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Using the strong dispersive coupling to a high-cooperativity cavity, we demonstrate fast and non-
destructive number-resolved detection of atoms in optical tweezers. We observe individual atom-atom
collisions, quantum state jumps, and atom loss events with a time resolution of 100 μs through continuous
measurement of cavity transmission. Using adaptive feedback control in combination with the non-
destructive measurements, we further prepare a single atom with 92(2)% probability.
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Arrays of individual neutral atoms represent a promising
platform for quantum information processing due to their
scalability, arbitrary connectivity, and long coherence times
[1–3]. These features are enabled in large part by the simple
trapping and high-fidelity fluorescence imaging of indi-
vidual atoms within tweezer traps. While the fluorescence
imaging onto a camera has the advantage of parallelism,
i.e., many traps can be imaged simultaneously, the imaging
time is limited by the effective photon collection efficiency
of free-space optics, which is typically 1%–2% [1].
Atom detection via a cavity [4,5] offers the advantage

that the signal-to-noise ratio can exceed that of an ideal 4π
fluorescence detector, enabling much faster detection and
thereby observation of real-time single atom dynamics
[6–12]. The tight optical confinement of nanofibers has
also enabled atom detection [13,14] in real time [15].
Furthermore, the cavity has been utilized for high-fidelity
state discrimination [16–19]. These capabilities, among
others, have motivated much recent work on tweezer
integration [20–26], as well as many other experiments
coupling cold atoms and cavities [27–29].
While most experiments have employed the simpler

standing-wave cavities, ring cavities [30–35] supporting
travelling-wave eigenmodes have the advantage of nearly
uniform atom-mode coupling along the mode. Bow-tie ring
cavities [36,37] enable small foci and strong light-matter
interactions while maintaining large optical access, making
them ideal for integration with tweezer arrays [24,38].

Such systems have previously been used for the real-time
detection of a few atoms [39–41], and for studies of
ensemble dynamics [42–44].
In this Letter, we demonstrate fast, nondestructive, state-

and number-resolving measurements enabled by a high-
cooperativity ring cavity [24,38]. The strong atom-light
coupling [cooperativity η ¼ 21.0ð3Þ] gives rise to large
dispersive cavity shifts by individual atoms even far from
atomic resonance, which is used to distinguish different
numbers of atoms in a single dipole trap or small tweezer
array. With a time resolution of 100 μs, we directly observe
for the first time individual inelastic light-induced colli-
sions [45,46] between pairs of atoms in an optical tweezer,
which represents the mechanism that underpins the loading
of at most one atom into a tweezer [47–50]. We also
demonstrate a protocol that uses cavity measurement and
adaptive feedback to realize quasideterministic loading of a
single atom with 92(2)% fidelity.
Figure 1 illustrates the experimental setup. Cold Cs

atoms are prepared in a magneto-optical trap (MOT) near
the center of an in-vacuum bow-tie ring cavity, which has a
round-trip length of 18.6 cm, a waist of wc ¼ 7 μm, and a
finesse of F ¼ 50 000 [38]. The atoms are loaded directly
from the MOT into a one-dimensional array of optical
tweezers at a temperature of ∼50 μK, measured via release
and recapture. The traps are created by 937-nm light, which
is magic on the D2 transition and thus enables homo-
geneous coupling of near resonant light across the array
[51–53]. The tweezer traps are generated by an acousto-
optic deflector, and focused by an out-of-vacuum micro-
scope objective (numerical aperture NA ¼ 0.5) to waists of
w ¼ 1.0 μm with a trap depth U=h ¼ 24 MHz and radial
trapping frequency ωr=ð2πÞ ¼ 85 kHz. The hyperfine state
of the atoms is controlled by applying ‘repumping’ and
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‘depumping’ light on the j6S1=2; F ¼ 3i → j6P3=2; F0 ¼ 4i
and j6S1=2; F ¼ 4i → j6P3=2; F0 ¼ 4i hyperfine transi-
tions, respectively.
We calibrate the strength of the atom-cavity coupling via

the dispersive shift of the cavity resonance by individual
atoms. Single atoms are prepared in the tweezer traps by a
brief stage of polarization gradient cooling. This induces
light-assisted collisions, leaving each tweezer with an
occupation of zero or one atom [54]. We apply a magnetic
field of 5.3(1) G along the cavity axis and probe the
dispersive shift. Figure 1(c) shows the measured cavity
transmission for different numbers of individually trapped
atoms, where the atom number is determined independently
by imaging the atoms through the microscope objective
onto a camera. For the data in Fig. 1(c), the cavity
(frequency ωc) is blue-detuned from the atomic jF ¼ 4i →
jF0 ¼ 5i resonance (frequency ωa) by Δ ¼ ωc − ωa ¼
þ2π × 50 MHz, and the probe-cavity detuning δ ¼ ωp −
ωc is varied.
We note that a distinguishing characteristic of our cavity

is that a small deviation of the cavity geometry from planar
leads to (near)-circularly polarized cavity modes [36,55,56]
that are split by 8.4 MHz. We probe the cavity transmission
using the σþ polarized mode in the clockwise direction.
Backscattering into the degenerate frequency σ− mode is
eliminated when the atom is pumped into the stretched
state, and backscattering into the counterpropagating σþ
mode is far detuned. Atoms therefore only forward scatter
light into the same clockwise σþ polarized mode.
The single-atom cooperativity for coupling to the TEM00

mode, η ¼ 21.0ð3Þ, is extracted from a simultaneous fit of

all the data to the transmission [57]
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where N is the atom number in the cavity, y ¼
2ðωp − ωaÞ=Γ and x ¼ 2ðωp − ωcÞ=κ are the normalized
probe-atom detuning and probe-cavity detuning, where
Γ=ð2πÞ ¼ 5.2 MHz and κ=ð2πÞ ¼ 37 kHz are the atomic
and cavity linewidths, respectively.
We operate in the dispersive regime of cavity probing

(Nη=ð1þ y2Þ < 1), where the atomic absorption is small.
For the cavity probe fixed on the empty-cavity resonance
(δ ¼ 0), we observe a significantly shorter trap lifetime
during probing for red detuning with Δ < 0 (∼6 ms) than
for blue detuning with Δ > 0 (∼50 ms). For δ ¼ 0, cavity
cooling (heating) occurs when Δ > 0 (Δ < 0) [58,59].
Cavity cooling typically occurs through backscattering of
photons which yields the largest momentum transfer [60],
but this is suppressed in our cavity. Instead, cooling results
from strong modulation of photon number in the cavity due
to atomic motion [61] in the tightly focused cavity mode.
As an atom moves through the cavity, it experiences a
potential that derives from the ac stark shift of the intra-
cavity light. This potential is maximum for a stationary
atom at the center of the cavity mode, and equal in
magnitude to the dispersive shift observed in Fig. 1(c)
multiplied by the intracavity photon number. The atom’s
axial motion in the tweezer, transverse to the cavity mode,
modulates the intracavity photon number and the light shift
experienced by the atom, with a delay time given by the
ringdown time (τ ¼ 4.3 μs) of the cavity. This leads to a
Sisyphus-like effect that cools atoms when Δ > 0 with a
timescale of ∼10 ms [62]. This cavity cooling mechanism
has been observed in a standing-wave cavity [63] and a
detailed description of the light forces at play has been
obtained [64–66]. To observe the atoms while also cooling
them, we operate at blue light-atom detuning of Δ=ð2πÞ ¼
107 MHz, where the transmission is sufficiently atom-
number dependent to allow us to resolve 0, 1, 2, 3, and 4
atoms within a typical measurement time of 100 μs.
Figure 2(a) shows the histogram of the measured cavity

transmission T, which is normalized by the empty-cavity
transmission level. We observe pronounced peaks corre-
sponding to different atom numbers inside the cavity.
Those peaks provide a calibration of atom number when
we observe individual time traces displaying real-time
atomic dynamics, where the short-dashed lines are
extracted from the peak positions and the long-dashed
lines are extrapolated from the measured cooperativity. (For
atoms trapped in an intracavity lattice, similar continuous-
time signals were first observed in Ref. [40], while
Ref. [67] observed quantum jumps out of Rydberg levels
that may have arisen from light-assisted collisions.)
Figure 2(b) shows characteristic time traces when we probe
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FIG. 1. Experimental configuration. (a) Schematic of the
experimental setup. Cesium atoms in optical tweezers are
positioned within a bow-tie running-wave cavity. (b) Relevant
level structure of Cs atoms. (c) Cavity transmission spectrum for
0 (blue), 1 (green), 2 (red), 3 (purple), and 4 (orange) atoms
trapped within the cavity. Here the cavity is blue-detuned by
Δ=ð2πÞ ¼ þ50 MHz from the jF ¼ 4i to jF0 ¼ 5i component of
the D2 line.
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the cavity coupling 1 − T after probabilistic loading of four
separate tweezers, each containing at most one atom. The
steplike time traces in Fig. 2(b) display quantum jumps [68]
associated with the optical pumping of individual atoms
between hyperfine ground states, since only atoms in the
manifold jF ¼ 4i are strongly coupled to the cavity mode.
The total atom number is measured by turning on the
repumping light that transfers all atoms to the jF ¼ 4i
manifold. At the beginning of each trace, we observe a fast
decrease in transmission, with a measured time constant
of 1.1(0.2) ms, corresponding to the optical pumping of
atoms to the jF ¼ 4; mF ¼ 4imagnetic sublevel, for which
the coupling to the circularly polarized cavity mode is
maximized.
Having calibrated and verified the atom-number-depen-

dent transmission, we then proceed to probe the dynamics
of several atoms in a single trap [Fig. 2(c)]. By removing
the polarization gradient cooling from the loading pro-
cedure and slightly enlarging the trap waist size to w ¼
1.4 μm [trap depth U=h ¼ 22 MHz, radial trapping fre-
quencyωr=ð2πÞ¼58 kHz, and axial frequencyωax=ð2πÞ ¼
8.8 kHz], we load multiple atoms into a single dipole trap.
In the larger trap the atomic density and rate of light-
induced two-body collisions are sufficiently reduced to
become observable by the cavity measurement. Figure 2(d)
shows multi-atom time traces that display random large and
abrupt transmission changes consistent with collisional
loss and collisional heating induced by binary atomic
collisions within the single trap. We observe that when
the trap initially contains two atoms, a collision event often
leaves the trap empty, while a collision in a sample of
three atoms often results in a single, stably trapped atom.

We conclude that we are observing the real-time collisional
dynamics upon which single-atom tweezer loading relies
[50,54]. Light-assisted collisional loss should occur near-
instantaneously compared to our timing resolution. This is
often observed in our measurements after ≳1 ms of cavity
probing (see Ref. [62] for additional traces). Some traces
show slower dynamics that may arise from multiple colli-
sions between hotter atoms in the trap, though shot noise
can make it challenging to conclusively resolve multiple
near-simultaneous collisions.
We also observe instances of collisions that result in

temporarily reduced coupling, but not in the ejection of
atoms from the dipole trap. For example, the green trace in
Fig. 2(d) shows a sharp decrease of coupling 1 − T at
t1 ¼ 1 ms, followed by a gradual increase of the atom-
cavity coupling back to the value prior to the abrupt change.
We interpret this behavior as representing a collision that
imparts a significant amount of kinetic energy to the atoms,
though insufficient to eject them from the trap. Atoms with
a high kinetic energy following an inelastic collision are
displaced further from the center of the cavity mode (waist
wc ¼ 7 μm), and more weakly coupled. As cavity cooling
reduces the atomic temperature, the coupling slowly
increases, as observed in the green trace for times between
2 and 11 ms, before two more inelastic collision events, one
at t2 ¼ 11.5 ms and one at t3 ¼ 16.5 ms, expel two atoms,
and leave just one atom remaining in the trap. (We observe
that single atoms remain trapped for long times, with no
significant changes in coupling.) As a consequence of the
changes of transmission due to collisions and recooling, the
histogram for several atoms in a single trap, Fig. 2(c), only
displays two peaks, corresponding to the stable traces for
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FIG. 2. Real-time measurement of atom dynamics. The cavity is blue-detuned by Δ=ð2πÞ ¼ 107 MHz from atomic jF ¼ 4i →
jF ¼ 5i resonance while the probe is resonant with the empty cavity (δ ¼ 0). (a) Histogram of the probability for cavity transmission in
400-μs bins for single atoms probabilistically loaded into four separate tweezers (waist w ¼ 1.0 μm). Peaks in the distribution are
associated with atom numbers. (b) A measure of atom-cavity coupling 1 − T for cavity transmission T, from the dataset in (a).
Representative time traces showcase atom number resolution, as well as quantum jumps associated with optical pumping between the
hyperfine ground states F ¼ 3, 4. In these measurements, the average intracavity photon number without any atoms is 8. (c),(d)
Measurements as in (a),(b), but for several atoms initially loaded into a slightly bigger dipole trap (waist w ¼ 1.4 μm) with 100-μs bins.
Inelastic collisions cause heating or trap loss and decrease the coupling. Here the average empty intracavity photon number is 38.
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zero and one atoms. In a separate, single-atom measure-
ment [62], we have measured a time constant for recoupling
of an atom to the cavity after significant heating of
ð11� 3Þ ms, consistent with the above explanation for
cooling. We note that optical pumping between magnetic
sublevels [see Fig. 2(b)], which can also lead to increased
cavity coupling, occurs on a faster (∼1 ms) timescale.
We further analyze the collisional dynamics and sum-

marize our findings in Fig. 3. Our data reveal that 20% of
the observed collisions occur within the first 100 μs of
cavity probing, while the remaining collisions occur over a
much longer timescale with an average of ∼9 ms as shown
in Fig. 3(a). We attribute the fast initial collision rate as
being due to a larger atomic density immediately after
trap loading. The longer timescale probably arises from
multiple axial oscillations along the tweezer, where two
atoms interacting in the presence of light via the resonant
dipole-dipole interaction, with a collision cross section σ ≈
½λ=ð2πÞ�2 [45,46] with λ ¼ 852 nm. The inset in Fig. 3(a)
displays the number of collisions observed per experimen-
tal cycle before we end up with zero or one atoms. For our
conditions, on average 1.8 collisions are needed to reduce
the atom number to zero or one. Using a semiclassical
model [45,46,48], we estimate an average time between
collisions of 35 ms for two atoms at 50 μK in this trapping
configuration [62], in reasonable agreement with our
observations.
Our data can also be used to characterize the amount of

heating in an individual inelastic light-induced collision. As
described above, we observe time traces that correspond to
two types of collisions: traces with a sudden decrease in
coupling to a new constant level can be associated with the

colliding atoms leaving the trap, while traces with a sudden
decrease followed by a slow increase in cavity coupling,
either to the original level or to a lower level, can be
attributed to one or both atoms remaining in the trap and
being recooled to the cavity mode center. Figure 3(b)
quantifies this increase in cavity coupling that often follows
a collision: the distribution of coupling increases shows
distinct peaks. For instance, when only a small amount of
coupling (∼10%) is regained after a collision, we interpret
this to indicate that one of the colliding atoms has left the
trap, whereas a larger coupling gain likely indicates the
retention and recooling of both atoms. We find that about
half of the observed collisions are followed by an increase
in cavity coupling, suggesting the retention of one or both
atoms, while the other half of the observed collisions
correspond to the loss of both atoms. The sum of the
probabilities below jΔTj < 0.15 in Fig. 3(b) provides an
upper-bound of ∼15% probability to lose only one atom
after a collision. Collisions that result in the loss of only one
atom are known to result in an average loading probability
for one atom of over 50% [69–72]. In our experiment,
collisional blockade loads a single atom 55% of the time,
consistent with only a slight bias from the single atom
retention. From the semiclassical model for collisions, we
expect 27% of collisions to impart energy less than the trap
depth [62], consistent with the observation of Fig. 3(b) that
∼35% of collisions retain both atoms.
Finally, we implement a cavity-measurement-based

adaptive feedback protocol for quasideterministic loading
of a single atom starting with a small ensemble prepared in
the F ¼ 3 manifold. A weak repump pulse transfers atoms
into F ¼ 4 manifold and the atom number in F ¼ 4 is
probed intermittently via the cavity. Once a single atom is
repumped, an intense laser beam tuned to the jF ¼ 3i →
jF0 ¼ 2i transition is applied to push out the remaining
atoms. The magnetic fields and laser polarization of the
push beam are chosen to minimize the role of a dark
state [62].
Figures 4(a) and 4(b) show the performance of the

adaptive procedure when preparing a single atom starting
from several atoms in four tweezers and in a single dipole
trap, respectively. The multitrap and single-trap datasets use
atomic detuning of Δ=ð2πÞ ¼ −73 and −58 MHz, respec-
tively, in order to more clearly distinguish cavity trans-
mission for one atom from that for other atom numbers.
To avoid trivial procedures where we start and end with

one atom or no atom at all, we postselect the datasets on
having an initial atom number greater than or equal to 2, as
measured by the cavity transmission at the end of the initial
optical pumping. The success probability of the adaptive
procedure is 92(2)%, with an average time to success of
about 15 ms, both when loading from four tweezers and
from a single trap. The similar performance of the adaptive
protocol in these two cases demonstrates that the pulsed
interrogation protocol can minimize collisional loss.

(a) (b)

FIG. 3. Analysis of atomic collisions. (a) Probability distribu-
tion of the collision times from time traces as in Fig. 2(d). Several
atoms are loaded at t ¼ 0 into a single dipole trap. We identify
atomic collisions as abrupt increases in transmission that corre-
spond to an apparent loss of more than one atom. The inset shows
the number of observed atomic collisions before a steady state
with zero or one atoms is reached. (b) Histogram of the slow
increase in cavity coupling 1 − T that follows 50% of the detected
atomic collisions. We observe a peak consistent with retention
of one atom after collisions (jΔTj ∼ 0.12), as well as greater
increases in coupling (jΔTj > 0.15) indicating no loss of atoms.
Changes jΔTj ≤ 7% are consistent with shot noise and not
considered.
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The success of the protocol is limited by the incomplete
ejection of atoms in the F ¼ 3 manifold [62]. We estimate
that with improved ejection, as has been demonstrated
in [73–76], the protocol could have attained success
probabilities of 99%.
The techniques demonstrated here could be expanded

in several directions. Adaptive feedback can be combined
with machine learning to enhance speed and efficiency
[77,78]. Parallelized, near-deterministic loading of single
atoms in cavity arrays could circumvent tweezer rearrange-
ment [79,80], which currently is much slower for large
arrays than the millisecond timescale for success demon-
strated here. Dynamic adjustment of the atomic detuning in
our protocol could allow for studies of molecular formation
[50,81]. Adaptive feedback also holds promise for mid-
circuit operations for quantum computation [18,21,82–86].
Future implementations of adaptive protocols could
improve performance using cavities optimized for readout
speed, by shortening the cavity length to increase the
linewidth.
In summary, we have realized nondestructive atom

counting in real-time through measurements of cavity
transmission using a high-cooperativity bow-tie cavity.
This measurement enables continuous, time-resolved prob-
ing of two-body collisional dynamics of atoms within the
same trap. Our Letter opens up many new opportunities
from the fundamental atomic physics of cold atom colli-
sions and chemical reactions to advancements of neutral-
atom quantum information processors.
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