SUPPLEMENTARY INFORMATION

For cavity cooling in the weak coupling regime $\eta \ll 1$, coherences [S1, S2] decay rapidly, and rate equations are sufficient to describe the cooling [S3]. For onedimensional cooling along the cavity axis z, the rate of transitions from motional state $|n\rangle$ to $|n-1\rangle$ is

$$\frac{\Gamma_{sc}\eta\eta_{LD}^2n}{1+4\left(\delta_{lc}+\omega\right)^2/\kappa^2} \equiv R^-n,\tag{S1}$$

and the rate of transitions from motional state $|n\rangle$ to $|n+1\rangle$ is

$$\frac{\Gamma_{sc}\eta\eta_{LD}^{2}(n+1)}{1+4(\delta_{lc}-\omega)^{2}/\kappa^{2}} + \Gamma_{sc}C\eta_{LD}^{2} + \dot{n}_{ext} \equiv R^{+}(n+1) + N^{+},$$
(S2)

where Γ_{sc} is the photon scattering rate into free space, the number C is defined such that $C\eta_{LD}^2\hbar\omega$ is the average recoil heating along the z direction per free space scattering event, and \dot{n}_{ext} is the heating rate along the zdirection due to environmental electric field fluctuations in quanta per second. Here, $\eta_{LD}^2 = E_{rec}/(\hbar\omega)$ is the Lamb-Dicke parameter, as determined by the ratio of recoil energy E_{rec} and trap vibration frequency ω . Note that these transition rates are only valid in the Lamb-Dicke regime $\eta_{LD}^2 \langle n \rangle \ll 1$, which limits the applicability of this model to $\langle n \rangle \ll 70$ for our experimental parameters. The expectation value of the mean vibrational quantum number $\langle n \rangle_t$ evolves according to

$$\langle n \rangle_t = n_0 e^{-Wt} + n_\infty \left(1 - e^{-Wt} \right) \tag{S3}$$

for $\delta_{lc} = -\omega$ (cooling),

$$\langle n \rangle_t = n_0 + (R^+ + N^+) t$$
 (S4)

for $\delta_{lc} = 0$, and

$$\langle n \rangle_t = (n_0 + n_\infty + 1) e^{Wt} - (n_\infty + 1)$$
 (S5)

for $\delta_{lc} = +\omega$ (heating), where $n_0 \equiv \langle n \rangle_{t=0}$ and $n_{\infty} \equiv \langle n \rangle_{t\to\infty}$ are the initial and steady-state value of $\langle n \rangle_t$, respectively. The cavity cooling rate constant W is given by

$$W = \frac{\Gamma_{sc}\eta\eta_{LD}^2}{1 + \kappa^2/\left(2\omega\right)^2},\tag{S6}$$

and the steady state average occupation number n_{∞} is given by

$$n_{\infty} = \left(\frac{\kappa}{4\omega}\right)^2 + \left[\frac{C}{\eta} + \frac{\dot{n}_{ext}}{\Gamma_{sc}\eta\eta_{LD}^2}\right] \left[1 + \left(\frac{\kappa}{4\omega}\right)^2\right] . \quad (S7)$$

For cavity cooling of the z motional mode in our experiment, we calculate C = 1/3 (photons are scattered isotropically for a $J = 1/2 \leftrightarrow J' = 1/2$ transition), and measure independently $\dot{n}_{ext} = 17(2) \text{ s}^{-1}$. Thus, for our experimental parameters, the heating due to environmental field fluctuations is negligible ($\dot{n}_{ext} \ll \Gamma_{sc}\eta\eta_{LD}^2$) and the expression for the steady-state occupation number reduces to Eq. (1).

- [S1] S. Zippilli and G. Morigi, Phys. Rev. Lett. 95, 143001 (2005).
- [S2] S. Zippilli and G. Morigi, Phys. Rev. A 72, 053408 (2005).
- [S3] V. Vuletić, H. W. Chan, and A. T. Black, Phys. Rev. A 64, 033405 (2001).