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Carving entangled multiparticle states with exponentially improved fidelity
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We propose a method that uses the “no-jump” evolution of a probe to generate entangled multiparticle states
of high fidelity. The probe is coupled to a target ensemble of qubits and engineered to exponentially decay at
a rate depending on the target collective spin, such that postselecting on observing no probe decay precisely
removes select faster-decaying spin components. When a probe and N-qubit target interact via a cavity mode of
cooperativity C, our procedure generates entangled states with infidelities of e−C/N , an exponential improvement
over previous carving schemes. This scheme, which we call “counterfactual” carving, can generate complex
entangled states for applications in quantum metrology and quantum computing.
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I. INTRODUCTION

Entangled multiparticle quantum states represent a valu-
able resource, enabling measurements beyond the standard
quantum limit, secure communication networks, and quan-
tum computation [1–12], with the fidelity of the generated
entanglement of primary importance for many of the most
impactful applications [13–15]. To generate an entangled state
starting from an easily prepared product state of many qubits,
one can either apply a deterministic unitary operation [16–18]
or attempt to alter the state vector via a projective measure-
ment onto a subspace of interest [19].

The interaction between an ensemble of N qubits and a
cavity mode is a well-explored and promising way to generate
entanglement. While certain symmetry considerations allow,
in principle, the perfect generation of two-body entanglement
[11,20], known methods for generating entanglement using
cavity QED interactions for multiparticle systems of N qubits
are fundamentally limited by loss mechanisms characterized
by the cavity cooperativity C. Previous approaches such as
[16–18,20–24], whether employing deterministic techniques
or postselection, are all limited by the finite atom-cavity cou-
pling strength relative to photon losses, leading to infidelity
scalings no better than 1/C, with some methods also having
absolute infidelity floors [17,18].

One of the best performing classes of these methods for
preparing a highly entangled state involves “carving” out cer-
tain collective spin components (Dicke states [25]) |m〉 via a
cavity measurement (see [21,22] for proposals and [23,24,26]
for experimental realizations). For these methods, the detec-
tion of a multifrequency photon transmitted through an optical
cavity projects the spin system into an entangled superposition
of Dicke states,

∑
cm |m〉. We call these approaches “fac-

tual” carving since postselection occurs on the detection of a
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transmitted probe photon, which is correlated with the occu-
pation of certain Dicke states of the ensemble. For factual
carving, the infidelity εf of the carved state scales as εf ∼
(C/N )−1, where C is the cavity cooperativity, characterizing
the coupling of a single atom to a single intracavity photon.
The infidelity εf is caused by the spectral overlap of the atom-
shifted cavity resonances (i.e., different Dicke states) [21,27]
being polynomially large in C/N .

In this work, we propose an alternative kind of carving
method which yields infidelity scaling as e−C/N , an expo-
nential improvement compared to all existing schemes for
generating multiparticle entanglement. We call this scheme
“counterfactual” carving because the generation of entangle-
ment is heralded by the absence of evolution (“no quantum
jump” [28,29]) of a probe coupled to the atomic ensemble.
The improved scaling arises from engineering an exponen-
tial decay which carves away particular spin components.
This method enables the generation of large highly entangled
states, for example, superpositions of Dicke states or N-atom
Greenberger-Horne-Zeilinger (GHZ) states [30–32], that are
useful for many quantum applications [7,14,33,34].

II. ATOM-CAVITY COUPLING HAMILTONIAN

To demonstrate the principles of counterfactual carving
and directly relate it to the most pertinent prior works, we
consider a setup similar to [21,22] and shown in Fig. 1, con-
sisting of an ensemble of N target atoms coupled to a cavity
mode, with the addition of a photon source atom s that we
use to probe the target. The internal structure of each atom
constitutes a � system where two ground states |↑〉 , |↓〉 are
coupled to an excited state |e〉, and for simplicity we assume
that |e〉 decays predominantly to the ground state |↑〉 and is
only weakly coupled to |↓〉. The optical transition |↑〉 → |e〉
of frequency ωe and population decay rate �e is coupled to
the cavity mode â of frequency ωc with single-atom Rabi
frequency 2g and population decay rate κ � �e with a large
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FIG. 1. Counterfactual carving of a qubit ensemble (target) using
an optical cavity. The cavity contains N qubits (yellow) and a single-
photon source atom s (teal). As shown in faded gray on the source-
atom level scheme, each ensemble atom coupled to the cavity mode
(in |↑〉) shifts the cavity resonance frequency by d . A transverse laser
beam � (purple) addresses s and can be frequency tuned so that the
emission on the Raman transition |↓〉s → |e〉 → |↓〉s in the source
atom is tuned to near the frequency-shifted cavity resonance. The
absence of emission into the cavity, as detectable via the state of the
source atom, modifies the target collective state.

detuning � ≡ ωe − ωc, with cooperativity 2C ≡ 2g2/(κ�e)
[35].

The interaction of the target ensemble with the cavity mode
is governed by the Hamiltonian

Htarget = −�â†â + gâ
N∑

i=1

|e〉i i〈↑| + H.c.

= −�â†â + gâ
N∑

m=0

√
m |me〉 〈m| + H.c., (1)

where we have reexpressed the Hamiltonian as acting on the
collective spin states |m〉 (|m〉 is the symmetric state with m
atoms in |↑〉 and N − m atoms in |↓〉). |me〉 represents the
state where |m〉 has collectively absorbed a photon from the
cavity (see the Supplemental Material [36]). This Hamiltonian
couples the state |1〉c |m〉 to |0〉c |me〉 with coupling strength√

mg and a detuning of �, shifting the frequency of |1〉c |m〉 by
md ≡ mg2/� in the dispersive limit g � �, where assuming
κ � �e, it is favorable to be far detuned from the excited
state. Here, |p〉c, with p = 0, 1 denoting the cavity state with
p photons. For sufficiently large single-atom cooperativity C,
each of these Dicke states, with m atoms in |↑〉, corresponds
to a spectrally resolved Lorentzian line, as in Fig. 2(a).

III. PROBING CAVITY RESONANCES TO CARVE DICKE
STATES

To probe the m-dependent energy shifts and counterfac-
tually carve the desired superposition of Dicke states |m〉,
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FIG. 2. Preparation of the |m = 2〉 Dicke state by counterfactual
carving from a CSS ∝ (|↑〉 + |↓〉)⊗4 of N = 4 atoms. Resonantly
addressed levels (red) decay quickly, and the unaddressed level
(blue), driven only off resonantly, decays more slowly. After time
t , the populations of the undesired components are exponentially
suppressed. (a) The ensemble-cavity coupling shifts the frequency
of the cavity mode of width κ by md . A tone of � driving s induces a
coupling w = �g/� between dressed states |ψ0

m〉 and |ψ1
m〉. (b) Nu-

merical simulation of the master equation for the no-jump evolution
of the joint source-target system, showing the remaining popula-
tions of |↓〉s |m〉. Parameters used were κ = 2π × 0.2 MHz, �e =
2π × 6 MHz, g = 2π × 8.5 MHz, with C = 60, � = √

2g
√

�e/κ =
2π × 66 MHz.

we use the separately addressable atom s, which acts as a
single-photon “source.” (For another use of such a source
atom, see [20].) We initialize s in |↓〉s, then couple it to |e〉s
with a laser beam of strength � and detuning δ relative to the
empty-cavity resonance. For simplicity, we take the coupling
� to be much smaller than all other energy scales in the
problem. The Hamiltonian for s is the same as for the target
atoms, but with the additional laser coupling �,

Hs = − (� + δ) |↓〉s s〈↓|
+ � |e〉s s〈↓| + gâ |e〉s s〈↑| + H.c. (2)

Here the subscript s indicates the source atom, and the total
Hamiltonian is Htot = Htarget + Hs.

As Fig. 1 illustrates, tuning δ into resonance with the
cavity shifted by a particular Dicke state |m〉 then enables
s to emit a photon into the cavity via the Raman transition,
|↓〉s → |e〉s → |↑〉s. The photon subsequently leaves the cav-
ity at rate κ . In this way, the (potential) decay of the source
atom (|↓〉s → |↑〉s) via the cavity reveals the occupation of the
corresponding ensemble Dicke state |m〉. If the source atom is
observed to have not decayed for a time that is long compared
to the characteristic decay time via this channel, then the
corresponding amplitude of |m〉 is exponentially suppressed,
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as in Fig. 2(b). To annihilate the amplitudes of more than one
Dicke state, multiple tones � can be used, as in Fig. 2(a).

Diagonalizing Htot to first order with respect to the
atom-cavity coupling, we obtain the dressed states |ψ0

m〉 ≡
|0〉c |↓〉s |m〉 and |ψ1

m〉 ≡ |1〉c |↑〉s |m〉 − g
�

|0〉c ( |e〉s |m〉 +√
m |↑〉s |me〉 ), where the three components of |ψ1

m〉 represent
the photon in the cavity, the excited source atom, and the
absorption of the photon by the ensemble, respectively. The
state |ψ1

m〉 has a decay rate κm ≡ κ + (m + 1) g2

�2 � due to both
the cavity decay (κ) and scattering from the admixed atomic
excited states (�e) of the source and the m atoms of the target
ensemble, where any decay of |ψ1

m〉 would leave s in |↑〉s.
Then, turning on a single weak tone � > 0 with a detuning

δ matching the energy of |ψ1
m〉 perturbatively couples |ψ0

m〉
to |ψ1

m〉 with strength w ≡ 〈ψ1
m| � |e〉s s〈↓| |ψ0

m〉 = �g/�. We
can then write an effective Hamiltonian in terms of the dressed
states,

H =
N∑

m=0

[−δ
∣∣ψ0

m

〉 〈
ψ0

m

∣∣ − (m + 1)d
∣∣ψ1

m

〉 〈
ψ1

m

∣∣

+ w
∣∣ψ1

m

〉 〈
ψ0

m

∣∣ + H.c.
]
. (3)

Here, w couples |ψ0
m〉 to state |ψ1

m〉, via which it decays
into the continuum at a rate [37]

�m = w2

(κm/2)2 + (δ − (m + 1)d )2
κm. (4)

We denote the quasicontinuum state that |ψ0
m〉 decays into

as |0〉c |↑〉s |Lm(t )〉, with |Lm(t )〉 a superposition across states
of the ensemble and modes of the environment E , with the
photon having leaked out of the cavity or having been scat-
tered by an atom. The initial state with the ensemble in |m〉
and the environment in the vacuum decays toward this quasi-
continuum of scattered photon states, evolving as [38,39]

e−�mt/2 |0〉c |↓〉s |m〉 |vac〉E +
√

1 − e−�mt |0〉c |↑〉s |Lm(t )〉 ,

(5)

where we neglect, for now, any additional overall phase on the
first term due to a Stark shift.

We illustrate the carving procedure by first considering
a superposition 1√

2
(|n〉 + |n + 1〉) of just two neighboring

Dicke states spaced by d in energy. Here, |n + 1〉 denotes the
Dicke state which we wish to retain after carving, and |n〉 the
state that we strive to annihilate.

To annihilate |n〉, we tune the coupling laser � to resonance
with the dressed state energy, δ = −(n + 1)d , so that |n〉 de-
cays at rate �n = 4w2/κn. � also addresses |n + 1〉, but off
resonantly by d , resulting in a slower decay �n+1 = �n/[1 +
(2d/κn)2] (assuming κn+1 ≈ κn for an optimally chosen value
of �, as explained below). The components |n〉 , |n + 1〉 then
evolve according to Eq. (5), so that postselecting counter-
factually on measuring the source atom after time t to have
remained in the state |↓〉s projects the system to the (not
normalized) state

|↓〉s (e−�nt/2 |n〉 + e−�n+1t/2 |n + 1〉). (6)

Choosing t = 1/�n+1, the population of |n + 1〉 decays only
by a factor e−1, and we maintain an order-unity success prob-
ability of e−1/2, while the population of |n〉 is suppressed
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FIG. 3. Infidelity ε of carving Dicke states on the equator of the
N-atom Bloch sphere. Analytical expressions for factual (dashed)
[21] and counterfactual (solid) carving, analogous to Eqs. (9) and
(7). For counterfactual carving, we drive with multiple tones as in
Fig. 2 to annihilate all Dicke levels except |m = N/2〉. Solid dots
are numerical simulations of counterfactual carving with the mas-
ter equation, modeling the joint source-cavity-ensemble system for
N = 4 and 8.

exponentially by a factor e−�n/�n+1 = e−(1+(2d/κn )2 ) � 1 even
for modestly large d/κn.

The suppression factor is maximized when |n〉 and |n + 1〉
are maximally distinguishable, i.e., when the atomic detuning
� is chosen such that losses between cavity and atomic decay
are balanced, κ = n g2

�2 �e, in which case κn = 2κ (again, recall
we take κ � �e). The cooperativity C then determines the
distinguishability since d = κ

√
C/n, making 4d2/κ2

n = C/n.
The infidelity εcf of the state from Eq. (6) with respect to
|n + 1〉 is then

εcf = e−C/n

1 + e−C/n
≈ e−C/n, (7)

for C/n � 1. Note the dependence on the ratio C/n, where n
enters since admixing the excited states of more target qubits
further broadens the dressed state linewidth. This means we
can more easily carve away adjacent levels around lower n,
with n = 1 corresponding to a W state, and n ∼ N/2 for carv-
ing states near the equator of the many-atom Bloch sphere, as
in Fig. 2.

The results from Eq. (7) (and illustrated later in the results
in Figs. 3 and 4) represent an exponential improvement in the
scaling of the residual error ε compared to prior “factual”
carving methods. In the setting we consider here with the
source atom s, factual carving with a tone tuned to |n〉 would
involve detecting a photon successfully exiting through the
cavity mirror, thereby postselecting on |↑〉s terms where the
photon has leaked out of the cavity (as opposed to the |↓〉s
terms for counterfactual carving) from Eq. (5). We can ap-
proximate the terms remaining after postselection from Eq. (5)
for small t , at which point the carving will be of the highest
fidelity,

√
1 − e−�nt |n〉 +

√
1 − e−�n+1t |n + 1〉

≈
√

�nt |n〉 +
√

�n+1t |n + 1〉 . (8)
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FIG. 4. Analytical expressions showing GHZ state infidelity for
counterfactual [blue, Eq. (13)] and factual (yellow, Supplemental
Material [36]) methods. Dotted lines indicate asymptotic analytical
expressions valid for C/N � 1.

Because factual carving actively drives both |n〉 and |n + 1〉
toward states with an expelled photon, we can only achieve
population distortions proportional to the rates. The infidelity
εf for the factual method when attempting to create the state
|n〉 is then

εf = �n+1

�n + �n+1
= 1

2 + C/n
−−→

C
n �1

1

C/n
. (9)

This result also holds for the photon transmission variant of
factual carving [21] due to the polynomial tail of Lorentzian
transmission line shape overlapping with neighboring Dicke
states, with similar polynomial scaling for other coherent evo-
lution methods [16] (see the Supplemental Material [36]).

A. Carving a single Dicke state

Having illustrated the principle of counterfactual carving
with two neighboring levels |n〉, |n + 1〉, in Fig. 3 we show re-
sults when counterfactually carving a highly entangled Dicke
state |m = N/2〉 from an initial coherent spin state (CSS)
along the equator of the Bloch sphere, for the same setup as in
Fig. 2. The joint source-cavity-ensemble system is prepared in
the pure state |↓〉s |0〉c |+〉⊗N , where |+〉 ≡ (|↓〉 + |↑〉)/

√
2,

and evolves under the total Hamiltonian with simultaneous
driving of tones � applied to all levels except |m = N/2〉.
Analytical expressions for the multiparticle infidelity ε are ob-
tained by summing contributions �m across all driving tones
to determine the relative populations of the levels |m〉. Each
data point (large dots) in Fig. 3 is obtained separately by a
simulation of the master equation for the joint source-cavity-
ensemble system as in Fig. 2(b), where the evolution time t1/e

is chosen to be when the population of |↓〉s has been reduced
by a factor 1/e. Then, to postselect on measuring no jump in
the source atom’s state, we project the density matrix of the
full system, ρtot(t = t1/e), onto |↓〉s and renormalize. Finally,
we trace out the source atom and the cavity mode, leaving
just the reduced density matrix of the ensemble, ρensemble(t =
t1/e), computing its infidelity compared to the Dicke state
at the equator |m = N/2〉, ε = 1 − 〈m = N/2| ρensemble(t =
t1/e) |m = N/2〉. Fitting the asymptotic behavior, for N = 8

we have εcf ≈ 1.9 × e−0.41C/N . Also shown in Fig. 3 is the
fidelity for carving a Dicke state factually as in [21] using a
tone tuned directly to |m = N/2〉. The corresponding success
probabilities are |cN/2|2 ≈ 1/

√
N due to the population over-

lap of the initial CSS with |m = N/2〉, times factors of 1/e for
counterfactual (for our chosen evolution time t1/e) and 1/4 for
factual carving (due to photon transmission probability; see
the Supplemental Material [36] and Ref. [21]).

B. Carving a GHZ state

In addition to carving individual nonclassical Dicke states,
it is also possible to counterfactually carve a superposi-
tion of Dicke levels and generate other entangled states,
including GHZ states. We can carve a GHZ state, |GHZ〉 =

1√
2
( |+〉⊗N + |−〉⊗N ), by removing all the |m〉 with m odd

from the CSS |+〉⊗N . One can see this equality since the
components with an odd number of qubits in |↓〉 cancel
when expanding the above expression for |GHZ〉. For large
N , |+〉⊗N is a superposition of Dicke states near the equator
of the Bloch sphere, with m ∼ N/2, where the Lorentzians
have a (here approximated to be identical) width κm ∼ 2κ . To
remove the odd-m states via counterfactual carving, we apply
a resonant tone to each and, for simplicity, we imagine an
infinite ladder of such tones resonant with the odd m.

Turning on this ladder of tones resonant with the odd-m
levels, each level sees no net phase shift, and recalling Eq. (4),
each level m now decays with a total decay rate �tot

m due
to contributions from multiple driving tones �, with distinct
values �tot

even and �tot
odd for even and odd m. The odd levels

decay at a rate given by the resonant tone and by off-resonant
tones above and below in energy detuned by multiples of
2d , with d = κ

√
C/m when optimized with m ∼ N/2. Letting

�res ≡ 2w2

κ
be the decay rate due to a resonant tone, the total

decay rate for an odd level is then the sum of the contribution
of the resonant tone directly addressing it, and a smaller con-
tribution from all the of resonant tones as well, which we can
sum as

�tot
odd = �res + �res2

∞∑
j=1

1

1 + (2 j)2C/(N/2)

−−→
C
N �1

�res

(
1 + π2

24

1

C/N

)
. (10)

Similarly, the even m, which we wish to preserve, are ad-
dressed only off resonantly by tones above and below detuned
by a distance of d , 3d , 5d, . . ., which we can also sum over to
give the overall rate that they decay:

�tot
even = �res2

∑
j

1

1 + (2 j − 1)2C/(N/2)
−−→

C
N �1

�res
π2

8

1

C/N
.

(11)

For large C/N , the levels with odd m decay at a rate
primarily determined by just the tone that directly addresses
them, while the decay rate of the levels with even m is
suppressed polynomially in C/N . With these two distinct
values for the decay rates of the even- and odd-m levels,
we can separate our initial CSS state into even and odd
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components, with |even m〉 ≡ 1√
2
( |+〉⊗N + |−〉⊗N ) and

|odd m〉 ≡ 1√
2
( |+〉⊗N − |−〉⊗N ), which then evolve similarly

to Eq. (5) as

|+〉⊗N = 1√
2

(|even m〉 + |odd m〉)

→ 1√
2

(
e−�tot

event/2 |even m〉 + e−�tot
oddt/2 |odd m〉 )

+ photon-scattering terms, (12)

where we have made �tot
odd > �tot

even by tuning laser tones into
resonance with the odd m.

To carve the GHZ state |even m〉 counterfactually, we
choose t = 1/�tot

even so that the even levels will have decayed
by only an amount 1/e, guaranteeing a success probability of
at least 1

2
1
e . Postselecting on the terms from Eq. (12) with no

photon scattering, we have εcf = e−�tot
oddt/(e−�tot

oddt + e−�tot
event ).

The residual error is then

εcf = e−�tot
odd/�

tot
even

e−�tot
odd/�

tot
even + e−1

−−→
C
N �1

ee−�tot
odd/�

tot
even = e

2
3 e− 8

π2 C/N
.

(13)

Similarly, one can also carve the same GHZ state factually
with a ladder of tones applied directly to the even levels,
but here again, the polynomial spectral overlap of the shifted
cavity resonances leads only to polynomial. suppression of
the infidelity in C/N . In Fig. 4, we plot the residual error for
factual and counterfactual carving, summing over contribu-
tions from all the tones (see the Supplemental Material [36]
additional background about factual carving methods and the
expressions for the sum over tones in this case). The result
is the same asymptotic scaling as Eq. (7), just with a slightly
different numerical coefficient, in this case εcf ≈ e− C

N
8

π2 for
counterfactual carving and, for comparison, εf ≈ π2

8
1

C/N for
the factual method. Note that the time t as well as C/N both
scale as ln(1/εcf).

IV. CARVING PHASES ONTO ENTANGLED STATES

Counterfactual carving can alter not only the magnitude of
an initial coefficient cm, but also its phase, by detuning a drive
� slightly from the energy of |m〉 to induce a Stark shift. One
can then carve states with arbitrary phase,

∑
m

cm |m〉 →
∑

m

cmeiφm e−�m/2 |m〉 . (14)

Imprinting a phase φm as in Eq. (14) leads to small additional
phase shifts and amplitude decays on adjacent levels, but
these disturbances are efficiently correctable with compensat-
ing tones (see the Supplemental Material [36] for an iterative
method to do this). With the ability to control both amplitudes
and phases of different Dicke states, we now have access to
a toolbox for carving high-fidelity multiparticle states while
requiring only moderate cooperativity C.

V. PROSPECTS FOR EXPERIMENTAL
IMPLEMENTATIONS

Recently, several groups have integrated cavities with
single-atom arrays, enabling exquisite control of individual
atoms coupled to an optical mode [40–46]. This presents
a promising platform for realizing counterfactual carving
and provides motivation for continued cooperativity improve-
ments, as even modest improvements lead to large gains in
achievable fidelity. For example, from the results in Fig. 4,
with the cooperativity achieved in Ref. [47], using 87Rb
one could counterfactually carve GHZ states with N ∼ 10
atoms with �10−4 infidelity. Such states can be transformed
into “star” resource states [13,14], forming the basis of a
neutral-atom measurement-based quantum computer with a
cooperativity-dependent error contribution 100 times below
thresholds for error-correcting codes [15]. Achieving the same
fidelity with factual carving would require a cavity of cooper-
ativity ∼105, which is many orders of magnitude larger.

VI. CONCLUSION

In addition to achieving exponentially better fidelity, coun-
terfactual carving is of fundamental interest as it harnesses
the “no-jump” [28,29] evolution of a probe coupled to a qubit
ensemble to exploit a curious property of quantum measure-
ments, i.e., how merely giving the probe the possibility to
evolve is sufficient to alter the quantum state even in instances
where no probe evolution is observed.

While in the above analysis, for the sake of definiteness,
we have applied counterfactual carving in the setting of cavity
QED, relating it to the most pertinent prior works [21,22],
counterfactual carving is a general approach applicable to
many quantum systems. In the Supplemental Material [36],
we have included a more general treatment.
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