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1 Introduction

Whereas from a classical point of view the emission of radiation by an os-
cillating atomic dipole is a local property determined by the magnitude of
the dipole moment and the angular frequency of oscillation ω, quantum elec-
trodynamics introduces the more comprehensive concept of delocalized elec-
tromagnetic modes to describe spontaneous emission or scattering. In clas-
sical electrodynamics, the ω4-dependence of the spontaneously emitted or
Rayleigh scattered power arises from the Larmor formula for the emission
by an accelerated point charge. From a quantum mechanical perspective, the
spontaneous emission and the scattering rate are both proportional to the
density of electromagnetic modes at the emission frequency. In free space,
the mode density scales as ω2, and multiplication by the square of the matrix
element for the atom light coupling, scaling as ω/h̄, and the photon energy
h̄ω then yields the classical expression. The strong ω4-frequency dependence
is responsible not only for the blue sky, but also explains why the edible laser
[1], rather than the edible maser, was experimentally realized.

If we change the density of electromagnetic modes available to the atom,
e.g. by placing a resonator around it, then the emission rate is modified
accordingly [2–4]. In this sense spontaneous emission is as much an atomic
property as that of the electromagnetic vacuum surrounding the atom. Since
the density of electromagnetic modes is a non-local feature determined by
boundary conditions away from the atom, it is possible to influence the atomic
emission rate by manipulating spatially extended electromagnetic modes.

Conventional Doppler cooling [5], that makes use of the conservation of
momentum in scattering, was such a fantastic idea that for some time even
its inventors had doubts as to its feasibility. Can you imagine to simply
shine light into a vapor cell and to observe atoms near -273C moving at the
speed of an ant? Then how long before we can count the frequency of light,
perform precision spectroscopy of anti-hydrogen, implement magnetic motors
to move Bose-Einstein condensates, realize an atomic laser, or maybe build
time machines?

Doppler cooling relies on the anisotropic absorption of light by a moving
two-level atom, where cooling events are favored over heating events because
the incident light is tuned below the atomic resonance by an amount on the
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order of the Doppler effect. Conventional Doppler cooling therefore requires
a closed two-level system. Alternatively, utilizing the frequency variation of
the electromagnetic mode density in resonators, it is possible to devise opti-
cal cooling schemes that arise from an asymmetry in emission, rather than
in absorption [6–9]. The frequency-dependent modification of emission rates
inside a resonator implies a corresponding change of the light-induced me-
chanical forces on the atom. Since under certain circumstances the sign of
the dissipative force depends exclusively on the detuning between incident
light and resonator, without reference to the atomic level structure [9], this
cavity cooling technique holds promise for generalizing laser cooling to ar-
bitrary light scatterers, including atoms with a complicated level structure,
molecules, or even mesoscopic particles.

Several authors have studied how to use a modification of the boundary
conditions for the electromagnetic field, i.e. a passive optical resonator, to
laser cool atoms in various situations, either by means of spontaneous emis-
sion from a two-level system [6–8,10], or by means of classical (coherent)
Rayleigh scattering [8–12]. In this paper we analyze how a resonator with an
intracavity gain medium, i.e. an active cavity, can be used to significantly
improve the performance of cavity cooling, resulting in a larger cooling force
and a lower temperature than those attainable with passive resonators.

2 Cavity cooling with an intracavity gain medium

The basic idea of cavity Doppler cooling or cavity sideband cooling in a
passive resonator is to enhance the coherent (classical) scattering of blue
photons over that of red photons, thereby extracting energy and entropy
from the scatterer [9,12]. In analogy to conventional Doppler cooling, the
maximum cooling force is of order

fmax = h̄kΓ ′
0, (1)

where h̄k is the photon momentum, v the atomic velocity, and Γ ′
0 the on-

resonance scattering rate into the cavity. Therefore the figure-of-merit is the
ratio η0 of Γ ′

0 and the scattering rate Γsc into free space, and is given by [12]

η0 =
Γ ′

0

Γsc
= 2Ec

∆Ω

4π
. (2)

η0 is proportional to the solid angle ∆Ω that is subtended by the simul-
taneously resonant cavity modes, and to the intensity enhancement factor
Ec = F/π, where F is the cavity finesse. The cavity-to-free-space scattering
ratio η0 determines the magnitude of the cavity cooling force relative to that
for conventional Doppler cooling at the same scattering rate.

The scattering rate into the resonator strongly depends on the detuning
∆ of the emitted light relative to the cavity resonance. For not too large
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detuning ∆, the frequency-dependent scattering ratio ηc(∆) = Γ ′
c(∆)/Γsc is

a Lorentzian,

ηc(∆) = η0
γ2

c

γ2
c + ∆2

=
2Ec

1 + (∆/γc)2
∆Ω

4π
, (3)

where γc is the amplitude decay rate constant for the cold (passive) cavity.
The enhancement factor is inversely proportional to the cavity linewidth, and
in terms of the cavity round trip time τ is given by Ec = (γcτ)−1.

Cooling is achieved by tuning the cavity resonance to the blue side of the
atomic emission spectrum, such that the emission of blue-detuned motional
sidebands is enhanced, and the emission of red-detuned motional sidebands is
suppressed. This leads to a cooling force that is proportional to the Lorentzian
cavity-to-free-space scattering ratio ηc(∆), and results in a final temperature
that is inversely proportional to its slope. A narrower cavity linewidth there-
fore has the advantages of a larger cooling force, and a lower temperature of
order kBT ≈ h̄γc/η0 for η0 < 1 and kBT ≈ h̄γc for η0 > 1 [9,12].

Although current ’supermirrors’ with very low scattering and absorption
losses can sustain large enhancement factors Ec > 104 [13], even larger values
will be necessary to attain scattering ratios η � 1 in confocal resonators, that
have the largest cooling volume [12]. In addition, the cooling performance
would be improved if one were able to vary E and consequently the cavity
linewidth in real time in order to maximize the velocity capture range in the
beginning, and minimize the temperature at the end of the cooling. Since in
active resonators the linewidth is a function of the gain and much smaller
than in passive resonators, the use of active resonators for cavity cooling
represents a promising alternative.

For an atom placed inside an active resonator a large and strongly frequency-
dependent scattering rate can be implemented in two ways. One is to use the
resonator below laser threshold as a regenerative amplifier [14] for the emitted
light. In this case the bandwidth and the enhancement factor are determined
by the value of the regenerative gain. An alternative is to cool inside the slave
laser of an injection-locked master-slave system [14], where the injecting field
is tuned close to the low-frequency boundary of the locking range. Then for
the light emitted by the atom the amplification and the bandwidth are deter-
mined by the proximity of the system to the boundary of the locking range.
The cooling parameters are then conveniently controlled inside a feedback
loop with the locking phase angle serving as the error signal.

2.1 Cavity cooling inside a regenerative amplifier

Since the intensity enhancement factor and the cooling force in a passive
resonator are inversely proportional to the cavity loss, it should be possible
to improve the cooling performance by compensating part of the round-trip
loss with intracavity gain. In this scenario the system must be kept below laser
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threshold in order not to saturate the gain. Although spontaneous-emission
noise in the gain medium will prevent operation of the system arbitrarily
close to threshold, a significant bandwidth reduction can still be obtained
[14].

To calculate the power that an atom radiates inside a linear regenerative
amplifier, we write the field emitted by the atomic dipole into the cavity
mode(s) under consideration as Eatom(t)eikx−iωt, where Eatom(t) is a slowly-
varying field envelope. As long as the scattering rate into the cavity does not
exceed the cavity decay rate, the envelope of the field circulating inside the
cavity can be approximated by its steady-state value Est(t), that is governed
by

Est(t) = g2r2e2ikLEst(t) + Eatom(t). (4)

Here L = 1
2cτ is the resonator length, r is the field reflection coefficient for

each mirror, and g the single-pass amplitude gain of the intracavity gain
medium. Introducing the detuning ∆ = ω − ωc relative to the nearest cavity
resonance frequency ωc, the intracavity field can be simply written as

Est(t) =
Eatom(t)

1 − g2r2ei∆τ
. (5)

Below laser threshold the denominator is non-zero and we can define a width
of the regenerative amplifier (’hot-cavity bandwidth’) 2γh by setting

γhτ = 1 − g2r2. (6)

Then Eq. (5) close to resonance (∆τ � 1) reduces to the Lorentzian form

Est =
Eatom

γhτ + i∆τ
. (7)

The modified emission rate, i.e. the change in emitted power, inside the
cavity can be understood as being due to the interference between the steady-
state field Eq. (7) and the primary field Eatom of the oscillating atomic dipole.
The power emitted by the atom into the resonator is proportional to |Est +
Eatom|2−|Est|2, rather than to |Eatom|2 as in free space. Therefore the cavity-
to-free-space scattering ratio is given by

ηh(∆) =
Γ ′

h(∆)
Γsc

=
2Eh

1 + (∆/γh)2
∆Ω

4π
, (8)

where Eh = (γhτ)−1 is the enhancement factor for the regenerative amplifier.
This result is formally identical to that for the passive cavity Eq. (3) if one
replaces the width of the cold cavity 2γc = 2(1 − r2)/τ by the smaller gain
bandwidth of the regenerative amplifier 2γh = 2(1 − g2r2)/τ . The larger
enhancement factor Eh = (γhτ)−1 can be attributed to the effective reduction
of cavity round trip loss from 1− r2 to 1− g2r2 due to the intracavity gain g.



Cavity Cooling with a Hot Cavity 5

A reduction of the hot-cavity bandwidth γh by several orders of magnitude
compared to γc has been observed [14]. Inside a regenerative amplifier it
should therefore be possible to increase the scattering ratio η and the cavity
cooling force substantially beyond values attainable even with supermirrors.

2.2 Cavity cooling inside an injection-locked laser

The above analysis is concerned with an active resonator below threshold
that regeneratively amplifies the radiation emitted by the atom. Cooling is
achieved by frequency-selective amplification of the higher-energy motional
sidebands. The amplified field is fed back phase coherently onto the atom
via the resonator, and extracts a larger scattered power from the oscillating
dipole by means of constructive interference. It is interesting to ask whether
the same type of frequency dependent emission enhancement is also available
inside a laser. In this case the laser field itself could serve as the incident field
that is being scattered in the cooling process.

Here we propose to use an injection-locked system [14] to realize frequency
dependent amplification of the scattered light. The particle to be cooled is
placed inside the slave resonator, where it is irradiated by the slave field,
whose frequency is equal to the master frequency ωm. If ωm is tuned near
the low-energy edge of the injection-locking region, the slave will display gain
peaked at its (higher) free-running frequency ωc whose value and bandwidth
depend on the proximity of the system to the injection-locking boundary.
Then light scattered by the atom on blue motional sidebands near ωc is
amplified and fed back onto the atom, which results in cooling.

The only difference between cooling inside a regenerative amplifier and
inside an injection-locked laser is that in the former the round-trip gain for the
radiation emitted by the atom is determined by the small-signal gain g, while
in the latter the single-pass gain is saturated to a value gs that depends on
the power and detuning of the master field. To analyze cavity cooling inside
an injection-locked laser we merely need to find the saturated gain gs as a
function of the injection parameters. Just as for the regenerative amplifier,
the cooling is then simply characterized by a Lorentzian cavity-to-free-space
scattering ratio of the form Eq. (8), with a saturated hot-cavity bandwidth
γs defined in analogy to Eq. (6) by

γsτ = 1 − g2
sr2. (9)

To calculate gs, we assume that the master field Emeikmx−iωmt with time-
independent real envelope Em is incident onto the slave laser with free-running
frequency ωc. Both slave laser mirrors have amplitude transmission and re-
flection coefficients q and r, respectively. The steady-state condition Eq. (4)
with the atomic source field Eatom replaced by the master field inside the
cavity qEm in the frame rotating at ωm then reads

Est = g2
sr2ei∆mτEst + qEm, (10)
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Here ∆m = ωm − ωc is the detuning of the master field relative to the free-
running slave laser. Writing the steady-state field as Est = E0e

iφ with real
E0, we find the following relation between gs and the locking angle φ:

tanφ =
g2

sr2 sin ∆mτ

1 − g2
sr2 cos∆mτ

. (11)

For not too large detuning ∆mτ � 1 we can express the saturated gain
half-width γs as

γsτ = 1 − g2
sr2 =

∆mτ

∆mτ − tanφ
. (12)

As the master is tuned towards the edges of the locking range, the locking
phase φ approaches the values ±π/2 [14], and the saturated bandwidth γs

is reduced towards zero, which according to Eqs. (3) or (8) leads to a large
enhancement factor Es = (γsτ)−1. The injection-locking width ±∆l is given
by [14]

∆l =
Em

qE0
γc. (13)

Here Em and qE0 are the master and slave laser amplitude, respectively,
measured outside the slave cavity, and 2γc is the cold-cavity width of the
slave laser. In terms of the locking bandwidth ∆l the enhancement factor for
cooling inside an injection-locked laser can be approximately written as

Es = (γsτ)−1 ≈ |∆m|
∆l − |∆m| . (14)

The cavity cooling force becomes very large as the master detuning |∆m| ap-
proaches ∆l. This behavior is analogous to that of the regenerative amplifier
near laser threshold, since for |∆m| ≥ ∆l the slave reverts to its free-running
frequency.

Compared to cooling with a regenerative amplifier, cooling inside an
injection-locked laser offers the advantage that the gain is easily controlled
and stabilized in a feedback loop using the locking phase as an error signal.
For instance, a standard Pound-Drever [15] or Hänsch-Couillaud lock [16]
can be used to stabilize the locking angle to a value very close to π/2. This
should result in reliable operation of hot-cavity cooling, while ensuring a very
large cooling force and low final temperatures. Furthermore, the high inten-
sities inside a laser cavity should allow one to cool at very large detuning
from atomic or molecular resonances, while maintaining a reasonably large
scattering rate.

2.3 Limitations to cavity cooling with intracavity gain due to
spontaneous-emission noise

Both for passive and for active resonators the product of enhancement factor
E and gain half-width γ is constant and equal to the resonator free spectral
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range τ−1. From the relation between amplification bandwidth and round-
trip gain, Eq. (6), it may then appear that arbitrarily large enhancement
factors can be obtained by adjusting the round-trip gain g2r2 to a value
very close to unity. However, at very small round-trip loss the amplification
of photons that are spontaneously emitted in the gain medium will prevent
stable operation, either by triggering laser action and saturating the gain
in the regenerative amplifier, or by reverting the slave to its free-running
frequency in the injection-locked system.

The limit due to amplified spontaneous noise is easily estimated by noting
that the same mechanism is responsible for the Schawlow-Townes linewidth
∆ωST of a laser [17]. The smallest possible value for the gain bandwidth 2γh

of the regenerative amplifier or 2γs of the injection-locked system is given by
∆ωST at threshold,

γh,s ≥ 1
2
∆ωST . (15)

Consequently the maximum enhancement factor for cavity cooling with gain
is given by the ratio of free spectral range τ−1 and ∆ωST ,

Es,h =
1

γs,hτ
≤ 2

∆ωST τ
. (16)

In general, ∆ωST is much smaller than the cold-cavity linewidth, which
should result in significantly improved cooling performance compared to pas-
sive resonators.

3 Conclusion

Resonators with gain constitute a promising possibility to improve cavity
cooling. The gain bandwidth and therefore the final temperature are limited
by the Schawlow-Townes linewidth. Enhancement factors larger than 106

appear feasible, which even for small mode solid angles would result in a
cavity-to-free-space scattering ratio η � 1. Then the cooling of new atomic
species and perhaps even of selected molecules directly from a background
vapor [12] may be within reach.

Considering the title of this volume, it would be quite appropriate if the
temperature of arbitrary laser-cooled light scatterers were finally limited by
the fundamental linewidth of lasers. An implementation of cavity cooling with
gain would also represent just another step on this amazingly successful and
surprising journey that began some 25 years ago with an improbable idea
[5] about how to freeze particles with that strange hot and cold, amazing
and beautiful state of light. If there is one thing that Prof. Ted Hänsch is
teaching us again and again, and that I am deeply grateful for, then it is not
so much how science can become great fun (I suspected that already when
as an undergraduate I first heard him talk about light forces, after which no
other field of physics could compete), but how playfulness can become great
science.
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References
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