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Experimental demonstration of logical 
magic state distillation
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Realizing universal fault-tolerant quantum computation is a key goal in quantum 
information science1–4. By encoding quantum information into logical qubits using 
quantum error correcting codes, physical errors can be detected and corrected, 
enabling a substantial reduction in logical error rates5–11. However, the set of logical 
operations that can be easily implemented on these encoded qubits is often 
constrained1,12, necessitating the use of special resource states known as ‘magic 
states’13 to implement universal, classically hard circuits14. A key method to prepare 
high-fidelity magic states is to perform ‘distillation’, creating them from multiple 
lower-fidelity inputs13,15. Here we present the experimental realization of magic state 
distillation with logical qubits on a neutral-atom quantum computer. Our approach 
uses a dynamically reconfigurable architecture8,16 to encode and perform quantum 
operations on many logical qubits in parallel. We demonstrate the distillation of 
magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the 
logical fidelity of the output magic states compared with the input logical magic 
states. These experiments demonstrate a key building block of universal fault- 
tolerant quantum computation and represent an important step towards large-scale 
logical quantum processors.

Quantum error correction (QEC) enables scalable quantum computa-
tion by exponentially suppressing logical error rates. However, the 
set of logical operations that can be efficiently implemented on these 
encoded qubits is constrained, making it challenging to perform uni-
versal quantum processing12. For example, many QEC codes support 
only the realization of so-called Clifford gates17–19. As Clifford gates can 
be efficiently simulated classically14, additional non-Clifford resources 
are required to achieve computational universality and quantum 
advantage. To overcome this difficulty, special quantum states, aptly 
named ‘magic states’, can be used to complete a universal set of logical 
operations by gate teleportation15. Owing to their relatively high cost of 
preparation, these magic states are often considered the key resource 
for scalable processing4.

High-fidelity magic states can be produced by refining multiple 
noisy copies through magic state distillation (MSD)13. The noisy states, 
encoded in data QEC codes, are concatenated into a distillation code 
and purified through protected operations on the data codes (Fig. 1). 
If the input fidelity exceeds the so-called distillation threshold, the 
fidelity of the output state is improved compared with the input. An 
attractive feature of MSD is that the logical-level circuit is independ-
ent of the data QEC code. Consequently, by increasing the data code 
distance and implementing the logical circuit with encoded operations, 
the logical fidelity of the output magic states can be improved, in prin-
ciple, to any desired level through multiple rounds of distillation20–22.

Important recent experiments have demonstrated MSD with physi-
cal qubits23,24, but the direct physical encoding prevents suppression 

https://doi.org/10.1038/s41586-025-09367-3

Received: 19 December 2024

Accepted: 7 July 2025

Published online: 14 July 2025

 Check for updates

1QuEra Computing, Boston, MA, USA. 2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA. 3Department of Physics, Harvard University, Cambridge, MA, 
USA. 4Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. 5These authors contributed equally: Pedro Sales Rodriguez, John M. Robinson, Paul Niklas Jepsen. 
✉e-mail: hyzhou@quera.com; scantu@quera.com

https://doi.org/10.1038/s41586-025-09367-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-09367-3&domain=pdf
mailto:hyzhou@quera.com
mailto:scantu@quera.com


Nature  |  Vol 645  |  18 September 2025  |  621

of logical gate errors. Complementary experiments have also shown 
remarkable progress in error-suppressed encoding of magic states 
into logical qubits using flag protocols25–27. However, without the pro-
tection provided by the data code, these approaches generally have 
higher complexity and low success probability when targeting very 
low logical error rates, although recent work has markedly improved 
their performance for low physical error rates28–30.

We realize MSD at the logical level on a neutral-atom quantum com-
puter. Magic states are encoded using two-dimensional (2D) colour 
codes19, and subsequently a 5-to-1 logical MSD is performed13. The fac-
tory outputs a single magic state and the remaining four qubits, which 
we call distillation syndromes, determine successful distillation. Cen-
tral to our approach is the dynamic reconfigurability and high degree 
of parallel control of the neutral-atom processor8,16. We realize gate 
and layout-efficient encoding circuits for arbitrary logical states in the 
d = 3 colour codes, executing 10 logical qubit encoding circuits and 
d = 5 colour codes, executing 5 logical qubit encoding circuits in paral-
lel. MSD is carried out using transversal Clifford gates, efficiently imple-
mented with parallel atom rearrangement across all code distances. 
Correlated decoding8,31 is applied to the distillation syndromes, and 

their stabilizer values are further leveraged as flags28,32 to enhance out-
put logical fidelity. The operation of the MSD factory is verified by 
distilling states with varying input fidelity and confirming the error 
suppression scaling. Conditioned on observing the correct logical 
outcome and suitable stabilizer patterns on the four distillation syn-
drome logical qubits, we obtain an enhancement of logical magic state 
fidelity from 95.1 %−0.1

+0.1  to 99.5 %−0.4
+0.4  for d = 3 and from 92.5 %−0.2

+0.1  to 
99.1 %−1.3

+0.7  for d = 5. This corresponds to a factor of 12−6
+25 infidelity sup-

pression for d = 3 and a factor of 10−6
+7 for d = 5.

Arbitrary logical state encoding
Our experiments use a newly built, Gemini-class quantum processor 
built and operated at QuEra (QuEra Computing and Collaborators, 
manuscript in preparation, 2025a). Inspired by earlier experiments 
from Harvard8, it involves control over a 2D array of neutral-atom qubits 
in a reconfigurable architecture.

We start by preparing magic states encoded in the data QEC  
code25–27,33, with fidelity above the distillation threshold (for 5-to-1 dis-
tillation, the threshold fidelity for depolarizing errors is 83%; ref. 13). 
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Fig. 1 | Logical MSD factory. a, Schematic of the Bloch sphere representation 
of magic state |ψL⟩ (left) pointing in the (1, 1, 1) direction with shaded region 
indicating noise. Distillation (centre) takes multiple noisy logical inputs and 
produces a higher fidelity magic state (right). b, A 5-to-1 distillation procedure 
(left to right). Non-fault-tolerant encoding of physical magic states into five 
data code logical qubits |ψL⟩ protects logical operations (i and ii). In particular, 
we encode into distance 3 and 5 colour codes (i). Encoded states (ii) are purified 
using a distillation code. By running the un-encoding circuit of the distillation 
code (iii) and conditioning on distillation syndromes (iv), we have simultaneously 

projected into the code state of the distillation code and un-encoded it into  
the output magic state. On measuring the correct distillation syndromes, the 
output qubit has been distilled to a higher fidelity along the (1, 1, 1) direction.  
c, Averaged atom images from the d = 5 distillation experiment, showing 85 
physical qubits encoded into five logical qubits (LQ1–LQ5) with 17 physical 
qubits each (left), shown here in spatial light modulator traps. Rows of logical 
qubits are coherently reconfigured for transversal CZ gates throughout the 
distillation circuit (right), shown here with LQ1 and LQ3 in acoustic-optic 
deflector traps.
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We choose the 2D colour code as our data QEC code, as the full Clifford 
group can be implemented transversally with it19. The [[7, 1, 3]] colour 
code is illustrated in Fig. 2b, in which an X and Z stabilizer is associa
ted with each coloured region, and the logical operators lie along the 
edge. Errors flip stabilizer values, so measuring stabilizers allows us  
to detect and correct physical errors in the circuit. The parameters 
[[n, k, d]] denote a QEC code with n physical data qubits, k logical qubits, 
and code distance d, which can correct 





d − 1
2

 errors or detect d − 1 

errors. We use an arbitrary state encoding circuit that takes a physical 
qubit as input and encodes its state into a logical qubit (also known as 
state injection). In particular, to encode into the d = 3 2D colour code, 
we use the circuit in Fig. 2a, optimized for atom movement and number 
of entangling gate layers (Methods).

We verify the encoding circuit by injecting a state lying on the XY 
plane and varying its angle (Fig. 2c). This results in a rotation of the 
encoded logical information, which can be read out as an oscillation 
in logical measurements in the X or Y basis. Logical measurements 
in the Pauli (X, Y, Z) basis are performed transversally, by measuring 
each physical qubit in the corresponding basis. To interpret data qubit 
measurement results, we calculate the stabilizer and logical outcome 
parities from physical measurement results. If errors are detected, 
we can perform error correction on the logical result or alternatively 
discard the measurement (error detection).

With the ability to encode arbitrary states, we shift our focus to 
encoding magic states for further use in distillation. In this work, we 
encode magic states that point in the (1, 1, 1) direction on the Bloch 
sphere, for use in the MSD procedure based on the [[5, 1, 3]] code13. We 
prepare this state by initializing in |0⟩ followed by a local single- 
qubit rotation of angle arccos(1/√3) about the (−1, 1, 0) axis on the 
physical qubit to be injected. We perform logical quantum state tomog-
raphy to estimate magic state fidelity (Methods). We find that the 
encoded logical magic states have raw logical fidelity 94.1 %−0.1

+0.1  (no  
error correction), error-corrected logical fidelity 95.1 %−0.1

+0.1  and error- 
detected logical fidelity 98.3 %−0.1

+0.1  (post-select on perfect stabilizers) 
(Fig. 2d). The error-detected state fidelity is close to the original phys-
ical magic state fidelity of 98.9 %−0.1

+0.1 , indicating that most of the added 
errors during the encoding process will also trigger syndromes. To 
scalably use the resource states in a larger circuit, we cannot rely on 
post-selecting on stabilizers that only become available when perform-
ing transversal measurements of the logical qubit later on. Therefore, 
we focus on comparing the logical fidelity of magic states when only 
error correction (and no further post-selection) is applied on the target 
magic state.

5-to-1 MSD
The logical encoding circuit described above is not fault-tolerant, 
because physical errors on the injected physical qubit will lead to 
logical errors, resulting in a logical error rate that scales linearly with 
the physical error rate. To further suppress the logical error rate, we 
make use of MSD, which uses the properties of a distillation QEC code 
and the fault-tolerant gates of the data QEC code to improve the magic 
state quality (Fig. 1).

Our magic state factory is based on the [[5, 1, 3]] perfect code13,34. 
Schematically, the factory takes five noisy logical magic states as input 
and applies a unitary un-encoding circuit of the distillation [[5, 1, 3]] 
code, which we optimize to have only three layers of entangling gates 
(Fig. 3a and Methods). Measuring four of these logical qubits effectively 
measures the stabilizers of the distillation code, whereas the remain-
ing logical qubit contains the output magic state. By post-selecting 
on the appropriate logical outcome of the four logical qubits (factory 
post-selection), we achieve quadratic suppression of the logical error 
rate. In the absence of errors, the factory acceptance rate of the 5-to-1 
distillation factory is expected to be 1/6 (ref. 13).

To decode the logical measurement results, we use a most-likely error 
(MLE) correlated-decoder based on mixed-integer programming31, 
with error weights obtained from a separate characterization of our 
system (Methods). For d = 3, we also explore a maximum likelihood 
decoder (MLD) that simulates most of the logical outcomes for a given 
stabilizer pattern and use it to determine the correction (Methods). 
These decoders can also be used to characterize the confidence of 
a given logical outcome assignment, allowing further sliding-scale 
post-selection based on observed stabilizer patterns8,35,36 similar to flag 
protocols25,27,28,37,38. This post-selection is commonly used in theoretical 
analysis when preparing resource states, and in accordance with this, 
we use only the stabilizers of the four distillation syndrome logical 
qubits to perform decoding for post-selection, because the output 
logical qubit is meant to be used for subsequent operations. We refer 
to the use of this physical stabilizer information to flag bad executions 
of the distillation circuit as stabilizer post-selection.

Experimental results of our logical MSD factory are shown in Fig. 3b. 
Starting with the error-corrected input logical magic state with fidelity 
95.1 %−0.1

+0.1 , without any stabilizer post-selection, the output magic state 
fidelity is worse than the injected state, because of the added physical 
errors during the distillation process. However, we find that appro
ximately 50% stabilizer post-selection is sufficient to improve the out-
put magic state fidelity, and full post-selection on perfect stabilizers 
of distillation syndrome qubits results in a fidelity of 99.5 %−0.4

+0.4 .  
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Fig. 2 | Parallel logical encoding of arbitrary states. a, Circuit for injecting  
an arbitrary state |ψ(θ, ϕ)⟩ into the [[7, 1, 3]] colour code. b, Schematic of d = 3 
colour code stabilizers indicated by the three coloured regions, with a logical 
operator highlighted. c, Bloch sphere representation of the injected state with 
varying angle ϕ on the XY plane (left). Error-corrected logical outcomes for 
X, Y, Z measurement basis versus the injected phase. Faded markers indicate 
outcomes on post-selection on perfect stabilizers. d, Left, Bloch sphere 
representation of the (1, 1, 1) magic state. Centre, injected d = 3 magic state 
fidelity corresponding to raw, error-corrected and post-selected on perfect 
stabilizers, averaged across all 10 logical qubits. Right, spatial distribution of 
injected magic state fidelities.
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Both decoders show similar performance, with the MLD decoder  
performing slightly better by accounting for the entropy of error  
configurations.

We further probe the physics of error suppression of the distillation 
code by artificially introducing coherent errors across the five input 
logical qubits (Fig. 3c,d), which we achieve by applying a Z rotation on 
the physical qubits before state injection. After encoding, this results 
in a magic state rotated around the X-axis, which we use as input to the 
factory. After full stabilizer post-selection on the four distillation syn-
drome qubits, we compare the error-corrected output fidelity against 
the post-selected input fidelity, to highlight the distillation behaviour 
on the logical information. We calculate the distillation gain for all 
added rotation angles.

As the added rotation angle error increases, we observe that the 
output state infidelity is consistent with quadratic suppression of the 
added error. We also find that the factory acceptance rate decreases 
with added errors, with an initial decrease that scales linearly with the 
added error. This can be understood from the fact that a single input 
logical error will lead to an outcome different from the correct distil-
lation syndrome, reducing the factory acceptance rate without con-
tributing to the distilled fidelity. Two input logical errors are needed to 
affect the distilled fidelity, giving rise to quadratic error suppression13.

Extending to larger code distance
Larger data codes offer stronger protection against physical errors when 
operated below threshold and are crucial for scaling to low logical error 
rates. To this end, we investigate data codes with larger code distances 

by performing MSD on five copies of a [[17, 1, 5]] d = 5 colour code. After 
optimizing for our native gate set, we obtain the logical encoding circuit 
with five entangling layers shown in Fig. 4a, with its corresponding 
stabilizers shown in Fig. 4b. Encoding all five d = 5 magic states involves 
85 physical qubits, which are coherently manipulated in parallel within 
the entanglement zone of the processor (Methods). The transversal 
single- and two-qubit distillation gates and atom moves are the same 
as in d = 3. We apply the same correlated decoding procedure with  
the MLE decoder and post-selection criteria as for the d = 3 case.

The experimental results for the d = 5 colour code are shown in Fig. 4c. 
We first note that encoding magic states into larger distance codes 
results in lower injected fidelity 92.5 %−0.2

+0.1 , as the encoding circuit 
involves more physical gate operations. We note that more stabilizer 
post-selection is required to achieve a comparably high fidelity as d = 3, 
because our gate fidelities are not yet past the circuit threshold for the 
data code; this can be improved with further reduction of the physical 
error rate. With full stabilizer and factory post-selection, we observe 
a distillation gain of 6.6 %−1.3

+0.7 , from an encoded fidelity of 92.5 %−0.2
+0.1  to 

a distilled fidelity of 99.1 %−1.3
+0.7  (Fig. 4c).

We compare the MSD performance across code distances in Fig. 4d, 
including physical MSD (d = 1) and logical MSD with the d = 3 and d = 5 
colour codes. For physical MSD, preparation of physical magic states 
is limited only by qubit initialization, measurement and single-qubit 
gate fidelity. Without the ability to perform error correction, physical 
distillation introduces additional errors, leading to a lower output fidel-
ity. Shifting to logical qubits, we observe that the injected state fidelity 
drops as the distance increases because of the added errors during the 
non-fault-tolerant encoding circuit. However, the data code provides 
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Fig. 3 | The 5-to-1 MSD. a, MSD circuit based on the [[5, 1, 3]] code (distillation 
code). We measure distillation syndromes in the Z basis and perform tomography 
on the distilled output. The successful distillation syndrome for this circuit is 
1011 (Methods). b, Fidelity of the output magic state for the d = 3 distillation 
(blue line for the MLE decoder and orange line for the MLD decoder; see main 
text) as a function of the total accepted fraction, which includes both sliding- 
scale post-selection on distillation syndrome stabilizers, and the factory 
acceptance (1/6 in the noiseless case). With sufficient stabilizer flagging, the 
output fidelity exceeds that of the input error-corrected magic state fidelity 

(green). The shaded regions indicate 68% confidence intervals, equivalent to 
1σ. c, We examine the distilled fidelity with full stabilizer post-selection, after 
introducing coherent Z errors to the input magic states (0.32π, 0.24π, 0.16π 
and 0, left to right, blue points). The results are in good agreement with the 
theoretical expectation (grey line). The stars in b and c indicate the same data 
point. d, Factory acceptance rate of distillation syndromes after perfect 
stabilizer post-selection (acceptance rate between 13% and 16%) with the same 
coherent errors as in c. The dashed line indicates the 1/6 acceptance rate of the 
5-to-1 magic state factory in the noiseless case.
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sufficient protection of distillation operations to achieve distillation 
gain for both d = 3 and d = 5.

Discussion and outlook
These experiments demonstrate the key ingredients of MSD for uni-
versal fault-tolerant quantum computation. Leveraging the dynamic 

reconfigurability and transversal gate operations of the neutral-atom 
platform to realize a logical MSD factory, our approach allows us to 
probe key aspects of the distillation process. This factory can be com-
bined with mid-circuit measurement and feedforward8,39–43, to execute 
universal quantum algorithms by magic state teleportation. Although 
the present experiments demonstrate the performance of MSD past 
the distillation threshold, further improvements in both the fidelity 
and the rate of the MSD factory are required to enable the execution 
of deep logical circuits. Although at present, the use of higher distance 
codes results in lower acceptance fraction to achieve large fidelity gain, 
by improving gate fidelities to values well below the 2D colour code 
threshold, the accepted fraction can remain comparable as the code 
distance increases, and multiple distillation rounds can be executed 
for further error suppression. More specifically, we estimate (Methods) 
that a twofold reduction in physical error rates can result in distillation 
gain without stabilizer post-selection.

To enable efficient large-scale universal quantum computation, 
these fidelity improvements should also come hand-in-hand with fur-
ther co-design of magic state preparation. Although MSD represents 
a foundational approach for implementing non-Clifford operations 
and has the advantage of being flexibly adaptable to many data codes, 
alternative methods with various trade-offs should also be explored. 
These include the use of QEC codes with transversal non-Clifford 
gates30,44,45, as well as advanced flag protocols25,27,28,46–48 and the recently 
proposed magic state cultivation29 schemes. Moreover, alternative MSD 
factories with improved input-to-output ratios or better error suppres-
sion13,20–22,49 can be co-designed and explored experimentally in the cur-
rent framework. Paving the way towards reliable operation in large-scale 
quantum computers, our work, therefore, provides opportunities for 
exploration of hardware efficient generation of quantum magic.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09367-3.

1.	 Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th IEEE Symposium on the 
Foundations of Computer Science 56–65 (IEEE, 1996).

2.	 Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. 
SIAM J. Comput. 38, 1207–1282 (2008).

3.	 Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum 
computation. Preprint at https://doi.org/10.48550/arXiv.0904.2557 (2010).

4.	 Campbell, E. T., Terhal, B. M., & Vuillot, C. Roads towards fault-tolerant universal quantum 
computation. Nature 549, 172–179 (2017).

5.	 Google Quantum AI and Collaborators. Quantum error correction below the surface 
code threshold. Nature 638, 920–926 (2025).

6.	 Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. 
Nature 614, 676–681 (2023).

7.	 Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit 
code and the color code. Preprint at https://doi.org/10.48550/arXiv.2208.01863 (2022).

8.	 Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. 
Nature 626, 58–65 (2024).

9.	 Putterman, H. et al. Hardware-efficient quantum error correction using concatenated 
bosonic qubits. Nature 638, 927–934 (2025)

10.	 Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616,  
50–55 (2023).

11.	 Paetznick, A. et al. Demonstration of logical qubits and repeated error correction with 
better-than-physical error rates. Preprint at https://doi.org/10.48550/arXiv.2404.02280 
(2024).

12.	 Eastin, B. & Knill, E. Restrictions on transversal encoded quantum Gate Sets. Phys. Rev. 
Lett. 102, 110502 (2009).

13.	 Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy 
ancillas. Phys. Rev. A 71, 022316 (2005).

14.	 Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII 
International Colloquium on Group Theoretical Methods in Physics (eds Corney, S. P. et al.) 
32–43 (International Press, 1999)

15.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 
(Cambridge Univ. Press, 2010).

16.	 Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom 
arrays. Nature 604, 451–456 (2022).

1 3 5
0.92

0.94

0.96

0.98

1.00

Injected

Distilled

1 3 5

Code distance

10–2

10–1

M
ag

ic
st

at
e

fid
el

ity
To

ta
l

ac
ce

p
te

d
fr

ac
tio

n
ba

c

0 2

1 3 10 12 15

6

7

8

9

134 5

11 14

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.006 0.010 0.014 0.018

Total accepted fraction

Total accepted fraction

0.90

0.92

0.94

0.96

0.98

1.00

M
ag

ic
st

at
e

fid
el

ity M
ag

ic
st

at
e

fid
el

ity

Distilled
Injected

0.02 0.04 0.06 0.08

0.8

0.9

1.0

d

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

√Y
†

|L〉

|L〉

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
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encoding circuit. b, The d = 5 colour code stabilizers. c, Output magic state fidelity 
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Methods

System overview
All experiments described in this work were performed on the Gemini- 
class neutral-atom quantum computer of QuEra. More detailed infor-
mation and characterization will be described in QuEra Computing and 
Collaborators (manuscript in preparation, 2025a). The system is based 
on neutral 87Rb atoms trapped in reconfigurable optical tweezers50–53, 
following the dynamically reconfigurable architecture described in 
refs. 8,16. We use laser cooling to trap atoms in a magneto-optical trap, 
and subsequently load them into a fixed set of optical tweezers gener-
ated by a spatial light modulator (SLM). Atoms are then coherently 
rearranged by dynamic tweezers at 852 nm generated by a crossed 
pair of acoustic-optic deflectors (AODs).

Qubits are encoded in the mF = 0 hyperfine ground states, 
|0⟩ ≡ |F = 1, mf = 0⟩ and |1⟩ ≡ |F = 3, mf  = 0⟩, with a T2 coherence time of 
approximately 2 s (QuEra Computing and Collaborators, manuscript 
in preparation, 2025a). Single-qubit gates are performed by Raman 
transitions54, with a laser red-detuned from 5P1/2 by 350 GHz. We drive 
global single-qubit rotations at 650 kHz by illuminating the entire 
array along the quantization axis and locally at 250 kHz by address-
ing atoms using another pair of AODs8. Two-qubit gates are mediated 
by Rydberg interactions, which we achieve by driving atoms in |1⟩ to 
53S1/2 in a two-photon process by 6P3/2 with intermediate state detun-
ing of 6 GHz (refs. 55–59). We perform readout globally, by heating 
and ejecting atoms in |1⟩ with resonant light, followed by fluorescence 
imaging of the remaining atoms.

Circuit details and calibration
We deterministically load and prepare the atoms into a rectangular 
grid of 17 × 5 SLM traps. The same regular grid of SLM sites is used to 
run both the d = 3 and d = 5 distillation experiments (Extended Data 
Figs. 1 and 2). During circuit execution, atoms are rearranged entirely 
within the 5-row-wide entanglement zone and illuminated with 1,013 nm 
and 420 nm light that couples qubit state |1⟩ to the Rydberg state. To 
execute CZ gates, we coherently move atoms such that gate pairs are 
2 μm away, within the Rydberg blockade radius, while keeping 8 μm 
separation between the independent gate pairs. We perform paral-
lel horizontal moves during data code encoding to prepare a logical 
qubit in each row. Once encoded, we move the rows of logical qubits 
using parallel vertical moves. To preserve qubit coherence, all moves 
are accompanied by dynamical decoupling implemented with global 
single-qubit pulses. Local single-qubit gates around the XY plane are 
executed in between the CZ layers, and we echo the induced local light 
shifts using a global single-qubit gate pulse.

We now detail the changes in the logical operator and stabilizer con-
ventions due to the circuit optimizations that we apply. In both d = 3 and 
d = 5 encoding, we physically implement the first layer of √Y gates with 
a global pulse. We also substitute local √Y′ with √Y to improve parallel-
ism. This changes the basis of the physical input, so to inject a logical 
(1, 1, 1), we physically prepare the (−1, −1, −1) state. We further optimize 
by pre-applying the first set of √X gates required for distillation on the 
physical qubits before encoding: qubits 1, 2 and 5 are prepared into 
(−1, 1, −1), which after encoding becomes (1, −1, 1). Finally, single-qubit 
echoes during the encoding and distillation circuit redefine the colour 
code stabilizer basis. We classically track this through encoding and 
distillation to recover the original stabilizer basis. Echoes during dis-
tillation also flip the distillation syndrome outcomes. This means that 
our actual acceptance case is 0011, different from the acceptance case 
of 1011 from the circuit in Fig. 3a.

We use quantum state tomography to evaluate the fidelity of logi-
cal magic states. Measurement of the injected state fidelity is done by 
applying a global tomography pulse to all qubits and subsequently 
measuring all three bases (see Extended Data Fig. 3 for examples). To 
measure the fidelity after distillation, we apply transversal single-qubit 

gates to the output logical qubit to sample the three bases. In this way, 
the other four logical qubits are always measured in the Z basis. Loss 
during the circuit can lead to a biased error in the magic state fidelity. To 
mitigate this, we interleave measurements in all basis states: ±X, ±Y, ±Z 
and average the results. We track the injected fidelity by interleaving 
one shot of magic state injection with no distillation for every seven 
shots of full factory execution. This protects against bias due to poten-
tial systematic drift during data taking. Throughout the run, we monitor 
the perfect stabilizer rate of the injection circuit as a proxy for gate 
calibrations (Extended Data Fig. 3b,d).

A single factory instance using d = 3 and d = 5 data codes requires 
35 and 85 atoms, respectively. To improve data rates, we run two inde-
pendent parallel instances of the d = 3 factory, requiring a total of 70 
atoms. We ran 658,562 shots of the d = 3 experiment, split into a total of 
2 × 576,131 = 1,152,262 factory runs and 10 × 82,431 = 824,310 encoding 
tomography runs. The added error datasets consist of 143,000 shots for 
each added error, corresponding to 251,000 factory runs and 175,000 
encoding tomography runs. For d = 5, we ran a total of 259,261 factory 
shots and 5 × 37,108 = 185,540 encoding tomography shots. Shots are 
evenly split into X, Y, Z bases for all experiments.

Error model
We use randomized benchmarking60 to calibrate and benchmark single- 
and two-qubit gates. We measure a global amplitude robust single-qubit 
gate fidelity of 99.978(1)% and a local amplitude robust single-qubit gate 
fidelity of 99.978(1)%. We benchmark controlled-phase (CZ) two-qubit 
gates by driving pairs of blockaded atoms with alternating single-qubit 
and two-qubit gates56. We measure the return probability to |00⟩ as a 
function of the number of entangling gates, resulting in a fidelity of 
99.42(1)% per entangling gate. We estimate the state preparation and 
measurement errors to be a total of 1%.

To simulate the impact of various error sources on the circuits, we 
model the error sources as depolarizing Pauli channels. Errors due to 
global and local single-qubit gates are incorporated as single-qubit 
channels. Two-qubit gate error is modelled by a two-qubit depolarizing 
Pauli channel, biased towards Z and ZZ phase flip channels. Movement 
of atoms by AOD also induces errors, but in two distinct ways. On the 
moving atoms, tweezer light induces a qubit frequency shift, resulting 
in Z errors. During the move duration we also account for the idling 
errors on all qubits. For each error type, we assume uniform error across 
the atom array and the magnitude of errors is derived from independ-
ent benchmarking of each operation. Overall, our error model shows 
good agreement with the experimentally observed stabilizer and logical 
outcomes (Extended Data Fig. 4b).

Probing distillation code error suppression
The 5-to-1 MSD achieves a quadratic suppression in infidelity of the 
input magic states. We probe this phenomenon in experiment and 
(noiseless) simulation by applying coherent Z errors to input magic 
states and recording output magic state fidelity (Fig. 3c) as well as fac-
tory acceptance rate (Fig. 3d).

In experiments, we apply coherent Z errors of 0.32π, 0.24π, 0.16π 
and 0 to the five physical magic states, which are then injected into 
d = 3 colour codes and distilled. The output fidelity is plotted against 
the injected post-selected fidelity in Fig. 3c. The distillation output 
fidelity performs only error correction on the output logical qubit, but 
post-selects on perfect stabilizers on the distillation syndrome logical 
qubits. By contrast, the injected post-selected fidelity post-selects on 
perfect stabilizers on the target logical qubit itself. We choose this 
comparison to highlight more clearly the distillation behaviour of the 
logical information. We see that all four data points show distillation 
gain—namely, the error-corrected output fidelity is higher than the 
post-selected injected fidelity. In Extended Data Fig. 4c, we further 
show the results for different distillation stabilizer post-selection 
thresholds.



We also numerically simulate the performance of the ideal distillation 
circuit subject to coherent input errors. The output fidelity is plotted 
against input physical magic state fidelity, calculated based on the 
applied error (Fig. 3c, grey curve). We observe the expected quadratic 
suppression in input infidelity, which is in good agreement with our 
experimental data (blue points). Note that when the input fidelity is at 
0.80, which is lower than the frequently quoted 5-to-1 MSD distillation 
threshold of 83% (ref. 13), we still observe an improved output fidelity. 
This is because the usual distillation threshold is computed for inco-
herent errors, whereas the threshold for our applied coherent errors 
is lower. We also observe good agreement with experimental data for 
the factory acceptance rate (Fig. 3d). Overall, our experimental data 
closely align with the theoretical predictions of 5-to-1 MSD.

Comparison with alternative methods for magic state 
preparation
In this section, we compare different methods for magic state prepara-
tion, including alternative injection or projection-based schemes, and 
other MSD factories.

There are a few natural approaches to preparing logical magic states. 
We can use an (often non-fault-tolerant) encoding circuit, measure the 
data code stabilizers to project into the target logical state, or measure 
certain operators for which the target logical magic state is an eigen-
state. Some of these operations can further serve to detect errors to 
boost the fidelity of the resulting magic state. These protocols can be 
further expanded with flag qubits or extended with error-correction 
cycles for improved fidelity.

Previous experiments on trapped ions25 and superconducting 
qubits26,27 have demonstrated different combinations of these tech-
niques. This includes magic state preparation based on unitary 
encoding25 and stabilizer measurement projection26,33, as well as the 
further use of flagged verification schemes, error detection, and/
or correction to achieve fault tolerance against any single physical  
error25,27.

The above techniques of magic state injection and verification 
can produce magic states with fairly high fidelity, which could serve 
as the input into MSD factories in the future47. However, these tech-
niques have some noteworthy limitations because of their direct use 
of physical operations, in contrast to protected logical operations 
of the data code as in MSD. First, direct injection of physical magic 
states without further verification will have a performance limited by 
the physical magic state fidelity, which is insufficient for large-scale 
quantum computing. Second, operating the verification protocols 
at higher distances or higher physical error rates generally increases 
the complexity of ancilla preparation and/or post-selection overhead 
significantly28,29,46.

For these reasons, protocols that make use of an inner data code to 
protect operations, such as MSD, are a crucial primitive as we scale to 
lower logical error rates. Existing implementations of MSD achieve 
this with physical qubits23,24, which do not provide protection of Clif-
ford operations within the MSD factory. Thus, our demonstration of 
logical MSD with an inner data code is a crucial step towards further 
improvements of magic state preparation.

Our experiment focuses on the implementation of 5-to-1 MSD13, 
as it exemplifies the principles of MSD with relatively low resource 
requirements. It has the downside that with perfect distillation code 
operations, the factory only has a 1/6 acceptance rate, and it only 
achieves quadratic suppression despite the code being distance 3. 
For future, large-scale operation, it may instead be desirable to use 
MSD factories with higher distillation rate, better error suppression 
scaling, and which have an acceptance rate of unity in the absence of 
input errors13,20–22,49. However, some of the key ingredients we demon-
strated, such as the use of parallel operations by transversal gates and 
sliding-scale post-selection based on stabilizer readouts, are probably 
broadly useful for future experiments.

Design and optimization of state injection circuits
To achieve high fidelities, we optimize the implementation of several 
key quantum circuits. In this section, we focus on arbitrary state injec-
tion circuits for the d = 3 and d = 5 colour codes, whereas in the next 
section we discuss optimizations of logical MSD circuits. We primarily 
focus on reducing the number of entangling gate layers, because the 
gate infidelity and associated move errors are an important contribu-
tor to our error budget. To the best of our knowledge, previous unitary 
injection circuits for the d = 3 colour code require four entangling gate 
layers25,61,62. Although extensive search over all possible 7-qubit, 3-layer 
injection circuits is sufficient for d = 3, we develop more efficient meth-
ods for d = 5 to find low-depth circuits with good atom layouts.

We present an algorithm based on matrix row reduction63,64 to find 
an injection circuit for 2D colour codes. Simple extensions to this 
algorithm may work well for any CSS code in general. Executing the 
algorithm gives some injection circuit, which is unlikely to be optimal.

The algorithm operates on a matrix representation of the checks and 
the logical operators of the code. Each row corresponds to a data qubit 
of the code and each column is either a check or a logical operator. The 
matrix entry Mqc is 1 if the check or logical c contains qubit q, and is 0 
otherwise. Performing row operations (adding one row to another) 
on this matrix corresponds to the application of CNOTs, whereas 
performing column operations (adding one column to another) cor-
responds to redefining stabilizers and logical operators. We find the 
circuits shown in Figs. 2a and 4a using the following simple heuristics 
and search methods:
1.	 Choose row operations in layers, in which we pick the best n/2 disjoint 

pairs of rows for row operations before reusing rows in the next layer. 
This maximizes circuit parallelism because each row operation will 
become a CNOT.

2.	Every row operation ideally reduces (or sometimes maintains) the 
total number of 1 entries.

3.	A row operation is preferred if it leaves the updated row more similar 
(by Hamming distance) to another row. This enables a future row 
operation to be more effective.

4.	Prioritize row operations to remove 1 entries from high-weight col-
umns (high relative numbers of 1 entries). If certain columns are 
very high-weight near row-reduction completion, backtrack and 
prioritize them sooner.

5.	 While backtracking to try new choices, prioritize minimizing the 
number of operation layers over the number of operations.

6.	Column operations do not need to be optimal because they do not 
affect the circuit; they only redefine the stabilizer basis.

For example, the d = 3 colour code shown in Fig. 2b has checks 
S0 = Z0Z1Z2Z3, S1 = Z1Z2Z4Z5, S2 = Z2Z3Z4Z6, S3 = X0X1X2X3, S4 = X1X2X4X5 and 
S5 = X2X3X4X6 and logical operators LZ0 = Z0Z1Z5 and LX0 = X0X1X5. Owing 
to the self-dual structure where X and Z checks match, this can be rep-
resented with the matrix
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where zero is shown as ‘−’ for visual clarity.
Our goal is to find a sequence of row and column operations by matrix 

row reduction under addition modulo 2. For example, the row opera-
tion 0 → 2 results in
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Note that columns corresponding to the logical operator(s) must 
not be source columns (for example, Li → any column is not allowed), 
but may be target columns.

We find the best row operations Rops = [0 → 1, 3 → 2, 5 → 4, 0 → 3, 2 → 5, 
4 → 6, 2 → 1, 4 → 3, 6 → 5] and column operations Cops = [S0 → LZ0, S2 → LZ0] 
result in our final matrix Mfinal
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This solution explicitly defines our encoding circuit:
1.	 On the qubit, where M = 1q L,

final
i Zj

, prepare the injected state |ψ⟩.

2.	For other qi where M = 1q S,
final

i j
 for some Sj, prepare qi in the |+⟩ state.

3.	Prepare all other qubits in the |0⟩ state.
4.	For each entry s → t of Rops, in reverse order, add a CNOT gate with 

control qs and target qt. Cops does not affect the circuit.
5.	 Use circuit identities to convert to hardware-supported gates: 

(a) Preparing a qubit in the |+⟩ state becomes preparing in the |0⟩ 
state followed by √Y.
(b) CNOTij becomes Y j

†
, CZij and √Yj.

(c) Adjacent √Yj and Y j
†
 cancel.

The resulting circuit non-fault-tolerantly prepares the logical code 
state ψ ⟩. For the d = 3 colour code, the solution above gives the 9-gate, 
3-layer encoding circuit. For the [[17, 1, 5]] colour code, the best solution 
we find has five layers and 24 CNOT/CZ gates (Fig. 4a) with Rops = [1 → 
0, 3 → 2, 4 → 5, 7 → 6, 9 → 8, 15 → 12, 2 → 0, 6 → 3, 8 → 5, 12 → 10, 13 → 11, 2 → 
4, 8 → 6, 9 → 7, 10 → 13, 16 → 14, 4 → 7, 8 → 10, 14 → 11, 15 → 16, 3 → 1, 7 → 10, 
14 → 12, 16 → 13].

Design and optimization of distillation circuit
The 5-to-1 distillation protocol consists of running the un-encoding cir-
cuit of the [[5, 1, 3]] perfect code, followed by measurements of the four 
logical qubits that correspond to stabilizers of the distillation code. To 
implement this protocol, we start with an un-encoding circuit with low 
entangling gate count (Gidney, C., tweet), previously optimized from 
ref. 34, and further optimize it for our hardware. Our optimizations aim 
to reduce the number of local single-qubit gates as well as the number 
of entangling gate layers, because these have larger contributions to 
the infidelity. We use a variety of techniques to achieve this:
1.	 Reordering of qubits and commuting gates. The final circuit includes 

three rounds of CZ gates separated by local single-qubit gates.
2.	Use of circuit identities, such as H X SX=1 + i

2
1/2 1/2.

3.	Absorbing certain operations into the initial state or measurement, 
without changing the ideal initial state, the post-selection basis, or 
affecting the quadratic error suppression of the distillation circuit.

Our optimized circuit is shown in Fig. 3a. Note that in standard 5-to-1 
MSD, the successful distillation syndrome is 0000, as shown in Fig. 1. 
Our optimizations flipped it to 1011. As we used identities related to the 
initial state inputs and final post-selection, this circuit is an un-encoding 
circuit of a 5-qubit code, which is equivalent to the perfect code up 
to Clifford operations. For MSD, it achieves quadratic suppression in 
infidelity.

Design and optimization of atom layout
The optimized circuits described in the previous two sections need 
efficient implementations of atom movement. Here, we describe our 
design process for finding circuit-specialized atom move sequences.

We design logical circuits with transversal operations to have a 2D 
product structure, in which transversal operations are horizontally 
parallel and logical state injection is vertically parallel (Fig. 1). Thus, 
we lay out each logical qubit linearly in the same row. All atoms have a 
home position in a static SLM trap, and for each layer of gates, we pick 
fewer than half the atoms, move them horizontally or vertically near 
their gate partners, and move them back. To minimize atom transfer, 
we optimize for an atom ordering and circuit layers in which none of 
the moves reorder atoms and the move distances are minimized. An 
atom order is valid for given circuit layers if

∣
i j k l

i k

max( , ) < max( , )

∀ CZ , CZ ∈ Layer <

∀ Layer ∈ Circuit
ij kl

where a layer is a set of CZ gates that may be executed in parallel without 
changing the meaning of the circuit.

We use a combination of hand-optimization over choice of circuit 
layers and brute-force search over atom orders. The index numbers 
labelled in the encoding circuit show these optimal qubit orders. 
The order of the five (logical) qubits in Fig. 3a has the first two qubits 
swapped.

Approach to simulation of MSD circuit performance
Our full circuit, which injects five physical magic states into five logi-
cal magic states in the colour code, and then performs logical MSD, 
is supported on 35 qubits in the d = 3 case and 85 qubits in the d = 5 
case. The injection and distillation circuits are entirely Clifford, with 
the non-Cliffordness coming only from the input states. This poses 
a challenge towards using standard simulation methods. As the 
input states are magic states, standard Clifford circuit simulation 
tools such as Stim65 cannot be applied directly. The circuit size of 
85 means state-vector simulation is intractable, and approximation 
methods such as matrix product states simulations become techni-
cally and computationally consuming. Although methods such as 
extended Clifford simulation could be used66, existing open-source 
implementations only support up to 64 physical qubits67. For these 
reasons, we developed a simulation technique, which we refer to as 
Input-Decoupled Noise Learning (QuEra Computing and Collabora-
tors, manuscript in preparation, 2025b), in which learning of the noise 
channel is separated from simulating the actual state of the logical  
circuit.

The key idea of our approach is that the analysis of noise can largely 
be separated from the analysis of the ideal logical action itself. The 
ideal logical circuit can be viewed as a channel that maps some input 
quantum state to classical bit strings, C C F: ( ) →2 ⊗5

2
5, where the bit  

strings correspond to logical measurement outcomes. As this is an 
ideal logical circuit involving only five qubits, it can be readily simu-
lated. Under a Pauli noise model σ and a Clifford circuit C, the combined 
effect of noise and error correction is to apply additional logical  
Pauli operations, which further map the logical outcomes : →σ 2

5
2
5F FE . 

As this combined effect involves only Pauli operators and Clifford cir-
cuits, we can efficiently simulate it by error sampling and decoding. 



More generally, the same approach can be applied whenever error 
sampling and decoding can be done efficiently. The full simulation 
result can then be obtained by composing the two channels ∘σE C.

Learning the channel Eσ is implemented as follows. We use Stim65 to 
simulate the noisy logical circuit, but we replace the input physical 
magic states by a special 5-qubit entangled state chosen to make the 
logical measurement results deterministic. This special 5-qubit state 
is generated by running the noise-free inverse of the logical circuit. 
When measuring the output logical in the X, Y, or Z basis, the state-prep 
for the special state begins by preparing |+L⟩, |+iL⟩ or |0L⟩ of the 5-qubit 
distillation code, respectively. This ensures that the measurement 
results on all five logical qubits are +1 in the absence of errors and that 
the simulation is fully Clifford and therefore efficient. We perform 
decoding based on the simulated syndromes ∼s  (see the following sec-
tions for details of our decoder), resulting in the final logical measure-
ment result Fl ∈ 2

5, characterizing logical flips caused by circuit noise. 
The decoding is done either using the syndrome information of the 
four logical qubits of factory post-selection or using the syndrome 
information of all five logical qubits during tomography, resulting in 
the appropriate channel in each case. With a large amount of samples, 
which can be efficiently generated, we can learn the classical logical 
error channel σE  to high accuracy.

For our logical circuit involving five logical qubits, we can easily 
obtain the ideal logical circuit channel C. Using Qiskit67, we implement 
the ideal distillation circuit with magic state inputs. Note that this 
simulation also supports noise applied to the magic state input. We 
directly calculate the 5-bit logical output for this circuit, producing 
the channel C. The final output magic state fidelity can then be com-
puted by composing the channels E C∘σ .

With this approach, for a Clifford physical circuit with non-Pauli 
inputs, our method decouples the Pauli noise in the physical circuit 
from the input states and learns the noise-induced logical errors effi-
ciently. Beyond this example, we expect our techniques to have further 
applications as we scale to larger quantum codes and more complex 
logical circuits.

Estimation of confidence intervals
When performing quantum state tomography to estimate the logi-
cal fidelity, it is possible that the reconstructed density matrix is not 
positive semi-definite, causing the calculated fidelity confidence 
interval to exceed 1 (ref. 68). To address this and obtain meaningful 
confidence intervals, we use Bayesian analysis to calculate posterior  
probabilities69.

Consider quantum state tomography, with n = (nx, ny, nz) measure-
ments in the X, Y, Z basis, respectively. Denote the number of |0⟩ out-
comes decoded as m = (mx, my, mz). We would like to extract the 
probability distribution of true fidelity values F  that could produce 
these measurement results. To this end, we apply Bayes’s rule:

F
F F

m n
m n

m n
P F

P F P F

P
( = , ) =

( , = ) ( = )

( , )
, (1)prior

where m and n denote the observed measurement outcomes and Pprior 
is the prior distribution. For Figs. 3b and 4c, we use the Bures prior, as 
recommended in ref. 70. For the remaining data, we assume a simpler 
prior distribution of density matrices that has a uniform random distri-
bution within the Bloch sphere, because the large number of samples 
causes the difference between different priors to have a negligible 
effect (<0.1%) on them. See Extended Data Fig. 5 for a comparison of 
estimation methods.

We (numerically) compute this distribution over the Bloch sphere 
using

Fm n m n v v v
v v

∫P F P f( , = ) = ( , ) ( )d
F F( )=SH⟩∣ ∣

F
∣

v v
v v

∫P F f( = ) = ( )d
F F

prior
( )=SH⟩

where v = (x, y, z) is the Bloch sphere vector representation of the den-
sity matrix,

F
x y z

( ) =
1
2

+
+ +
2 3

(2)SH⟩ v

is the fidelity of the mixed state v relative to our desired |SH⟩ magic 
state = (1, 1, 1)SH⟩

1

3
v  and f(v) denotes the probability density func

tion of the prior. We label our magic state as |SH⟩, as it is the eigenstate 
of the single-qubit logical gate SH (a product of the S and H gates). 
Intuitively, we integrate over all mixed states with the same fidelity.

Decoding and post-selection methods
At the end of our MSD protocol, we transversally measure all physical 
qubits of the four distillation syndrome logical qubits in the Z basis, 
and all physical qubits of the output magic state in one of the X, Y or Z 
basis for logical tomography. We use two decoding methods for our 
data: an MLD constructed by direct sampling of a lookup table, and an 
MLE decoder based on mixed-integer programming71.

Given either decoder, we first perform decoding using only the 
syndromes of the four ancillary logical qubits to infer their logical 
outcomes. The syndromes of the output logical qubit are not used at 
this stage, because the factory post-selection should be done without 
measuring the output logical qubit, so that the output can continue 
to be used in subsequent logical operations. We perform factory 
post-selection on the distillation logical outcome being 0011, which 
is the desired outcome for our distillation circuit. We then optionally 
perform further stabilizer post-selection, which can further boost the 
fidelity of the output magic state by flagging bad executions of the distil-
lation circuit. After post-selection, we decode with the full syndrome of 
all five logical qubits to infer the logical outcome of the output magic 
state (with no further post-selection), which we use to compute the 
output fidelity. We note that agreement between the results of the two 
rounds of decoding (four compared with five logical qubits) could be 
further used to herald logical errors in the execution of the full circuit.

The MLD decoder is only tractable for d = 3, in which the number of 
syndrome combinations is limited. To construct the MLD decoder, we 
sample 109 measurement samples for our full 35-qubit circuit, under 
the noise model described above. Our lookup table T will have 215 keys 
corresponding to all possible syndromes, each key storing 25 entries 
corresponding to the number of occurrences of each logical observ-
able pattern among our samples with the given syndrome. Sampling 
can be done efficiently in Stim, by replacing the input magic states 
with stabilizer states (see our noise learning method described above). 
With each sample, we store the 15-bit syndrome information and the 
5-bit logical error string into T. After all samples are collected, each 
syndrome s will have a most-likely logical error ℓs, which will be our 
decoder output for s. To perform post-selection, we can sort the sta-
bilizer patterns based on the logical fidelity of the output they lead to 
and perform sliding-scale post-selection based on this.

The MLD decoding method described in the previous paragraph 
works only for small code distances, because the space complexity 
for the table is exponential. Therefore, it is not realistic to use it for 
decoding at d = 5. We, therefore, use an MLE decoder, adapted from 
refs. 31,72, to decode the logical measurement results and evaluate 
their confidence for post-selection.

We construct an MLE decoder based on mixed-integer programming 
(MIP) formalized as follows. We denote all stabilizers as Σ = {σ1, …, σk}, 
and all logical observable as O = {O1, …, Ol}. We enumerate all possible 
elementary Pauli errors E ϵ ϵ= { , …, }m1  in the injection and distillation 
circuits, and each error ϵj can flip a subset of stabilizers Σj ⊂ Σ as well as 
a subset of logical observables Ωj ⊂ O with probability pj. If we define
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then given an error configuration ∈ m
2e F , the resulting stabilizer and 

observable configuration will be ∂e and Le, respectively. The input of 

the MLE decoder is a stabilizer configuration s





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




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s
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k
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2F⋮ , and it will 

return the MLE configuration that results in the same stabilizer con-
figuration. More precisely, the MLE is defined

e e e sP= argmax ( ), such that ∂ = , (4)MLE

where ej, sj are binary variables. Equivalently, the MLE can be deter
mined by the following MIP problem by regarding all variables as  
integers and introducing new slack variables λj:

∑ ∑
p

p
e e s λ= argmax log

1 −
, s.t. ∂ = + 2 , (5)

j

j

j
j i j j j j,e

where ej, sj, λj are integers.
To post-select a shot based on the stabilizer configuration, we analyse 

the logical gap35,36,73,74, which characterizes the confidence in the chosen 
correction. We seek to characterize the confidence by analysing the 
likelihood of this error compared with those resulting in other logi-
cal corrections. We define the second most-likely error (SMLE) to be

e e e σ e eP L L= argmax ( ), such that ∂ = and ≠ , (6)SMLE MLE

then the logical gap of a given stabilizer configuration is defined as

e
e

g
P

P
= log

( )
( )

. (7)MLE

SMLE

The logical gap provides a confidence measure for decoding—the 
gap approximates the likelihood difference between the most-likely 
logical outcome and the second most-likely logical outcome.

In the case of 5-to-1 distillation, there are four logical qubits that are 
measured, and we will use the stabilizer information from those four 
to post-select the shots. We enumerate all 24 logical representatives 
over these four measured qubits and add the corresponding logical 
observable as a new constraint into the MIP solver to obtain the MLE 
and the SMLE. To determine whether we accept a shot, we compute 
the logical gap based on the detector information on the measured 
four logical qubits, and see if it is greater than a logical gap threshold 
we set ahead of time.

We observe that for d = 3, the logical error performance for the MLD 
and MLE is comparable (Fig. 3b). This suggests that the additional 
entropic contribution from considering all error cosets is smaller than 
that coming from analysing the MLE itself.

Physical error rate to achieve distillation gain without stabilizer 
post-selection
We now perform numerical simulations of our d = 3 distillation process 
at a variety of different physical error rates and evaluate the injected and 
distilled magic state fidelities in the absence of stabilizer post-selection. 
This provides an estimation of how much the physical error rate should 
be improved to see distillation gain without extra post-selection penal-
ties, and future work can extend this to a comparison between different 
code distances.

The results are shown in Extended Data Fig. 4a. As we globally rescale 
the physical error rate, both the injected and distilled fidelity improve, 
with the distilled fidelity improving faster due to its quadratic scaling. 
To match the experimentally observed fidelities (crosses), the physical 
error rates are rescaled by 1.25 times compared with the error model 
used for decoding. We find that an approximately twofold improvement 

in physical error rate suffices to achieve distillation gain without sta-
bilizer post-selection.

Data availability
Peer reviewer reports are available. All data supporting the findings 
of this study are available from Zenodo at https://doi.org/10.1038/
s41586-025-09367-3 (ref. 75).
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Extended Data Fig. 1 | Experimental layout of magic state distillation 
factory. a, We arrange 7 to 17 87Rb atoms, each corresponding to a physical 
qubit, into a row. This horizontal register represents a logical qubit, tiled into 5 
rows for a total of five logical qubits (LQ1 to LQ5). b, Encoding. Once the register 
of physical qubits is prepared, we coherently rearrange atoms to perform 
two-qubit entangling gates using the Rydberg blockade mechanism. We break 

up the circuit into “layers” each containing one set of local rotations, transport, 
and CZ gates. c, Coherent movement of logical qubits to perform transversal 
CZ gates. In the case of 5-to-1 distillation, this is achieved in three layers. The 
circuit as drawn here corresponds 1 to 1 to the atom layout, whereas in Fig. 3 
logical qubits LQ1 and LQ2 are swapped for clarity. d, Global measurement of 
qubits after circuit execution.



Extended Data Fig. 2 | Experimental layout of d = 5 encoding. The arbitrary- 
state encoding circuit for the d = 5 color code (left) is comprised of five 
entangling gate layers, illustrated by averaged images of the corresponding 
atom configurations (right), and local gates between the layers. We execute 
encoding with 5x parallelism, one instance per row (LQ1 to LQ5). The horizontal 

AOD trap array is tiled vertically by the second AOD. For each layer, atoms start 
in SLM sites, we apply local rotations, pick up and move atoms to their gate 
location, execute parallel CZ gates, echo (omitted for clarity), and finally move 
back to SLM sites.
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Extended Data Fig. 3 | Encoded magic state fidelity and stabilizers. a, Spatial 
dependence of distance-3 magic state encoding fidelity, for the experimental 
run with no added coherent error. Logical qubits numbered 1-5 and 6-10 are  
the input qubits to two parallel distillation circuits. We observe some spatial 
dependence on both the fidelity and perfect stabilizer rate, which we attribute 

to local single-qubit gate inhomogeneity and two-qubit gate inhomogeneity.  
b, Time dependence of distance-3 color code stabilizers, for the experimental 
run with no added coherent error. Time traces are averaged with window size of 
100. c,d, Same as a and b for distance-5.



Extended Data Fig. 4 | Additional decoding results. a, Simulated injected 
and distilled magic state fidelities as a function of global rescaling of physical 
error rates, when no stabilizer postselection is applied. Relative to our error 
model for decoding, the physical error rates have been further increased by 
1.25 × to match the experimental injected and distilled fidelities. b, Simulation 
and experimental data in table format for d = 3, sorted into bins corresponding 
to 3 × 5 = 15 stabilizers and 5 logical observables, for a total of 220 bins. We see 

good agreement between simulation and experiment. c, Sliding-scale 
postselection of experimental distillation fidelity with added input errors. 
Fidelity of the output magic state (blue line) as a function of the total accepted 
fraction. The accepted fraction range decreases with added errors due to the 
factory acceptance rate decreasing. Horizontal line segments indicate the 
error corrected fidelity of the factory input states (green). Shaded regions 
indicate 68% confidence intervals.
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Extended Data Fig. 5 | Comparison of different fidelity estimation methods 
for d = 5 distillation. For low accepted fractions, the small number of samples 
causes the maximum likelihood estimate (red, allowed to exceed 1 here) and 
Bayesian estimates (blue) to differ noticeably, since the latter will be influenced 

by the prior. In our figures in the main text, we therefore focus on the region in 
which the two methods give consistent estimates. Horizontal line indicates the 
error corrected fidelity of the factory input states (green). Shaded regions 
indicate 68% confidence intervals.
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