweezer
frequency and the cavity resonant frequency, Vcav = w2

0πL/4 is the cavity mode volume with cavity waist w0 = 41.1 µm
and cavity length L = 1.07 cm. The nanosphere is positioned on the cavity axis at an arbitrary position x0 with
respect to an antinode.

The first term in Equation S1 is the three-dimensional harmonic potential for the nanosphere. From the mechanical
frequencies (Ωx,Ωy,Ωz)/2π = (190, 170, 38) kHz we estimate the focal power Ptw ≈ 0.17 W and the waists Wx =
0.67 µm and Wy = 0.77 µm [1]. The second term is the standard interaction with the intensity of the cavity mode,
which is now driven with the coherently scattered light. Note that no additional drive through the cavity mirrors is
assumed. The third term HCS = −α<( ~Etw ~E

∗
cav) is the interference between the tweezer and the cavity electric field,

which can be switched off for the orthogonally polarized tweezer and cavity modes. In our experiment, it’s possible
to have almost a perfect overlap of the two fields, as both the tweezer and the driven cavity mode can be polarized
along the ycav-axis. In general ~Etw ~E

∗
cav = EtwE

∗
cav sin θ, where θ is the angle between the polarization vector of the

tweezer electric field and the cavity axis xcav (See Fig. 3 in the main text). The x-y oscillation plane of the tweezer
potential follows the rotation of the tweezer polarization, such that the transverse motion is projected onto the cavity
axis as x→ x sin θ + y cos θ.

Due to a rotating wave approximation, the fast oscillating terms in the fields interference can be omitted. In
another words, the scattering process annihilates a photon in the tweezer mode and creates a photon in the cavity
mode, while the process of annihilating two photons is suppressed. Therefore, the most general expression of the
interaction Hamiltonian is:

HCS
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= Ed(θ)

(
â†ei(kz−ϕG(z)) + âe−i(kz−ϕG(z))

)
cos k(x0 + x sin θ + y cos θ) (S3)

= −(â† + â)
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where we define the cavity drive as Ed(θ) = αεtwεcav sin θ/(2h̄). For a silica nanosphere with a nominal radius of
r = 71.5 nm and permittivity εn ≈ 2.1, we calculate the expected drive to be Ed(π/2)/2π ≈ 2.8 × 109 Hz, which is
close to the determined Ed/2π = 2.5× 109 Hz from the measurements in the main text. In deriving Eq. S4 from Eq.
S3 we looked into the following contributions:

• Cavity drive: Ed(θ) cos kx0(â† + â) describes how the coherently scattered light off the nanosphere drives the
cavity mode. The maximum scattering into the cavity mode is for θ = π/2, when the coherently scattered light
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shares the polarization of the driven cavity mode. The cavity enhances the scattered light with a maximum
intracavity photon number reached for a nanosphere positioned at the cavity antinode:

nphot =
E2
d(θ) cos2 kx0(
κ
2

)2
+ ∆2

, (S5)

where κ is the cavity linewidth and ∆ is the tweezer detuning with respect to the cavity resonance. The same
result is obtained from the mode overlap of the dipole radiation pattern and the cavity electric field [2, 3].

• Coupling to the z-motion: The nanosphere is in the Lamb-Dicke regime as the nanosphere motion is signif-
icantly smaller than the laser wavelength (k

√
〈z2〉 � 1). Therefore, the phase of the tweezer electric field to

second order is approximately exp(i(kz−arctan(z/zR))) ≈ 1+ i(k−1/zR)z−(k−1/zR)2z2/2. The contribution
from the Gouy phase is a factor of kzR ≈ 9 times smaller than the main contribution. The coupling to the
z-motion is gz(θ, x0) = Ed(θ)(k − 1/zR)zzpf cos kx0 and is maximal for a nanosphere positioned at the cavity
antinode (| cos kx0| = 1). We calculate the expected coupling rate gz(π/2, 0)/2π ≈ 131 kHz.

• Coupling to the x- and y-motion: Linear coupling to the x- and y-motion is featured in the Taylor expansion
of the cavity electric field profile:

cos k(x0 + x sin θ + y cos θ) ≈ cos kx0

(
1− k2(x sin θ + y cos θ)2

2

)
− sin kx0 × k(x sin θ + y cos θ). (S6)

The linear interaction to the x- and y-motion is maximum for a nanosphere positioned at the cavity node
(| sin kx0| = 1), while the quadratic interaction is maximum at the cavity antinode (| cos kx0| = 1). The
calculated maximum linear coupling rate to the x-motion is gx(π/2, λ/4)/2π ≈ 67 kHz. The dispersive coupling
rate achievable in the same setup with an equal cavity drive applied through a cavity mirror would be gdispx =
g0Ed/

√
(κ/2)2 + Ω2

x ≈ 2π × 4 kHz [4], significantly smaller compared to the coherent scattering scheme.

Residual coupling due to a tilt of the tweezer

The angle between the tweezer axis and the cavity axes is 90◦ − ϕ, where ϕ < 10◦ is a small deviation [4]. There
are two important effects due to the existence of this deviation:

• The scattering into the cavity is never fully suppressed as the residual cavity drive is Ed(ϕ). We measure the
suppression in the following text.

• The x− z oscillation plane is rotated by ϕ with respect to the xcav − zcav plane defined by the cavity, leading
to a small coupling of the z-motion at the cavity node:

x̂cav = x sin(π/2− ϕ) + z cos(π/2− ϕ) ≈ x− z sinϕ. (S7)

The total linear coupling to the z-motion in this configuration is:

ḡz(θ, x0) = Ed(θ)kzzpf cos kx0 − Ed(θ)kzzpf sin θ sinϕ sin kx0, (S8)

which would explain the observed z-cooling at any point along the cavity axis in Fig. 4 in the main text. Using
ϕ ≈ 6.3◦ determined from the homodyne measurement, we estimate the added coupling rate to maximally be
Ed(π/2)kzzpf sinϕ = 2π × 14 kHz.

Cavity cooling of the x- and z-motion

We set the polarization θ = π/2. We focus only on the linear interaction with the x- and z-motion in the Langevin
equations:
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where κnano(x0) = 4
∣∣∣ kα
ε0w2

0π

∣∣∣2 ∆νFSR cos2 kx0 is the cavity input rate due to the light scattering, while κin is the loss

rate of the two cavity mirrors. The cavity is driven by the coherently scattered light off the nanosphere with a photon
rate Ed cos kx0. As a result, the cavity operators include a coherent amplitude α0 as â→ α0 + â, which is determined
from the Langevin equations above:

α0(x0) =
iEd cos kx0
κ
2 + i∆

, nphot = |α0|2. (S10)

After the operator displacement and only up to first order in the operators, the Langevin equations become:
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â† + â
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The procedure to solve the Langevin equations for cooling of one-dimensional motion is explained in detail in [5].
Note that due to the x- and z-motion being coupled to two orthogonal quadratures of the cavity field, the equations
can be solved independently for the two motions. In conclusion, for a tweezer red-detuned with respect to the cavity
resonance, the particle x- and z- motion will be cooled with rates depending on the particle position.

Cavity cooling of the motion in the transverse plane of the tweezer

A rotation of the tweezer polarization by an angle θ leads to a rotation of the trapping potential by the same angle
θ. We define the motion along the transverse potential semi-major and semi-minor axes as x(t) and y(t) with the
unchanged mechanical frequencies Ωx and Ωy, respectively. The projections of the motion onto the cavity xcav- and
ycav-axis (defined by the cavity in case θ = 0):

xcav = x cos θ + y sin θ, ycav = x sin θ − y cos θ. (S12)

Let’s assume the optimal position of sin kx0 = 1 for the cavity cooling of the motion along the xcav-axis and the
polarization angle θ = π/4. The Hamiltonian of the interaction with the u- and v-motion projected onto the cavity
axis is:

Ĥx−ycav
= h̄Ed

(π
4

)
k
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2

(
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)
, (S13)

with the system dynamics described by the following Langevin equations:
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The sum and the difference of the first two equations:

ẍcav︷ ︸︸ ︷
(¨̂x+ ¨̂y) +γm

ẋcav︷ ︸︸ ︷
( ˙̂x+ ˙̂y) +(Ω2
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h̄Ed(
π
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y
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shows that the two-dimensional cooling of both motions is possible only in the case of non-degenerate frequencies
Ωx 6= Ωy. Otherwise, the difference shows that the projected dynamics along the ycav-axis would be uninfluenced by
the cavity mode.
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Phase noise

The classical phase and intensity noise can influence the lowest reachable phonon occupation in cavity cooling setups
[6–8]. In essence, due to a non-zero detuning of the cooling laser, phase noise is converted into the amplitude and
intensity noise in the optomechanical cavity. Phase noise can be implemented into our calculus as a phase variation
of the driving field Ed → Ede

iφ(t) ≈ Ed(1 + iφ(t)), further impacting the particle motion. Phase noise contribution
to the minimum phonon occupation of the x-motion is:

n̄phasex =
nphot

κ
Sφ̇φ̇(Ωx) =

E2
d cos2 kx0

κ
((

κ
2

)2
+ Ω2

x

)Sφ̇φ̇(Ωx), (S15)

where Sφ̇φ̇ is the intrinsic laser frequency noise. Note that the added occupation due to the phase noise heating is
essentially zero at the cavity node, i.e. at the position where the maximum cooling of the x-motion occurs. In reality,
it depends on how precise we can position the nanosphere in the vicinity of the cavity node.

Optomechanical cooperativity and minimum phonon occupation

At sufficiently low pressures (p < 10−7 mbar), heating of the nanosphere motion is given by the recoil heating of
the trapping laser [9]:

Γtwrec,x =
4

5

ωc
Ωx

Itw
mc2

k4|α|2

6πε2
0

=
2

15

k2w2
0

∆νFSR
E2
dk

2x2
zpf︸ ︷︷ ︸

g2x

, (S16)

where Itw is the trapping laser intensity and ∆νFSR = 14 GHz is the cavity free spectral range. As it turns out, the
optomechanical cooperativity in the recoil heating limit CQ = 4g2

x/κΓtwrec,x depends only on the cavity finesse F and
the waist w0:

CQ =
30F/π
k2w2

0

. (S17)

Already for the current cavity parameters (F = 73, 000, w0 = 41.1µm) we obtain CQ ≈ 12, a significant improvement
over the cooperativity reached in the dispersive regime [4]. The minimum phonon occupation of the nanosphere
x-motion is reached for a nanosphere placed at the cavity node (| sin kx0| = 1):

n̄x =

(
κ

4Ωx

)2

︸ ︷︷ ︸
≈0.07

+
Γtwrec,xκ

4g2
x︸ ︷︷ ︸

≈0.09

+ n̄phasex︸ ︷︷ ︸
=0

≈ 0.16. (S18)

The respective ground state occupation probability of the x-motion is 87%.

Suppression of scattering by polarization

We observe coupling of both x- and z- motion in the homodyne detection of the locking laser (local oscillator power
0.2 mW), which is due to a non-straight angle 90◦ − ϕ between the tweezer and the cavity axis [4]. When we set the
trap laser polarization θ = 0, the resulting angle between the polarization and the cavity axis is ϕ. Therefore, the
residual scattering into the cavity mode is suppressed by a factor of sin2 ϕ compared to the case when θ = 90◦. We
are able to directly observe the magnitude of suppression of coherent scattering by polarization with the heterodyne
detection (local oscillator of 0.8 mW power and a detuning ωhet/2π = 21.4 MHz from the optical tweezer frequency).
We detune the tweezer by ∆ = 2π × 4 MHz to avoid affecting the particle motion. By comparing the heterodyne
spectra for maximum (θ = 90◦) and minimum scattering (θ = 0◦) into the cavity mode (Fig. S1), the number of
scattered photons is decreased by a factor of ∼ 100, from which we calculate the angle ϕ ≈ 5.7◦. From the ratio of
the overall transduction factors in the homodyne detection we obtain a similar value ϕ ≈ 6.3◦, confirming that the
seen suppression is consistent with the non-orthogonal tweezer and cavity axes.
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FIG. S1. Overlapped heterodyne measurements for trap laser polarization θ = 0 and θ = π/2. Heterodyne measurements are
acquired for trap laser far detuned by ∆ = 2π× 4 MHz to avoid an affecting the particle motion. Particle is positioned halfway
between a cavity node and an antinode (x0 = λ/8). The heterodyne spectrum in the case of θ = 0 has been multiplied by a
factor of 100 to overlap it with the case of θ = π/2. Note that, due to the rotation of the trap axes, we couple x-motion and
y-motion for θ = π/2 and θ = 0, respectively.
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FIG. S2. Positioning of the particle based on different detection schemes. We extract the coupling of the x-motion to the
locking cavity mode g2lock from the homodyne measurement (blue), demonstrating the standard optomechanical periodicity
glock ∝ sin(2kx0). Coupling to the cavity mode populated by coherent scattering gx ∝ sin kx0 is derived from the heterodyne
detection (green), where we keep the trap laser far detuned from the cavity resonance by ∆ = 2π × 4 MHz in order not to
disturb the particle motion. Furthermore, the power scattered out of the cavity (red) is seen out-of-phase with gx. We are able
to reconstruct the nodes and antinodes of the cavity mode used for cavity cooling by coherent scattering.

Particle positioning

In the main text, we mainly focus on the enhancement of the coherently scattered light (detector power, III) to
determine the particle position x0. However, the actual process involves the homodyne detection of the locking cavity
mode (homodyne, II) and the heterodyne detection of the scattered photons (heterodyne, IV), which are proportional
to the particle x-motion with g2

lock ∝ sin2(2kx0) and ∝ g2
x ∝ sin2(kx0), respectively. This information is used to

determine the cavity node and antinode of the cavity mode used for the enhancement of the coherent scattering (Fig.
S2). We show that the coupling to the locking mode governed by standard optomechanical interaction (blue) and the
coupling by coherent scattering (green) follow different periodicities in particle position x0, as discussed in the main
text.
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Suppression of the phase noise

The added phonon occupations and respective coupling rates to the x-motion in the dispersive regime and in the
case of coherent scattering are:

n̄phase,dispx =
(Edispd )2

κ
((

κ
2

)2
+ Ω2

x

)Sφ̇φ̇(Ωx), n̄phase,cohx =
E2
d cos2 kx0

κ
((

κ
2

)2
+ Ω2

x

)Sφ̇φ̇(Ωx)

gdispx = g0
Edispd√(
κ
2

)2
+ Ω2

x

, gx = Edkxzpf , (S19)

where g0 = 2π×0.3 Hz is the dispersive single photon coupling of the x-motion of an equal-sized particle to the cavity
mode [4]. Assuming that we would reach equal coupling rates gdispx = gx in the two coupling scenarios, the required

cavity drive in the dispersive regime is Edispd /2π ≈ 4.2× 1010 Hz. The ratio of added phonon occupations due to the
phase noise heating is:

n̄phase,cohx

∣∣
node

n̄phase,dispx

=
g2

0 cos2 k(λ/4 + δx)

k2x2
zpf

((
κ
2

)2
+ Ω2

x

) , (S20)

where δx is the distance from the particle position to the cavity node. In the experiment we positioned the particle
within δx ≈ 20 nm and observed 50 times less intracavity photons compared to the cavity antinode position. We
estimate a decrease of the phase noise heating by a factor of ∼ 1.5× 104. More precise positioning is available, with
the current nanopositioner step size of 8 nm promising further improvement in the phase noise suppression.

In the case of three-dimensional cavity cooling, the particle is located at the largest intensity gradient (cos2 kx0 =
1/2) with the measured coupling rate gx = 2π × 20 kHz, which is the optimal position for the dispersive coupling.

There, the required cavity drive in the dispersive regime would be Edispd /2π = 1.3 × 1010 Hz. Even in this case, the
phase noise heating would be suppressed by:

n̄phase,cohx

∣∣
gradient

n̄phase,dispx

≈ 1

60
. (S21)

In conclusion, the proximity to the intensity minimum (optimal position for the cavity cooling of the x-motion)
results in minimal coupling of the phase noise into the cavity. Furthermore, we realize an equal coupling rate by
applying a lower cavity drive in the case of coherent scattering, which additionally decreases the constraint on the
phase noise.

Quadratic cavity cooling of the x-motion

At the cavity antinode the interaction to the x-motion is intrinsically quadratic with a quadratic coupling rate:

gx,quad = Edk
2x2
zpf/2. (S22)

The cooling rate is Γ↓,x = g2
x,quadκ/|κ/2 + i(2Ωx−∆)|2, where κ is the cavity decay rate, ∆ is the trap laser detuning

and Ωx is the mechanical frequency of the x-motion. At pressures p <∼ 4 mbar the condition γgas < Γ↓nth is met, such
that the nonlinear damping due to quadratic cavity cooling leads to a change in phonon number distribution and to
an effective cooling [10]. At pressure p = 6× 10−2 mbar the effective temperature of the particle motion due to the
quadratic cavity cooling is:

T xquad

T0
=

√
γgas

πΓ↓nth
≈ 0.11, (S23)

where nth = kBT0/(h̄Ωx) is the thermal phonon number. In the main text, we assume a temperature model for the
x-motion:

T xeff(x0)

T0
=

1

T0

1
sin2 kx0

Tx
lin

+ cos2 kx0

Tx
quad

(S24)
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which is entirely parametrized by the minimum and maximum temperatures T xlin and T xquad. The effective temperature
of the x-motion at the cavity node is calculated from the fit of the effective damping as T xlin/T0 = γgas/γ

x
max.
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