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Realizing universal fault-tolerant quantum computationis a key goal in quantum
information science!™. By encoding quantum information into logical qubits using
quantum error correcting codes, physical errors can be detected and corrected,

enabling asubstantial reductionin logical error rates

"I However, the set of logical

operations that can be easily implemented on these encoded qubits is often
constrained"'?, necessitating the use of special resource states known as ‘magic
states™ toimplement universal, classically hard circuits*. A key method to prepare
high-fidelity magic statesis to perform ‘distillation’, creating them from multiple
lower-fidelity inputs'>®. Here we present the experimental realization of magic state
distillation with logical qubits on a neutral-atom quantum computer. Our approach
uses adynamically reconfigurable architecture®' to encode and perform quantum
operations on many logical qubits in parallel. We demonstrate the distillation of
magic states encoded ind =3 and d =5 colour codes, observingimprovementsin the
logical fidelity of the output magic states compared with the input logical magic
states. These experiments demonstrate a key building block of universal fault-
tolerant quantum computation and represent animportant step towards large-scale
logical quantum processors.

Quantum error correction (QEC) enables scalable quantum computa-
tion by exponentially suppressing logical error rates. However, the
set of logical operations that can be efficientlyimplemented on these
encoded qubits is constrained, making it challenging to perform uni-
versal quantum processing'. For example, many QEC codes support
only the realization of so-called Clifford gates” . As Clifford gates can
be efficiently simulated classically™, additional non-Clifford resources
are required to achieve computational universality and quantum
advantage. To overcome this difficulty, special quantum states, aptly
named ‘magic states’, can be used to complete a universal set of logical
operations by gate teleportation®. Owing to their relatively high cost of
preparation, these magic states are often considered the key resource
for scalable processing®*.

High-fidelity magic states can be produced by refining multiple
noisy copies through magic state distillation (MSD)". The noisy states,
encoded in data QEC codes, are concatenated into a distillation code
and purified through protected operations on the data codes (Fig. 1).
If the input fidelity exceeds the so-called distillation threshold, the
fidelity of the output state is improved compared with the input. An
attractive feature of MSD is that the logical-level circuit is independ-
ent of the data QEC code. Consequently, by increasing the data code
distance and implementing the logical circuit withencoded operations,
thelogical fidelity of the output magic states can be improved, in prin-
ciple, to any desired level through multiple rounds of distillation?°%,

Important recent experiments have demonstrated MSD with physi-
cal qubits?®*, but the direct physical encoding prevents suppression
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Fig.1|Logical MSD factory. a, Schematic of the Bloch sphere representation
of magicstate |¢,) (left) pointinginthe (1,1,1) direction with shaded region
indicating noise. Distillation (centre) takes multiple noisy logical inputs and
producesahigher fidelity magic state (right). b, A 5-to-1distillation procedure
(lefttoright). Non-fault-tolerant encoding of physical magic states into five
datacodelogical qubits|¢,) protectslogical operations (iandii). In particular,
we encodeintodistance 3and 5 colour codes (i). Encoded states (ii) are purified
usingadistillation code. By running the un-encoding circuit of the distillation
code (iii) and conditioning on distillation syndromes (iv), we have simultaneously

of logical gate errors. Complementary experiments have also shown
remarkable progress in error-suppressed encoding of magic states
into logical qubits using flag protocols® . However, without the pro-
tection provided by the data code, these approaches generally have
higher complexity and low success probability when targeting very
low logical error rates, although recent work has markedly improved
their performance for low physical error rates®°,

Werealize MSD at the logical level on a neutral-atom quantum com-
puter. Magic states are encoded using two-dimensional (2D) colour
codes', and subsequently a 5-to-1logical MSD is performed®. The fac-
tory outputs asingle magic state and the remaining four qubits, which
we call distillation syndromes, determine successful distillation. Cen-
tral to our approachis the dynamic reconfigurability and high degree
of parallel control of the neutral-atom processor®'®, We realize gate
and layout-efficient encoding circuits for arbitrary logical statesin the
d =3 colour codes, executing 10 logical qubit encoding circuits and
d=5colour codes, executing 5logical qubit encoding circuitsin paral-
lel. MSDis carried out using transversal Clifford gates, efficiently imple-
mented with parallel atom rearrangement across all code distances.

Correlated decoding®*'is applied to the distillation syndromes, and

projected into the code state of the distillation code and un-encoded itinto
the output magic state. On measuring the correct distillation syndromes, the
output qubit has been distilled to a higher fidelity along the (1, 1, 1) direction.
c,Averaged atomimages fromthe d = Sdistillation experiment, showing 85
physical qubits encoded into five logical qubits (LQ1-LQS) with 17 physical
qubits each (left), shown here in spatial light modulator traps. Rows of logical
qubits are coherently reconfigured for transversal CZ gates throughout the
distillation circuit (right), shown here with LQland LQ3 in acoustic-optic
deflector traps.

their stabilizer values are further leveraged as flags?®**to enhance out-
put logical fidelity. The operation of the MSD factory is verified by
distilling states with varying input fidelity and confirming the error
suppression scaling. Conditioned on observing the correct logical
outcome and suitable stabilizer patterns on the four distillation syn-
drome logical qubits, we obtain an enhancement of logical magic state
fidelity from 95.1:31% t0 99.573:4% for d =3 and from 92.5:31% to
99.1'%7% for d = 5. This corresponds to a factor of 122 infidelity sup-
pression for d =3 and a factor of 1077 for d = 5.

Arbitrary logical state encoding
Our experiments use a newly built, Gemini-class quantum processor
built and operated at QuEra (QuEra Computing and Collaborators,
manuscript in preparation, 2025a). Inspired by earlier experiments
fromHarvards, itinvolves control over a2D array of neutral-atom qubits
inareconfigurable architecture.

We start by preparing magic states encoded in the data QEC
code® 2" with fidelity above the distillation threshold (for 5-to-1dis-
tillation, the threshold fidelity for depolarizing errors is 83%; ref. 13).
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Fig.2|Parallellogical encoding of arbitrary states. a, Circuit forinjecting
anarbitrary state [¢(6, ¢)) intothe[[7,1, 3]] colour code. b, Schematicofd=3
colour code stabilizersindicated by the three coloured regions, withalogical
operator highlighted. ¢, Bloch sphere representation of the injected state with
varying angle ¢ on the XY plane (left). Error-corrected logical outcomes for
X, Y,Zmeasurement basis versus the injected phase. Faded markersindicate
outcomeson post-selection on perfect stabilizers. d, Left, Bloch sphere
representation of the (1,1, 1) magic state. Centre, injected d = 3 magic state
fidelity correspondingto raw, error-corrected and post-selected on perfect
stabilizers, averaged across all 10 logical qubits. Right, spatial distribution of
injected magic state fidelities.

We choose the 2D colour code as our data QEC code, as the full Clifford
group can beimplemented transversally with it”. The[[7, 1, 3]] colour
codeisillustrated in Fig. 2b, in which an X and Zstabilizer is associa-
ted with each coloured region, and the logical operators lie along the
edge. Errors flip stabilizer values, so measuring stabilizers allows us
to detect and correct physical errors in the circuit. The parameters
[[n, k, d]] denote aQEC code with n physical data qubits, klogical qubits,
and code distance d, which can correct % errors or detectd -1
errors. We use an arbitrary state encoding circuit that takes a physical
qubitasinput and encodes its state into alogical qubit (also known as
stateinjection). In particular, to encode into the d =3 2D colour code,
we use the circuitin Fig. 2a, optimized for atom movement and number
of entangling gate layers (Methods).

We verify the encoding circuit by injecting a state lying on the XY
plane and varying its angle (Fig. 2c). This results in a rotation of the
encoded logical information, which can be read out as an oscillation
in logical measurements in the X or Y basis. Logical measurements
inthe Pauli (X, Y, Z) basis are performed transversally, by measuring
each physical qubitinthe correspondingbasis. Tointerpret data qubit
measurement results, we calculate the stabilizer and logical outcome
parities from physical measurement results. If errors are detected,
we can perform error correction on the logical result or alternatively
discard the measurement (error detection).

622 | Nature | Vol 645 | 18 September 2025

With the ability to encode arbitrary states, we shift our focus to
encoding magic states for further use in distillation. In this work, we
encode magic states that point in the (1, 1, 1) direction on the Bloch
sphere, for use inthe MSD procedure based onthe[[5, 1, 3]] code®™. We
prepare this state by initializing in |0) followed by a local single-
qubit rotation of angle arccos(1/v3) about the (-1, 1, 0) axis on the
physical qubit to be injected. We perform logical quantum state tomog-
raphy to estimate magic state fidelity (Methods). We find that the

encoded logical magic states have raw logical fidelity 94.1:31% (no

error correction), error-corrected logical fidelity 95.1731% and error-
detected logical fidelity 98.3"31% (post-select on perfect stabilizers)
(Fig.2d). Theerror-detected state fidelity is close to the original phys-
ical magic state fidelity of 98.9731%, indicating that most of the added
errors during the encoding process will also trigger syndromes. To
scalably use the resource states in a larger circuit, we cannot rely on
post-selecting onstabilizers that only become available when perform-
ingtransversal measurements of the logical qubit later on. Therefore,
we focus on comparing the logical fidelity of magic states when only
error correction (and no further post-selection) isapplied on the target
magic state.

5-to-1MSD

The logical encoding circuit described above is not fault-tolerant,
because physical errors on the injected physical qubit will lead to
logical errors, resulting in alogical error rate that scales linearly with
the physical error rate. To further suppress the logical error rate, we
make use of MSD, which uses the properties of a distillation QEC code
and the fault-tolerant gates of the data QEC code toimprove the magic
state quality (Fig.1).

Our magic state factory is based on the [[5, 1, 3]] perfect code**.
Schematically, the factory takes five noisy logical magic states as input
and applies a unitary un-encoding circuit of the distillation [[5, 1, 3]]
code, which we optimize to have only three layers of entangling gates
(Fig.3aand Methods). Measuring four of these logical qubits effectively
measures the stabilizers of the distillation code, whereas the remain-
ing logical qubit contains the output magic state. By post-selecting
ontheappropriate logical outcome of the four logical qubits (factory
post-selection), we achieve quadratic suppression of the logical error
rate. Inthe absence of errors, the factory acceptance rate of the 5-to-1
distillation factory is expected to be 1/6 (ref. 13).

Todecode thelogical measurement results, we use amost-likely error
(MLE) correlated-decoder based on mixed-integer programming®,
with error weights obtained from a separate characterization of our
system (Methods). For d = 3, we also explore a maximum likelihood
decoder (MLD) that simulates most of the logical outcomes for agiven
stabilizer pattern and use it to determine the correction (Methods).
These decoders can also be used to characterize the confidence of
agiven logical outcome assignment, allowing further sliding-scale
post-selectionbased on observedstabilizer patterns®*>¢similar to flag
protocols®?3738 This post-selectionis commonly used in theoretical
analysis when preparing resource states, and in accordance with this,
we use only the stabilizers of the four distillation syndrome logical
qubits to perform decoding for post-selection, because the output
logical qubit is meant to be used for subsequent operations. We refer
tothe use of this physical stabilizerinformation to flagbad executions
of the distillation circuit as stabilizer post-selection.

Experimental results of our logical MSD factory are shownin Fig. 3b.
Starting with the error-corrected input logical magic state with fidelity
95.1731%, without any stabilizer post-selection, the output magic state
fidelity isworse than theinjected state, because of the added physical
errors during the distillation process. However, we find that appro-
ximately 50% stabilizer post-selection is sufficient toimprove the out-
put magic state fidelity, and full post-selection on perfect stabilizers

of distillation syndrome qubits results in a fidelity of 99.5:5:4%.
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1011 (Methods). b, Fidelity of the output magic state for the d = 3 distillation
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scale post-selection ondistillation syndrome stabilizers, and the factory
acceptance (1/6 inthe noiseless case). With sufficient stabilizer flagging, the
output fidelity exceeds that of theinputerror-corrected magic state fidelity

Both decoders show similar performance, with the MLD decoder
performing slightly better by accounting for the entropy of error
configurations.

We further probe the physics of error suppression of the distillation
code by artificially introducing coherent errors across the five input
logical qubits (Fig. 3c,d), which we achieve by applying aZrotation on
the physical qubits before state injection. After encoding, this results
inamagic state rotated around the X-axis, whichwe use asinput to the
factory. After full stabilizer post-selection on the four distillation syn-
drome qubits, we compare the error-corrected output fidelity against
the post-selected input fidelity, to highlight the distillation behaviour
on the logical information. We calculate the distillation gain for all
added rotation angles.

As the added rotation angle error increases, we observe that the
output stateinfidelity is consistent with quadratic suppression of the
added error. We also find that the factory acceptance rate decreases
withadded errors, withaninitial decrease that scales linearly with the
added error. This can be understood from the fact that a single input
logical error will lead to an outcome different from the correct distil-
lation syndrome, reducing the factory acceptance rate without con-
tributing to the distilled fidelity. Two inputlogical errors are needed to
affect the distilled fidelity, giving rise to quadratic error suppression®.

Extending to larger code distance

Larger data codes offer stronger protectionagainst physical errorswhen
operated below threshold and are crucial for scaling to low logical error
rates. Tothis end, we investigate data codes with larger code distances
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(green). The shaded regionsindicate 68% confidence intervals, equivalent to
1o.c, We examine the distilled fidelity with full stabilizer post-selection, after
introducing coherent Zerrors to the input magic states (0.32m, 0.241r, 0.161
and O, left toright, blue points). The resultsare in good agreement with the
theoretical expectation (grey line). The starsinb and cindicate the same data
point.d, Factory acceptance rate of distillation syndromes after perfect
stabilizer post-selection (acceptancerate between13%and 16%) with the same
coherenterrorsasinc. The dashedlineindicates the1/6 acceptance rate of the
5-to-1magicstate factoryin the noiseless case.

by performing MSD on five copies ofa[[17, 1, 5]1d = 5 colour code. After
optimizing for our native gate set, we obtain the logical encoding circuit
with five entangling layers shown in Fig. 4a, with its corresponding
stabilizers showninFig.4b. Encodingall five d = 5 magic statesinvolves
85 physical qubits, which are coherently manipulated in parallel within
the entanglement zone of the processor (Methods). The transversal
single- and two-qubit distillation gates and atom moves are the same
asind=3.We apply the same correlated decoding procedure with
the MLE decoder and post-selection criteria as for the d = 3 case.

The experimentalresults for thed =5 colour code are showninFig. 4c.
We first note that encoding magic states into larger distance codes
results in lower injected fidelity 92.5'51%, as the encoding circuit
involves more physical gate operations. We note that more stabilizer
post-selectionisrequired toachieve acomparably highfidelityasd=3,
because our gate fidelities are not yet past the circuit threshold for the
data code; thiscanbeimproved with further reduction of the physical
error rate. With full stabilizer and factory post-selection, we observe
adistillation gain of 6.6:%7%, from an encoded fidelity of 92.5:33% to
adistilled fidelity 0f99.1*%7% (Fig. 4c).

We compare the MSD performance across code distancesin Fig. 4d,
including physical MSD (d=1) and logical MSD withthed=3and d =5
colour codes. For physical MSD, preparation of physical magic states
is limited only by qubit initialization, measurement and single-qubit
gate fidelity. Without the ability to perform error correction, physical
distillationintroduces additional errors, leading to alower output fidel-
ity. Shifting to logical qubits, we observe that the injected state fidelity
dropsasthedistance increases because of the added errors during the
non-fault-tolerant encoding circuit. However, the data code provides
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sufficient protection of distillation operations to achieve distillation
gainforbothd=3andd=>5.

Discussion and outlook

These experiments demonstrate the key ingredients of MSD for uni-
versal fault-tolerant quantum computation. Leveraging the dynamic

624 | Nature | Vol 645 | 18 September 2025

reconfigurability and transversal gate operations of the neutral-atom
platform to realize a logical MSD factory, our approach allows us to
probekey aspects of the distillation process. This factory can be com-
bined with mid-circuit measurement and feedforward®**, to execute
universal quantum algorithms by magic state teleportation. Although
the present experiments demonstrate the performance of MSD past
the distillation threshold, further improvements in both the fidelity
and the rate of the MSD factory are required to enable the execution
of deeplogical circuits. Although at present, the use of higher distance
codesresultsinlower acceptance fraction to achieve large fidelity gain,
by improving gate fidelities to values well below the 2D colour code
threshold, the accepted fraction can remain comparable as the code
distance increases, and multiple distillation rounds can be executed
for further error suppression. More specifically, we estimate (Methods)
thatatwofold reductionin physical error rates canresultindistillation
gain without stabilizer post-selection.

To enable efficient large-scale universal quantum computation,
thesefidelity improvements should also come hand-in-hand with fur-
ther co-design of magic state preparation. Although MSD represents
afoundational approach for implementing non-Clifford operations
and has the advantage of being flexibly adaptable to many data codes,
alternative methods with various trade-offs should also be explored.
These include the use of QEC codes with transversal non-Clifford
gates®**** aswell asadvanced flag protocols®#?4*8 and the recently
proposed magic state cultivation® schemes. Moreover, alternative MSD
factories withimproved input-to-output ratios or better error suppres-
sion?°224 can be co-designed and explored experimentally in the cur-
rent framework. Paving the way towardsreliable operationinlarge-scale
quantum computers, our work, therefore, provides opportunities for
exploration of hardware efficient generation of quantum magic.
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Methods

System overview

Allexperiments described in this work were performed on the Gemini-
class neutral-atom quantum computer of QuEra. More detailed infor-
mationand characterization willbe described in QuEra Computing and
Collaborators (manuscriptin preparation, 2025a). The system is based
onneutral ¥Rbatoms trapped in reconfigurable optical tweezers** 3,
following the dynamically reconfigurable architecture described in
refs. 8,16. We use laser cooling to trap atoms in amagneto-optical trap,
and subsequently load them into a fixed set of optical tweezers gener-
ated by a spatial light modulator (SLM). Atoms are then coherently
rearranged by dynamic tweezers at 852 nm generated by a crossed
pair of acoustic-optic deflectors (AODs).

Qubits are encoded in the m,= 0 hyperfine ground states,
|0)=|F=1, m;=0)and |1) = |F =3, m; = 0), with a T, coherence time of
approximately 2 s (QuEra Computing and Collaborators, manuscript
in preparation, 2025a). Single-qubit gates are performed by Raman
transitions®, with alaser red-detuned from 5P,,, by 350 GHz. We drive
global single-qubit rotations at 650 kHz by illuminating the entire
array along the quantization axis and locally at 250 kHz by address-
ing atoms using another pair of AODs®. Two-qubit gates are mediated
by Rydberg interactions, which we achieve by driving atoms in [1) to
53S,,inatwo-photon process by 6P, with intermediate state detun-
ing of 6 GHz (refs. 55-59). We perform readout globally, by heating
and ejecting atoms in |1) with resonant light, followed by fluorescence
imaging of the remaining atoms.

Circuit details and calibration

We deterministically load and prepare the atoms into a rectangular
grid of 17 x 5 SLM traps. The same regular grid of SLM sites is used to
run both the d =3 and d = 5 distillation experiments (Extended Data
Figs.1and 2). During circuit execution, atoms are rearranged entirely
within the 5-row-wide entanglement zone and illuminated with1,013 nm
and 420 nm light that couples qubit state |1) to the Rydberg state. To
execute CZ gates, we coherently move atoms such that gate pairs are
2 pm away, within the Rydberg blockade radius, while keeping 8 pm
separation between the independent gate pairs. We perform paral-
lel horizontal moves during data code encoding to prepare alogical
qubit in each row. Once encoded, we move the rows of logical qubits
using parallel vertical moves. To preserve qubit coherence, all moves
are accompanied by dynamical decoupling implemented with global
single-qubit pulses. Local single-qubit gates around the XY plane are
executedinbetween the CZ layers, and we echo theinduced local light
shifts using a global single-qubit gate pulse.

We now detail the changes in the logical operator and stabilizer con-
ventions due tothe circuit optimizations that we apply.Inbothd =3 and
d=5encoding, we physicallyimplement the first layer of v¥Y gates with
aglobal pulse. We also substitute local vY” with VY to improve parallel-
ism. This changes the basis of the physical input, so to inject a logical
(1,1,1), wephysically prepare the (-1, -1, -1) state. We further optimize
by pre-applying the first set of vXgates required for distillation on the
physical qubits before encoding: qubits 1, 2 and 5 are prepared into
(1,1, -1), which after encoding becomes (1, -1, 1). Finally, single-qubit
echoes during the encoding and distillation circuit redefine the colour
code stabilizer basis. We classically track this through encoding and
distillation to recover the original stabilizer basis. Echoes during dis-
tillation also flip the distillation syndrome outcomes. This means that
ouractualacceptance case is 0011, different from the acceptance case
of 1011 from the circuit in Fig. 3a.

We use quantum state tomography to evaluate the fidelity of logi-
cal magic states. Measurement of the injected state fidelity is done by
applying a global tomography pulse to all qubits and subsequently
measuring all three bases (see Extended Data Fig. 3 for examples). To
measure the fidelity after distillation, we apply transversal single-qubit

gatestotheoutputlogical qubit to sample the three bases. In this way,
the other four logical qubits are always measured in the Zbasis. Loss
duringthe circuit canlead toabiased error in the magic state fidelity. To
mitigate this, we interleave measurementsin all basis states: +X,+Y, +7
and average the results. We track the injected fidelity by interleaving
one shot of magic state injection with no distillation for every seven
shots of full factory execution. This protects against bias due to poten-
tial systematic drift during data taking. Throughout the run, we monitor
the perfect stabilizer rate of the injection circuit as a proxy for gate
calibrations (Extended Data Fig. 3b,d).

Asingle factory instance using d =3 and d = 5 data codes requires
35and 85atoms, respectively. Toimprove datarates, we runtwo inde-
pendent parallel instances of the d = 3 factory, requiring a total of 70
atoms. Weran 658,562 shots of the d = 3 experiment, splitinto atotal of
2x576,131=1,152,262 factory runsand 10 x 82,431 = 824,310 encoding
tomography runs. The added error datasets consist 0f 143,000 shots for
eachaddederror, corresponding to 251,000 factory runs and 175,000
encoding tomography runs. For d = 5, we ran a total of 259,261 factory
shotsand 5 x 37,108 = 185,540 encoding tomography shots. Shots are
evenly splitinto X, Y, Zbases for all experiments.

Error model

We use randomized benchmarking® to calibrate and benchmark single-
and two-qubit gates. We measure aglobal amplitude robust single-qubit
gate fidelity 0f99.978(1)% and alocal amplitude robust single-qubit gate
fidelity 0f 99.978(1)%. We benchmark controlled-phase (CZ) two-qubit
gates by driving pairs of blockaded atoms with alternating single-qubit
and two-qubit gates®. We measure the return probability to |00) as a
function of the number of entangling gates, resulting in a fidelity of
99.42(1)% per entangling gate. We estimate the state preparation and
measurement errors to be a total of 1%.

To simulate the impact of various error sources on the circuits, we
model the error sources as depolarizing Pauli channels. Errors due to
global and local single-qubit gates are incorporated as single-qubit
channels. Two-qubit gate error is modelled by atwo-qubit depolarizing
Pauli channel, biased towards Zand ZZ phase flip channels. Movement
of atoms by AOD also induces errors, but in two distinct ways. On the
moving atoms, tweezer lightinduces a qubit frequency shift, resulting
inZ errors. During the move duration we also account for the idling
errorsonall qubits. For each error type, we assume uniform error across
theatomarray and the magnitude of errorsis derived fromindepend-
ent benchmarking of each operation. Overall, our error model shows
good agreement with the experimentally observed stabilizer and logical
outcomes (Extended Data Fig. 4b).

Probing distillation code error suppression

The 5-to-1 MSD achieves a quadratic suppression in infidelity of the
input magic states. We probe this phenomenon in experiment and
(noiseless) simulation by applying coherent Zerrors to input magic
states and recording output magic state fidelity (Fig. 3c) as well as fac-
tory acceptance rate (Fig. 3d).

In experiments, we apply coherent Z errors of 0.321m, 0.241, 0.16Tt
and O to the five physical magic states, which are then injected into
d=3colour codes and distilled. The output fidelity is plotted against
the injected post-selected fidelity in Fig. 3c. The distillation output
fidelity performs only error correction onthe output logical qubit, but
post-selects on perfect stabilizers on the distillation syndrome logical
qubits. By contrast, the injected post-selected fidelity post-selects on
perfect stabilizers on the target logical qubit itself. We choose this
comparison to highlight more clearly the distillation behaviour of the
logical information. We see that all four data points show distillation
gain—namely, the error-corrected output fidelity is higher than the
post-selected injected fidelity. In Extended Data Fig. 4c, we further
show the results for different distillation stabilizer post-selection
thresholds.



We also numerically simulate the performance of the ideal distillation
circuit subject to coherentinput errors. The output fidelity is plotted
against input physical magic state fidelity, calculated based on the
applied error (Fig. 3¢, grey curve). We observe the expected quadratic
suppression in input infidelity, which is in good agreement with our
experimental data (blue points). Note that when the input fidelity is at
0.80, whichis lower than the frequently quoted 5-to-1MSD distillation
threshold of 83% (ref. 13), we still observe animproved output fidelity.
This is because the usual distillation threshold is computed for inco-
herent errors, whereas the threshold for our applied coherent errors
is lower. We also observe good agreement with experimental data for
the factory acceptance rate (Fig. 3d). Overall, our experimental data
closely align with the theoretical predictions of 5-to-1 MSD.

Comparison with alternative methods for magic state
preparation

Inthis section, we compare different methods for magic state prepara-
tion, including alternative injection or projection-based schemes, and
other MSD factories.

There are afew natural approaches to preparing logical magic states.
We can use an (often non-fault-tolerant) encoding circuit, measure the
data code stabilizers to projectinto the target logical state, or measure
certain operators for which the target logical magic state is an eigen-
state. Some of these operations can further serve to detect errors to
boost the fidelity of the resulting magic state. These protocols can be
further expanded with flag qubits or extended with error-correction
cycles forimproved fidelity.

Previous experiments on trapped ions® and superconducting
qubits*** have demonstrated different combinations of these tech-
niques. This includes magic state preparation based on unitary
encoding® and stabilizer measurement projection®*, as well as the
further use of flagged verification schemes, error detection, and/
or correction to achieve fault tolerance against any single physical
error®?,

The above techniques of magic state injection and verification
can produce magic states with fairly high fidelity, which could serve
as the input into MSD factories in the future*. However, these tech-
niques have some noteworthy limitations because of their direct use
of physical operations, in contrast to protected logical operations
of the data code as in MSD. First, direct injection of physical magic
states without further verification will have a performance limited by
the physical magic state fidelity, which is insufficient for large-scale
quantum computing. Second, operating the verification protocols
at higher distances or higher physical error rates generally increases
the complexity of ancilla preparation and/or post-selection overhead
significantly?24,

For these reasons, protocols that make use of aninner data code to
protect operations, such as MSD, are a crucial primitive as we scale to
lower logical error rates. Existing implementations of MSD achieve
this with physical qubits**?*, which do not provide protection of Clif-
ford operations within the MSD factory. Thus, our demonstration of
logical MSD with aninner data code is a crucial step towards further
improvements of magic state preparation.

Our experiment focuses on the implementation of 5-to-1 MSD",
as it exemplifies the principles of MSD with relatively low resource
requirements. It has the downside that with perfect distillation code
operations, the factory only has a1/6 acceptance rate, and it only
achieves quadratic suppression despite the code being distance 3.
For future, large-scale operation, it may instead be desirable to use
MSD factories with higher distillation rate, better error suppression
scaling, and which have an acceptance rate of unity in the absence of
input errors'>?°>*_ However, some of the key ingredients we demon-
strated, such asthe use of parallel operations by transversal gates and
sliding-scale post-selection based on stabilizer readouts, are probably
broadly useful for future experiments.

Design and optimization of state injection circuits
To achieve high fidelities, we optimize the implementation of several
key quantum circuits. Inthis section, we focus on arbitrary state injec-
tion circuits for the d=3 and d = 5 colour codes, whereas in the next
section we discuss optimizations of logical MSD circuits. We primarily
focus onreducing the number of entangling gate layers, because the
gateinfidelity and associated move errors are animportant contribu-
tortoourerrorbudget. Tothe best of our knowledge, previous unitary
injectioncircuits for thed = 3 colour code require four entangling gate
layers?>*%2, Although extensive search over all possible 7-qubit, 3-layer
injection circuitsis sufficient for d = 3, we develop more efficient meth-
ods for d=5to find low-depth circuits with good atom layouts.

We present an algorithm based on matrix row reduction®*®* to find
an injection circuit for 2D colour codes. Simple extensions to this
algorithm may work well for any CSS code in general. Executing the
algorithmgives some injection circuit, whichis unlikely to be optimal.

The algorithm operates onamatrix representation of the checks and
thelogical operators of the code. Each row corresponds to adata qubit
ofthe code and each columniseither acheck or alogical operator. The
matrix entry M, is 1if the check or logical c contains qubit g, and is O
otherwise. Performing row operations (adding one row to another)
on this matrix corresponds to the application of CNOTSs, whereas
performing column operations (adding one column to another) cor-
responds to redefining stabilizers and logical operators. We find the
circuits shownin Figs. 2a and 4a using the following simple heuristics
and search methods:

1. Chooserow operationsinlayers, in whichwe pick the best n/2 disjoint
pairs of rows for row operations before reusing rows in the next layer.
This maximizes circuit parallelism because each row operation will
become a CNOT.

2. Every row operation ideally reduces (or sometimes maintains) the
total number of 1 entries.

3. Arowoperationis preferredifitleaves the updated row more similar
(by Hamming distance) to another row. This enables a future row
operation to be more effective.

4. Prioritize row operations to remove 1 entries from high-weight col-
umns (high relative numbers of 1 entries). If certain columns are
very high-weight near row-reduction completion, backtrack and
prioritize them sooner.

5. While backtracking to try new choices, prioritize minimizing the
number of operation layers over the number of operations.

6. Column operations do not need to be optimal because they do not
affect the circuit; they only redefine the stabilizer basis.

For example, the d =3 colour code shown in Fig. 2b has checks
So=20212>23, $1=212,Z2:Zs5, S, = 2,237, Zs, S3=XoXiXoX5, S = X XoX.Xs and
Ss=X,X;X,Xs and logical operators L, = Z,Z,Zs and L, = X X, Xs. Owing
to the self-dual structure where Xand Z checks match, this can be rep-
resented with the matrix

So §1°S, Ly

qG 1 - -1

g 1 1 -1

g 1 1 1 -
M°=q3 1 - 1 -
qg - 11 -

g - 1 -1

4G - - 1 -

where zerois shown as ‘=’ for visual clarity.

Our goalistofind asequence of row and column operations by matrix
row reduction under addition modulo 2. For example, the row opera-
tion 0 > 2resultsin
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So Si S, Ly
9, 1 - -1
g 1 1 -1
qg - 111
g 1 - 1 -
qg - 1 1 -
g - 1 -1
g - - 1 -

Note that columns corresponding to the logical operator(s) must
not be source columns (for example, L; > any column is not allowed),
but may be target columns.

Wefind the bestrow operationsR,,,=[0>1,3>2,5>4,0->3,2>5,
4>6,2~>1,4~> 3,6~ 5]and columnoperations C,p = [So > Lz, S, > L ]
resultin our final matrix M

So S S Lo

G 1 - - -

q - - - -

G -1 - -
final _
Mlﬂa_q3

9 - -1 -
9 - - - -
g - - -1

This solution explicitly defines our encoding circuit:

1. Onthe qubit, where M‘;f“L"Z‘j =1, prepare the injected state |¢).

2. For other g;where M;jf‘sj' =1forsomeS§;, prepare g;in the |+) state.

3. Prepare all other qubits in the |0) state.

4.For eachentry s> tof R, inreverse order, add a CNOT gate with
control g;and target g,. C,,s does not affect the circuit.

5. Use circuit identities to convert to hardware-supported gates:
(a) Preparing a qubit in the |[+) state becomes preparing in the |0)
state followed by vY. ‘
(b) CNOT;becomes. [Y;, CZ;and VY,

(c) AdjacentvY,and JVJ.T cancel.

The resulting circuit non-fault-tolerantly prepares the logical code
state|y). Forthed =3 colour code, the solution above gives the 9-gate,
3-layer encodingcircuit. For the[[17, 1, 5]] colour code, the best solution
we find has five layers and 24 CNOT/CZ gates (Fig. 4a) with R, =[1~>
0,3>2,4>5,7>6,9>8,15>12,2>0,6~>3,8~>5,12>10,13~>11,2~>
4,8>6,9>710~>13,16>14,4>7,8~>10,14~>11,15>16,3~>1,7~>10,
14>12,16 > 13].

Design and optimization of distillation circuit

The 5-to-1distillation protocol consists of running the un-encoding cir-

cuitofthel[[5, 1, 3]] perfect code, followed by measurements of the four

logical qubits that correspond to stabilizers of the distillation code. To

implement this protocol, we start with an un-encoding circuit with low

entangling gate count (Gidney, C., tweet), previously optimized from

ref. 34, and further optimizeit for our hardware. Our optimizations aim

toreduce the number of local single-qubit gates as well as the number

of entangling gate layers, because these have larger contributions to

the infidelity. We use a variety of techniques to achieve this:

1. Reordering of qubits and commuting gates. Thefinal circuitincludes
three rounds of CZ gates separated by local single-qubit gates.

2. Use of circuit identities, such as 22 H = X/25xY/2,

3. Absorbing certain operationsinto theinitial state or measurement,
without changing the ideal initial state, the post-selection basis, or
affecting the quadratic error suppression of the distillation circuit.

Our optimized circuitis showninFig.3a. Note thatin standard 5-to-1
MSD, the successful distillation syndrome is 0000, as shown in Fig. 1.
Our optimizations flippedit to1011. As we used identities related to the
initial state inputs and final post-selection, this circuitis an un-encoding
circuit of a 5-qubit code, which is equivalent to the perfect code up
to Clifford operations. For MSD, it achieves quadratic suppression in
infidelity.

Design and optimization of atom layout
The optimized circuits described in the previous two sections need
efficientimplementations of atom movement. Here, we describe our
design process for finding circuit-specialized atom move sequences.
We design logical circuits with transversal operations to have a 2D
product structure, in which transversal operations are horizontally
parallel and logical state injection is vertically parallel (Fig. 1). Thus,
we lay out each logical qubit linearly in the same row. All atoms have a
home positioninastaticSLMtrap, and for each layer of gates, we pick
fewer than half the atoms, move them horizontally or vertically near
their gate partners, and move them back. To minimize atom transfer,
we optimize for an atom ordering and circuit layers in which none of
the moves reorder atoms and the move distances are minimized. An
atom order is valid for given circuit layers if

max(i,j) <max(k, ()

V CZ;, CZ,, € Layer |i<k

V Layer € Circuit

wherealayerisaset of CZ gates that may be executed in parallel without
changing the meaning of the circuit.

We use a combination of hand-optimization over choice of circuit
layers and brute-force search over atom orders. The index numbers
labelled in the encoding circuit show these optimal qubit orders.
The order of the five (logical) qubits in Fig. 3a has the first two qubits
swapped.

Approach to simulation of MSD circuit performance

Our full circuit, which injects five physical magic states into five logi-
cal magic states in the colour code, and then performs logical MSD,
is supported on 35 qubits in the d = 3 case and 85 qubitsinthed=5
case. The injection and distillation circuits are entirely Clifford, with
the non-Cliffordness coming only from the input states. This poses
a challenge towards using standard simulation methods. As the
input states are magic states, standard Clifford circuit simulation
tools such as Stim® cannot be applied directly. The circuit size of
85 means state-vector simulation is intractable, and approximation
methods such as matrix product states simulations become techni-
cally and computationally consuming. Although methods such as
extended Clifford simulation could be used®®, existing open-source
implementations only support up to 64 physical qubits®’. For these
reasons, we developed a simulation technique, which we refer to as
Input-Decoupled Noise Learning (QuEra Computing and Collabora-
tors, manuscriptin preparation, 2025b), in which learning of the noise
channel is separated from simulating the actual state of the logical
circuit.

Thekeyideaof our approachis that the analysis of noise canlargely
be separated from the analysis of the ideal logical action itself. The
ideal logical circuit can be viewed as a channel that maps some input
quantum state to classical bit strings, C: (C?)®° > F3, where the bit
strings correspond to logical measurement outcomes. As this is an
ideal logical circuit involving only five qubits, it can be readily simu-
lated. Under a Pauli noise model 0 and a Clifford circuit C, the combined
effect of noise and error correction is to apply additional logical
Pauli operations, which further map the logical outcomes &, : F3 > F3.
As this combined effect involves only Pauli operators and Clifford cir-
cuits, we can efficiently simulate it by error sampling and decoding.



More generally, the same approach can be applied whenever error
sampling and decoding can be done efficiently. The full simulation
result can then be obtained by composing the two channels &,C.

Learning the channel &, isimplemented as follows. We use Stim* to
simulate the noisy logical circuit, but we replace the input physical
magic states by a special 5-qubit entangled state chosen to make the
logical measurement results deterministic. This special 5-qubit state
is generated by running the noise-free inverse of the logical circuit.
When measuring the outputlogicalinthe X, Y, or Zbasis, the state-prep
for the special state begins by preparing|+,), [+i,) or |0,) of the 5-qubit
distillation code, respectively. This ensures that the measurement
resultsonall five logical qubits are +1inthe absence of errors and that
the simulation is fully Clifford and therefore efficient. We perform
decoding based on the simulated syndromes § (see the following sec-
tions for details of our decoder), resulting in the final logical measure-
mentresult! € F3, characterizing logical flips caused by circuit noise.
The decoding is done either using the syndrome information of the
four logical qubits of factory post-selection or using the syndrome
information of all five logical qubits during tomography, resulting in
the appropriate channelineach case. With alarge amount of samples,
which can be efficiently generated, we can learn the classical logical
error channel &, to high accuracy.

For our logical circuit involving five logical qubits, we can easily
obtain theideal logical circuit channel C. Using Qiskit®”, we implement
the ideal distillation circuit with magic state inputs. Note that this
simulation also supports noise applied to the magic state input. We
directly calculate the 5-bit logical output for this circuit, producing
the channel C. The final output magic state fidelity can then be com-
puted by composing the channels &,-C.

With this approach, for a Clifford physical circuit with non-Pauli
inputs, our method decouples the Pauli noise in the physical circuit
from the input states and learns the noise-induced logical errors effi-
ciently. Beyond this example, we expect our techniques to have further
applications as we scale to larger quantum codes and more complex
logical circuits.

Estimation of confidence intervals

When performing quantum state tomography to estimate the logi-
cal fidelity, it is possible that the reconstructed density matrix is not
positive semi-definite, causing the calculated fidelity confidence
interval to exceed 1 (ref. 68). To address this and obtain meaningful
confidence intervals, we use Bayesian analysis to calculate posterior
probabilities®’.

Consider quantum state tomography, with n=(n,, n,, n,) measure-
mentsinthe X, Y, Zbasis, respectively. Denote the number of |0) out-
comes decoded as m = (m,, m,, m,). We would like to extract the
probability distribution of true fidelity values F that could produce
these measurement results. To this end, we apply Bayes’s rule:

P(m, n|F=F)Fyo(F=F)

P(m,n) ! W

P(F=Flm,n)=

wheremandndenote the observed measurement outcomesand P,
is the prior distribution. For Figs. 3b and 4c, we use the Bures prior, as
recommended inref. 70. For the remaining data, we assume a simpler
prior distribution of density matrices that has a uniformrandom distri-
bution within the Bloch sphere, because the large number of samples
causes the difference between different priors to have a negligible
effect (<0.1%) on them. See Extended Data Fig. 5 for acomparison of
estimation methods.

We (numerically) compute this distribution over the Bloch sphere
using

P(m,n|F=F)= P(m, n|v)f(v)dv

v\ﬂsm(v):F

f(v)dv

P.. =F)=
Pnor(]: ) VIFisiy™)=F

wherev=(x,y, z)isthe Bloch sphere vector representation of the den-
sity matrix,

X+y+z

23 (2)

1
Fisu(v) = 2t

is the fidelity of the mixed state v relative to our desired [SH) magic
state gy, = %(1, 1,1)and f(v) denotes the probability density func-
tion of the prior. We label our magic state as [SH), as it isthe eigenstate
of the single-qubit logical gate SH (a product of the S and H gates).
Intuitively, we integrate over all mixed states with the same fidelity.

Decoding and post-selection methods

At the end of our MSD protocol, we transversally measure all physical
qubits of the four distillation syndrome logical qubits in the Z basis,
and all physical qubits of the output magic state in one of the X, Yor Z
basis for logical tomography. We use two decoding methods for our
data:an MLD constructed by direct sampling of alookup table,and an
MLE decoder based on mixed-integer programming”’.

Given either decoder, we first perform decoding using only the
syndromes of the four ancillary logical qubits to infer their logical
outcomes. The syndromes of the output logical qubit are not used at
this stage, because the factory post-selection should be done without
measuring the output logical qubit, so that the output can continue
to be used in subsequent logical operations. We perform factory
post-selection on the distillation logical outcome being 0011, which
is the desired outcome for our distillation circuit. We then optionally
perform further stabilizer post-selection, which can further boost the
fidelity of the output magic state by flagging bad executions of the distil-
lationcircuit. After post-selection, we decode with the full syndrome of
all five logical qubits to infer the logical outcome of the output magic
state (with no further post-selection), which we use to compute the
output fidelity. We note that agreement between the results of the two
rounds of decoding (four compared with five logical qubits) could be
further usedto heraldlogical errorsin the execution of the full circuit.

The MLD decoder is only tractable for d = 3, in which the number of
syndrome combinationsis limited. To construct the MLD decoder, we
sample 10° measurement samples for our full 35-qubit circuit, under
the noise model described above. Our lookup table Twill have 2 keys
corresponding to all possible syndromes, each key storing 2° entries
corresponding to the number of occurrences of each logical observ-
able pattern among our samples with the given syndrome. Sampling
can be done efficiently in Stim, by replacing the input magic states
with stabilizer states (see our noise learning method described above).
With each sample, we store the 15-bit syndrome information and the
5-bit logical error string into T. After all samples are collected, each
syndrome s will have a most-likely logical error £, which will be our
decoder output for s. To perform post-selection, we can sort the sta-
bilizer patterns based on the logical fidelity of the output they lead to
and perform sliding-scale post-selection based on this.

The MLD decoding method described in the previous paragraph
works only for small code distances, because the space complexity
for the table is exponential. Therefore, it is not realistic to use it for
decoding at d = 5. We, therefore, use an MLE decoder, adapted from
refs. 31,72, to decode the logical measurement results and evaluate
their confidence for post-selection.

We construct an MLE decoder based on mixed-integer programming
(MIP) formalized as follows. We denote all stabilizers as 2 = {0, ..., 0},
and alllogical observableas O ={0,, ..., O}. We enumerate all possible
elementary Pauli errors £={e,, ..., €,,} in the injection and distillation
circuits, and each error ¢;canflip asubset of stabilizers X; c > as well as
asubset of logical observables Q; c O with probability p;. If we define
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a,J=1if0',€Xj,L,J=1if O,e.()j, (3)

then given an error configuration e € F%', the resulting stabilizer and
observable configuration will be de and Le, respectively. The input of
S1

eF%, and it will
Sk
return the MLE configuration that results in the same stabilizer con-
figuration. More precisely, the MLE is defined

the MLE decoder is a stabilizer configurations =

ey = argmax P(e), such that de=s, (4)

where e;, s;are binary variables. Equivalently, the MLE can be deter-
mined by the following MIP problem by regarding all variables as
integers and introducing new slack variables A;:

1-p.
J -
Tjej, S.t. z a,dej—sj+2/1/, (5)

e =argmax Z log
J
wheree;, s, A;are integers.
To post-select ashot based on the stabilizer configuration, we analyse
thelogical gap*?**”>™ which characterizes the confidence in the chosen
correction. We seek to characterize the confidence by analysing the
likelihood of this error compared with those resulting in other logi-
cal corrections. We define the second most-likely error (SMLE) to be

eguie = argmax P(e), such that de=0 and Le#Ley;, (6)

then the logical gap of a given stabilizer configuration is defined as

P(ee)
P(esuie)

g=log 7)

The logical gap provides a confidence measure for decoding—the
gap approximates the likelihood difference between the most-likely
logical outcome and the second most-likely logical outcome.

Inthe case of 5-to-1distillation, there are four logical qubits that are
measured, and we will use the stabilizer information from those four
to post-select the shots. We enumerate all 2* logical representatives
over these four measured qubits and add the corresponding logical
observable as a new constraint into the MIP solver to obtain the MLE
and the SMLE. To determine whether we accept a shot, we compute
the logical gap based on the detector information on the measured
four logical qubits, and see if it is greater than a logical gap threshold
we set ahead of time.

We observe that for d = 3, the logical error performance for the MLD
and MLE is comparable (Fig. 3b). This suggests that the additional
entropic contribution from consideringall error cosets is smaller than
that coming from analysing the MLE itself.

Physical error rate to achieve distillation gain without stabilizer
post-selection

We now perform numerical simulations of our d = 3 distillation process
atavariety of different physical error rates and evaluate the injected and
distilled magic state fidelities inthe absence of stabilizer post-selection.
This provides an estimation of how muchthe physical error rate should
beimprovedto see distillation gain without extra post-selection penal-
ties, and future work can extend this to acomparison between different
code distances.

Theresults areshownin Extended Data Fig. 4a. As we globally rescale
the physical errorrate, boththeinjected and distilled fidelity improve,
with the distilled fidelity improving faster due to its quadratic scaling.
Tomatch the experimentally observed fidelities (crosses), the physical
error rates are rescaled by 1.25 times compared with the error model
used for decoding. We find that an approximately twofold improvement

in physical error rate suffices to achieve distillation gain without sta-
bilizer post-selection.
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Extended DataFig.1|Experimentallayout of magicstate distillation
factory.a, Wearrange 7 to 17 ¥Rb atoms, each corresponding to a physical
qubit, intoarow. This horizontal register representsalogical qubit, tiled into 5
rows for atotal of five logical qubits (LQ1to LQS). b, Encoding. Once theregister
of physical qubitsis prepared, we coherently rearrange atoms to perform
two-qubit entangling gates using the Rydberg blockade mechanism. We break

up thecircuitinto “layers” each containing one set of local rotations, transport,
and CZ gates. ¢, Coherent movement of logical qubits to perform transversal
CZgates.Inthe case of 5-to-1distillation, thisis achieved in three layers. The
circuitasdrawn here corresponds1to1tothe atomlayout, whereasinFig.3
logical qubits LQland LQ2 are swapped for clarity. d, Global measurement of
qubits after circuit execution.
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Extended DataFig.2|Experimental layout of d=5encoding. The arbitrary-
stateencoding circuit for the d=5color code (left) is comprised of five
entangling gate layers, illustrated by averaged images of the corresponding
atom configurations (right), and local gates between the layers. We execute
encoding with 5x parallelism, one instance per row (LQ1to LQS5). The horizontal

AOD traparray istiled vertically by the second AOD. For each layer, atoms start
inSLMsites, we apply local rotations, pick up and move atoms to their gate
location, execute parallel CZ gates, echo (omitted for clarity), and finally move
backtoSLMsites.
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