SUPPLEMENTARY INFORMATION

For cavity cooling in the weak coupling regime $\eta \ll 1$, coherences [S1, S2] decay rapidly, and rate equations are sufficient to describe the cooling [S3]. For onedimensional cooling along the cavity axis z, the rate of transitions from motional state $|n\rangle$ to $|n-1\rangle$ is

$$
\begin{equation*}
\frac{\Gamma_{s c} \eta \eta_{L D}^{2} n}{1+4\left(\delta_{l c}+\omega\right)^{2} / \kappa^{2}} \equiv R^{-} n \tag{S1}
\end{equation*}
$$

and the rate of transitions from motional state $|n\rangle$ to $|n+1\rangle$ is

$$
\begin{equation*}
\frac{\Gamma_{s c} \eta \eta_{L D}^{2}(n+1)}{1+4\left(\delta_{l c}-\omega\right)^{2} / \kappa^{2}}+\Gamma_{s c} C \eta_{L D}^{2}+\dot{n}_{e x t} \equiv R^{+}(n+1)+N^{+} \tag{S2}
\end{equation*}
$$

where $\Gamma_{s c}$ is the photon scattering rate into free space, the number C is defined such that $C \eta_{L D}^{2} \hbar \omega$ is the average recoil heating along the z direction per free space scattering event, and $\dot{n}_{e x t}$ is the heating rate along the z direction due to environmental electric field fluctuations in quanta per second. Here, $\eta_{L D}^{2}=E_{\text {rec }} /(\hbar \omega)$ is the Lamb-Dicke parameter, as determined by the ratio of recoil energy $E_{\text {rec }}$ and trap vibration frequency ω. Note that these transition rates are only valid in the LambDicke regime $\eta_{L D}^{2}\langle n\rangle \ll 1$, which limits the applicability of this model to $\langle n\rangle \ll 70$ for our experimental parameters. The expectation value of the mean vibrational quantum number $\langle n\rangle_{t}$ evolves according to

$$
\begin{equation*}
\langle n\rangle_{t}=n_{0} e^{-W t}+n_{\infty}\left(1-e^{-W t}\right) \tag{S3}
\end{equation*}
$$

for $\delta_{l c}=-\omega($ cooling $)$,

$$
\begin{equation*}
\langle n\rangle_{t}=n_{0}+\left(R^{+}+N^{+}\right) t \tag{S4}
\end{equation*}
$$

for $\delta_{l c}=0$, and

$$
\begin{equation*}
\langle n\rangle_{t}=\left(n_{0}+n_{\infty}+1\right) e^{W t}-\left(n_{\infty}+1\right) \tag{S5}
\end{equation*}
$$

for $\delta_{l c}=+\omega$ (heating), where $n_{0} \equiv\langle n\rangle_{t=0}$ and $n_{\infty} \equiv$ $\langle n\rangle_{t \rightarrow \infty}$ are the initial and steady-state value of $\langle n\rangle_{t}$, respectively. The cavity cooling rate constant W is given by

$$
\begin{equation*}
W=\frac{\Gamma_{s c} \eta \eta_{L D}^{2}}{1+\kappa^{2} /(2 \omega)^{2}} \tag{S6}
\end{equation*}
$$

and the steady state average occupation number n_{∞} is given by

$$
\begin{equation*}
n_{\infty}=\left(\frac{\kappa}{4 \omega}\right)^{2}+\left[\frac{C}{\eta}+\frac{\dot{n}_{e x t}}{\Gamma_{s c} \eta \eta_{L D}^{2}}\right]\left[1+\left(\frac{\kappa}{4 \omega}\right)^{2}\right] \tag{S7}
\end{equation*}
$$

For cavity cooling of the z motional mode in our experiment, we calculate $C=1 / 3$ (photons are scattered isotropically for a $J=1 / 2 \leftrightarrow J^{\prime}=1 / 2$ transition), and measure independently $\dot{n}_{\text {ext }}=17(2) \mathrm{s}^{-1}$. Thus, for our experimental parameters, the heating due to environmental field fluctuations is negligible ($\dot{n}_{e x t} \ll \Gamma_{s c} \eta \eta_{L D}^{2}$) and the expression for the steady-state occupation number reduces to Eq. (1).
[S1] S. Zippilli and G. Morigi, Phys. Rev. Lett. 95, 143001 (2005).
[S2] S. Zippilli and G. Morigi, Phys. Rev. A 72, 053408 (2005).
[S3] V. Vuletić, H. W. Chan, and A. T. Black, Phys. Rev. A 64, 033405 (2001).

