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Quantum frustrated Wigner chains
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A Wigner chain in a periodic potential is a paradigmatic example of geometric frustration with long-range
interactions. The dynamics emulates the Frenkel-Kontorova model with Coulomb interactions. In the continuum
approximation, dislocations are sine-Gordon solitons with power-law decaying tails. We show that their action is
mapped into a massive, long-range (1+1) Thirring model, in which the solitons are charged fermionic excitations
over an effective Dirac sea. We identify the corresponding mean-field theory and show that the Coulomb
interactions destabilize structures commensurate with the periodic substrate, suppressing their onset and giving
rise to interaction-induced lubrication. Our study identifies the role of long-range interactions on determining
nanofriction. Our predictions can be probed in state-of-the-art trapped ion experiments.
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I. INTRODUCTION

Geometric frustration describes the impossibility for a sys-
tem to simultaneously minimize all competing interactions
owing to its geometry [1,2]. The competition of ordering
mechanisms often gives rise to phase transitions, such as
the paradigmatic Aubry transition and the commensurate-
incommensurate phase transition, separating a gapped ordered
phase from a phase where the formation of defects becomes
energetically favorable [3,4]. These phase transitions encom-
pass several phenomena encountered in material science and
condensed matter [5–7] and are paradigmatic models for
tribology [7].

Several paradigms of frustration of condensed matter,
where interactions are typically short range, change substan-
tially in the presence of long-range interactions. For two-body
potentials V (r) scaling with the distance r as V (r) � 1/rd ,
with d the spatial dimensions, the energy becomes nonad-
ditive [8] and domain walls are energetically unfavorable
[9,10]. This gives rise to equilibrium and static properties,
which can be quite different from the short-range counter-
part. In the transverse-field Ising model, for instance, the
interplay of long-range interactions with quantum fluctua-
tions confine excitations [11]. In the Bose-Hubbard model,
global interactions give rise to exotic phases of ultra-
cold matter [12–14]. Recent studies predict that long-range,
nonadditive interactions can stabilize continuous symmetry
breaking phases in the quantum XXZ model in one dimen-
sion [15] and suppress the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition in the two-dimensional XY model,
giving instead rise to an order-disorder phase transition
as a function of the temperature [16,17]. Interestingly, the
commensurate-incommensurate transition in one dimension
and for short-range interactions is a BKT phase transition. In
the context of tribology, this leads to the question of the role of
long-range interactions in determining sliding. This question
is important for material science and engineering and, at the

same time, for our fundamental understanding of the interplay
between frustration and long-range, nonadditive forces.

In this paper, we unveil the tight connection among
frustration, long-range interactions, and sliding in one di-
mension by analyzing the ground-state properties of the
Frenkel-Kontorova (FK) model with long-range interactions.
The FK model describes an array of particles interacting with
elastic forces and confined by a periodic potential, repre-
senting an underlying substrate [4,18]. For nearest-neighbor
interactions, its ground-state phase diagram includes the
Aubry and the commensurate-incommensurate transition. The
ground state is a nonanalytic function of the mismatch be-
tween the substrate periodicity and the array’s characteristic
length, taking the form of a Devil’s staircase of commensu-
rate structures [5,19]. The transition to the incommensurate,
sliding phase is discontinuous and occurs when the energy to
create a dislocation (kink) vanishes, leading to kinks prolifer-
ation [5,6,20]. In the continuum limit the kinks [see Fig. 1(a)]
are sine-Gordon solitons [20–22].

The FK model can be emulated by ultracold atomic gases
[6,23,24]. Among the different platforms, chains of laser-
cooled, self-organized arrays of ions in traps have been at
the center of theoretical [25–29] and experimental studies
[30–34]. The FK model is here realized by coupling the ions
with an optical lattice, acting as substrate periodic potential
[30–32], or in a similar setting where two chains are sliding
on top of each other [33,34]. In these experiments the kinks
statistics and dynamics could be measured [32,34], providing
insightful information on the microscopic dynamics of the
onset of friction. The experimental level of control opens the
way towards studying quantum nanofriction, where tunneling
is expected to support lubrication [32,35–40]. The Coulomb
interactions characteristic of trapped ions, however, is long-
range and nonadditive. These have important consequences:
In the absence of a substrate, the decay of the correlations
with the distance in one dimension is slower than a power
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FIG. 1. (a) Schematic representation of the Wigner crystal con-
fined by an optical lattice. The substrate potential leads to dislocation
of the ions from the crystal’s equilibrium position. (b) The dislo-
cations (solitons) are displayed as phase shift θ (x) along the chain
axis x (orange). The first-order derivative of θ (x) (blue) displays
local maxima where the solitons are located. The solitons behave
as interacting charges (yellow). (c) In the Thirring model the solitons
are positive-energy excitation over a filled Dirac sea, where the gap is
the soliton mass M0. The phase is commensurate when the chemical
potential h′ ∝ δ falls within the gap. For h′ > M0, the solitons pro-
liferate and the phase is incommensurate. (d) Solitons are interacting
spin defects (in orange) in the staggered ordering of a long-range
interacting XXZ antiferromagnetic spin chain.

law, and any finite chain is a one-dimensional Wigner crystal
[41]. In the presence of the substrate, the soliton’s width
(mass) exhibits an anomalous dependence on the chain size
[42], which contrasts with the finite, size-independent mass
for power-law interactions of models with additive energy
[23]. Chains of charged particles, thus provide a platform
for verifying theories and conjectures about the interplay of
quantum fluctuations, long-range interactions, and frustration
[15–17]. The Coulomb soliton’s quantum dynamics and the
nature of the corresponding commensurate-incommensurate
phase transition are the objects of this study.

II. SOLITONS IN A FRUSTRATED WIGNER CHAIN

We consider N charged particles of mass m and confined
along a chain of length L. For periodic boundary conditions
the Coulomb repulsion is minimized by an ordered struc-
ture of periodicity d0 = L/N , where the ions are localized
at the equilibrium positions x(0)

j = jd0 ( j = 1, . . . , N). The
Hamiltonian describing the harmonic vibrations about the
equilibrium configuration reads [41,43]

HWigner =
∑

j

p2
j

2m
+ K

2

∑
j

∑
r>0

(x j+r − x j − rd0)2

r3
,

with p j and x j canonically conjugated variables and K the
stiffness. Frustration is introduced by a sinusoidal potential
of depth V0 and periodicity a, see Fig. 1(a). When the inter-
particle distance is larger than the periodicity (d0 � a), the
new Hamiltonian is HFK = HWigner − ∑

j V0 cos(2πx j/a) and
the equations of motion describe a set of coupled pendula.
Let uj denote the static particle displacement of the equilib-
rium positions x(0)

j from the periodic ordering of a Wigner

crystal jd0, u j = x(0)
j − jd0. A finite value of the mismatch

δ between Wigner and lattice periodicity breaks the discrete
translational symmetry, δ = (d0 − n0a)/a (with n0 ∈ N such
that 0 < δ < 1). A dislocation is captured by the behavior of
the phase

θ j = 2π

a
(u j + jaδ)

as a function of j, see Fig. 1(b). In the continuum limit
θ j (t ) → θ (x, t ), where x is the dimensionless position along
the chain in units of the mean interparticle spacing d0. The
dynamics of the field θ (x, t ) is governed by a modified sine-
Gordon equation [42,44,45]

1

v2
s

∂2
t θ = ∂2

x θ − M2 sin θ

+ 1

3
∂x

∫ N/2

1

∂xθ (x + u) + ∂xθ (x − u)

u
du , (1)

where the integral term accounts for the long-range Coulomb
repulsion and is obtained by partial integration, after discard-
ing edge effects {see Ref. [42] and the Supplemental Material
(SM) A [46]}. The equation is parametrized by a velocity
vs = √

3K/(2m) and by a mass term M =
√

8π2V0/(3Ka2),
the solutions shall satisfy the constraint given by the mis-
match δ. In the short-range FK model the integral term
vanishes and the solution is a sine-Gordon soliton [20–22]:
vs is then the sound velocity and M the soliton mass. The
kink’s length is proportional to d0/M and the validity of
the continuum approximation requires M � 1. The action
of the sine-Gordon soliton can be mapped to the one of a
solvable model of quantum field theory, the (1+1) massive
Thirring model [47–49], thereby connecting dislocations in a
lattice with fermionic excitations over a Dirac vacuum. Here,
the mismatch δ is an effective chemical potential and the
commensurate-incommensurate transition a BKT [50].

We now turn to the full Coulomb model. In the SM [46] we
show that Eq. (1) is the Euler-Lagrange equation of the action,

S[θ ] = 1

β2

∫
dτdx

[
1

2
(∂τ θ )2 − 1

2
(∂xθ − 2πδ)2 + M2 cos θ

− 1

6

∫ N/2

1

du

u
(∂xθ (x) − 2πδ)(∂xθ (x + u)

+ ∂xθ (x − u) − 4πδ)

]
, (2)

which differs from the action of the sine-Gordon model by an
additional integral term, representing soliton-soliton Coulomb
interactions [51]. This is strikingly different from the short-
range case, where the solitons do not interact. The quantum
field θ (x, τ ) and its conjugate ∂τ θ (x, τ ) satisfy the equal-time
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commutator [θ (x, τ ), ∂τ θ (x′, τ )] = iβ2δ(x − x′), where τ =
vst is the rescaled time and β2 = ( 2π

a )2
√

2h̄2

3mK is an effective
Planck constant, corresponding to the ratio between kinetic
and Coulomb characteristic energy. The dynamics is now
fully determined by the soliton mass M, the effective Planck
constant β2, and the mismatch δ.

III. THE LONG-RANGE THIRRING MODEL

In order to study the implications on the commensurate-
incommensurate phase transition, we perform a mapping to a
quantum lattice-gauge theory model. We use Mandelstam’s
definition of a soliton field and consider the spinor ψ† =
(ψ†

1 , ψ
†
2 ) with components [49]

ψ j (x)= i( j−1)

√
2π

exp

(
−2π i

β

∫ x

−N/2
∂τ θ (u)du + (−1) j iβ

2
θ (x)

)
,

(3)

where now kink and antikink are fermion fields ( j = 1, 2)
with a different chirality. We linearize ψ j (x) for slowly vary-
ing soliton fields (|∂τ θ |, |∂xθ | � 1) and bring the action to the
Hamiltonian form H = ∫

dx(H(x) − h′ρ(x)) where ρ(x) =
ψ†ψ is the fermions density [46,49] and h′ the chemical
potential,

h′ = δ

(
2π

β

)2(
1 − 2 ln 2

3
+ 2

3
ln N

)
. (4)

As for the short-range model, the chemical potential is pro-
portional to the mismatch. However, it now also includes the
contribution of the Coulomb self-energy, which depends on
N . The Hamiltonian density H(x) is a long-range and massive
(1+1) Thirring model,

H(x) = − icψγ 1∂xψ + g

4
(ψγ μψ )(ψγμψ ) + M0ψψ

+ (2π )2

6β2

∫ N/2

1

du

u
ρ(x)(ρ(x + u) + ρ(x − u)), (5)

with the adjoint spin ψ ≡ ψ†γ 0 and μ = 0, 1 such that
γ 0 = σ z, γ 1 = iσ y. The dimensionless variables are the mass
M0 = πM2

β2 and the speed c = 2π
β2 + β2

8π
. The fermions dis-

play Coulomb density-density interactions, which scale as
N ln N/β2, and contact interactions, scaling as gN with
g = ( 2π

β
)2 − ( β

2 )2. The mapping to the long-range Thirring
Hamiltonian establishes an explicit link between frustration
in a Wigner chain and a long-range quantum field theory.
Now, the commensurate structure is gapped, with the filled
Dirac sea of all negative-energy states, see Fig. 1(c), and
the chemical potential set below the gap, h′ < M0. The topo-
logical defects are charged fermionic excitations at positive
energy, their energy cost is the rescaled soliton mass M0. For
h′ > M0 the energy for creating a soliton vanishes and the
phase is incommensurate. The dependence on the chain size,
h′ ∼ ln N , indicates that the Coulomb interactions dominate,
thus that it is energetically convenient to form a soliton. We
thus expect no BKT transition as a function of M0, in contrast
with the nearest-neighbor case.

IV. THERMODYNAMIC LIMIT

The phases in the thermodynamic limit can be extracted by
mapping the Thirring Hamiltonian H into a lattice model of
interacting fermions with a site-dependent chemical potential
[52,53]. The procedure extends the one illustrated in Ref. [50]
to the long-range case and is detailed in SM B [46]. The
Thirring Hamiltonian is equivalent to a XXZ Hamiltonian of
spin- 1

2 particles in an external field: ĤAFM = Ĥ (0)
AFM + Ĥ (c)

AFM,
where Ĥ (0)

AFM is a nearest-neighbor XXZ model,

Ĥ (0)
AFM = − c

2

∑
n

(σ̂+
n σ̂−

n+1 + σ̂−
n σ̂+

n+1) + g

2

∑
n

σ̂ z
n σ̂ ,z

n+1 ,

(6)

while the mismatch and Coulomb interactions are contained
in the Hamiltonian term

Ĥ (c)
AFM =

∑
n

((−1)nM0 − h′)σ̂ z
n + 2π2

3β2

∑
n

∑
r,|r|>1

1

|r| σ̂
z
n σ̂ z

n+r .

(7)

Hamiltonian ĤAFM describes the full extent of the quantum
behavior of a Wigner crystal in contact with a substrate.
It encompasses the commensurate-incommensurate transition
heralding the reorganization of the charged particles to fit the
substrate’s periodicity, with control field h′. In turn, the am-
plitude M0 of the staggered field controls the Aubry transition
signaling the pinning of the crystal to its substrate. Now, for
h′ = 0 the substrate imposes staggered order of the spins and
the phase is an antiferromagnet. The homogeneous magnetic
field h′(the mismatch) tends to flip spins in the up-oriented
direction, therefore introducing defects (solitons) in the spin
chain, as illustrated in the lower panel of Fig. 1(d).

The scaling of the terms in Eq. (7) with N is crucial. In
fact, the nonadditivity of the Coulomb interactions leads to
the scaling N ln N . We apply Kac’s scaling, which restores
the energy extensivity of long-range systems [8]. This is
equivalent to the prescription K = K0/ ln N , which warrants
that the Coulomb energy

∑
i, j q2/(d0|i − j|) ∼ KN ln N =

K0N becomes extensive in the thermodynamic limit [42,54].

As a consequence, β2 = β2
0

√
ln N with β2

0 = ( 2π
a )2

√
2h̄2

3mK0

the rescaled Planck’s constant after Kac’s prescription. For
large chains, N � 1, then the Hamiltonian terms scale as
Ĥ (0)

AFM ∼ O(β2
0 ) and Ĥ (c)

AFM ∼ O(1/β2
0 ), see SM C [46]. Thus,

for β2
0 � 1 the ground state is the one of the short range XXZ

Hamiltonian with fixed values of c and g. In this regime
quantum fluctuations dominate and the phase is incommen-
surate. In the opposite limit, β2

0 � 1, interactions dominate.
In this limit the short-range model predicts a fractal structure,
corresponding to a Devil’s staircase of commensurate phases
as a function of the mismatch. We now analyze this limit for
the Coulomb case.

V. DEVIL’S STAIRCASE

Hamiltonian (7) is diagonal in the basis of σ
j

z + 1, the
eigenstates are strings {σ j} with σ j = 0, 1 with eigenvalues

Emf [{σ j}] = 1

2

∑
i, j

J0

|i − j|σiσ j −
∑

i

B̃iσi , (8)
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FIG. 2. The range of stability of some commensurate phases of
Eq. (8) as a function of the mismatch δ forms a Devil’s staircase. The
commensurate phases are here some fraction k = 1/n of up-oriented
spins, with n ∈ N. (Inset) The width of the plateau (here for the
fraction k = 1/6) decreases as a function of ln N , showing that the
steps of the staircase shrink in the thermodynamic limit. The fraction
is computed using the method of Ref. [55] for a chain of Ns = 200
spins and for M̃ = 0.05.

The commensurate configurations are here characterized by
the density k = 1/n of up-oriented spins (magnetization)
with n ∈ N and their stability are determined by the inter-
play of antiferromagnetic interactions, with amplitude J0 =
γ /(2 ln N ), and a magnetic field B̃i = γ (δ − M̃(−1)i ), with
γ = 8π2/(3β2

0 ) a scaling factor and M̃ = V0/(K0a2) ∝ M2.
At fixed mismatch and varying potential depth, the field B̃i

controls the Aubry transition from sliding to pinned phase
[19,56]. Instead, at fixed potential depth V0, B̃i controls the
transition to an incommensurate structure. Figure 2 shows that
the commensurate configurations form a Devil’s staircase as a
function of the mismatch δ. This is consistent with the pre-
diction of analogous antiferromagnetic spin models [57,58].
The inset of Fig. 2 shows that the plateaus decrease as 1/ ln N
suggesting that the staircase disappears in the thermodynamic
limit. We confirm this behavior following the argument of
Ref. [57]. Consider a commensurate configuration at δ = 0
with magnetization k = r/n with r, n ∈ N. The transition to an
incommensurate structure occurs for the values of δ at which
flipping a spin has zero energy cost, and occurs at the mini-
mum δmin and maximum value δmax of the mismatch, while for
δ ∈ (δmin, δmax) the ground state is gapped and the commen-
surate phase stable. The interval’s width �δ = δmax − δmin is
the size of the plateau, it depends on k = r/n, and for n even
it takes the form

�δ ≈ 1

ln N

+∞∑
p=1

1

p2n2 − 1
≈ ζ (2)

n2 ln N
. (9)

This demonstrates that the gap of the commensurate phases
scale with 1/ ln N and the Devil’s staircase disappears in
the thermodynamic limit. This result is consistent with the
result of [59], indicating that the fractal dimension of the
ground state of Eq. (8) is unity. Hence, Coulomb interactions
destabilize the commensurate structure, inducing sliding.

Remarkably, defects are effective charges that interact sug-
gesting that the gapless, sliding phase can exhibit long-range
order.

VI. EXPERIMENTAL REALIZATIONS

Our study shows that the phase diagram is determined by
the effective Planck’s constant β2. In ion chains β2 can be
tuned by changing the ratio a/d0 and can take values ranging
from ∼10−4, deep in the interaction-induced sliding phase, to
∼0.1, where quantum lubrication is expected. Since the size
of the commensurate phase vanishes with 1/ ln N , a Devil’s
staircase is measurable in any finite chain when the temper-
ature T is smaller than the gap. In Ref. [60] we report for
a theoretical analysis based on the discrete charge distribu-
tion, which confirms these results. Using the parameters of
Ref. [31], for a chain of 100 173Yb+ ions with interparticle
distance d0 = 6 µm and lattice periodicity a = 185 nm, steps
of the Devil’s staircase with magnetization k = 1/n shall be
visible for T � 1 mK/n [60] and features of quantum tunnel-
ing of the solitons [39] can be observed in the spectrum. One
assumption of our study is the equidistance of the ions. This is
realized in ring traps [61] or in the central region of large ion
chains in linear Paul traps [62] (see [63] for the definition of
the mismatch). We note, nevertheless, that a numerical study
for five ions in a linear Paul trap [38] is qualitatively consistent
with our predictions.

VII. CONCLUSIONS

We have derived a theoretical framework that allows us
to systematically account for geometric frustration, Coulomb
interactions, and quantum fluctuations, exploring the long-
range regime that separates the additive from the nonadditive
energy model and eluded previous theoretical investiga-
tion on frustration with long-range potentials [15–17]. Our
model permits us to identify the relevant parameters and
to show that long-range, nonadditive interactions destabi-
lize commensurate structures in one dimension, giving rise
to interaction-induced lubrication. Our predictions can be
probed in systems with trapped ion chains. This framework
paves the way for studying the nature of defects in one-
dimensional long-range interacting systems, finding relevant
connections with lattice-gauge theoretical models and with the
fractional quantum Hall effect [64–66], as well as enabling
their simulation with ion chains.
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APPENDIX A: DERIVATION OF THE (1+1)-THIRRING
MODEL WITH LONG-RANGE INTERACTIONS

Considering N ions of mass m forming a Wigner crystal
of stiffness K , the local phase shift θ j attached to the jth ion
follows the the classical equation of motion

mθ̈ j −
∑
r =0

K

|r|3 (θ j+r − θ j − 2πδr) + (2π )2V0

a2
sin θ = 0,

where δ is the discommensuration. In the limit where the
phase shifts θ j can be treated as one single field θ (x, t ) (where
x is expressed in units of d0) whose equation of motion is the
one given by Eq. (1),

1

v2
s

∂2
t θ = ∂2

x θ − M2 sin θ

+ 1

3
∂x

∫ N/2

1

∂xθ (x + u) + ∂xθ (x − u)

u
du,

with vs =
√

3K
2m and M = 2π

a

√
2V0
3K .

As for the short-range case, the long-range sine-Gordon
model is the Euler-Lagrange equation of the Lagrangian den-
sity L, which gives the action S of Eq. (2). Indeed, one
recognizes in Eq. (1) a d’Alembert operator describing the
propagation of the field θ (x, t ), leading to the first part of the
action

S1 =
∫ (

1

2v2
s

(∂tθ )2 − 1

2
(∂xθ )2

)
dx.

The nonlinear sine term of the Euler-Lagrange equation, how-
ever, stems from a potential leading to a second contribution

S2 =
∫

M2 cos θ dx.

We recover then the form of the usual sine-Gordon action. The
integral term on the other hand results from a third contribu-
tion S3 = ∫

L3dx such that

∂x
∂L3

∂ (∂xθ )
= 1

3
∂x

∫ N/2

1

∂xθ (x + u) + ∂xθ (x − u)

u
du.

The integration of the partial derivative with respect to the
variable ∂xθ gives rise to a Coulomb-like repulsive interaction
between the centers of the solitons, taking the form

S3 = −1

6

∫∫
∂xθ (x)∂xθ (x′)

|x − x′| dx′dx.

This integral can be split into two contributions via the change
of variable x′ = x ± u, depending on the position of x′ relative
to x, with u spanning the interval [1, N/2].

We note that the discommensuration δ is absent from the
Euler-Lagrange equation and from the total action S = S1 +
S2 + S3. Yet, it is essential to determine the ground state of
the system as δ introduces constraints on the solution of the
Euler-Lagrange equation to be energetically favorable. This
constraint can be implemented via the prescription θ (x) →
θ (x) − 2πxδ. After rescaling the time τ = vst we recover the
action displayed on Eq. (2).

The mapping on the action, Eq. (2), to the Thirring model
is performed by fermionizing the bosonic field θ (x, τ ) and
its conjugate θ̇ (x, τ ) = ∂τ θ (x, τ ). Two fermionic species with
different chirality are introduced by the Mandelstam transfor-
mation [49],

ψ1(x) = 1√
2π

exp

(
−2π i

β

∫ x
−∞ θ̇ (u)du − iβ

2
θ (x)

)
,

ψ2(x) = i√
2π

exp

(
−2π i

β

∫ x
−∞ θ̇ (u)du + iβ

2
θ (x)

)
.

Assuming that the soliton field θ (x, τ ) is slowly varying,
then the Baker-Campbell-Hausdorff formula

eAeB = eA+Be[A,B]/2,

in the case where the commutator [A, B] is a scalar quantity
leads to the relation

ψ
†
1 (x + 1)ψ1(x) = − i√

2π
exp

[
2π i

β
θ̇ (x) + iβ

2
θ ′(x)

]

� − i

2π
+

(
1

β
θ̇ (x) + β

4π
θ ′(x)

)
,

where θ ′(x) = ∂xθ (x). A renormalization of the total fermion
number ψ†ψ = ψ

†
1 ψ1 + ψ

†
2 ψ2, eliminates the constant term

in the previous expression. We use then the approximation
ψ

†
j (x + 1)ψ j (x) = ψ

†
j (x)ψ j (x), to derive the relations

β

2π
θ ′(x) = ψ

†
1 (x)ψ1(x) + ψ

†
2 (x)ψ2(x),

2

β
θ̇ (x) = ψ

†
1 (x)ψ1(x) − ψ

†
2 (x)ψ2(x),

cos(βθ (x)) = −π (ψ†
1 (x)ψ2(x) + ψ

†
2 (x)ψ1(x)).

Additionally, the local density of fermions can be related to
kinetic effects via the relations

iψ†
1 (x)∂xψ1(x) = π (ψ†

1 (x)ψ1(x))2

−iψ†
2 (x)∂xψ2(x) = π (ψ†

2 (x)ψ2(x))2.

As a result, following the substitution θ → βθ , the long-range
sine-Gordon Hamiltonian reading

H =
∫

dx

[
1

2
θ̇2(x) + 1

2

(
θ ′(x) − 2πδ

β

)2

− M2

β2
cos (βθ (x))

+ 1

6

∫ N/2

1

du

u

(
θ ′(x)

)
(θ ′(x + u) + θ ′(x − u))

]

−4πδ

3β
ln

(
N

2

) ∫
dxθ ′(x)
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transforms into a fermionic Hamiltonian

H =
∫

dx
[
icψ†σ z∂xψ + gψ†

1 ψ1ψ
†
2 ψ2 + M0ψ

†σ xψ

+ (2π )2

6β2

∫ N/2

1

du

u
ρ(x)(ρ(x + u) + ρ(x − u))

]

−h′
∫

dxρ(x).

The speed of light c, the contact interaction g, the fermion
mass M0 and the chemical potential h′ follow the definitions
introduced in the main text.

This Hamiltonian describes the behavior of the system
in the Weyl representation of fermionic fields. We can cast
the model in Dirac representation via the transformation
ψ → Sψ , where the matrix S reads

S = 1√
2

(
1 1
1 −1

)
.

According to this prescription, Sσ xS = σ z and Sσ zS = σ x.
The Hamiltonian can then be expressed as in Eq. (5), namely
as H = H0 − h′ ∫ dxρ(x), where

H0 =
∫

dx

[
− icψγ 1∂xψ + g

4
(ψγ μψ )(ψγμψ ) + M0ψψ

]

+ (2π )2

6β2

∫
dx

∫ N/2

1

du

u
ρ(x)(ρ(x + u) + ρ(x − u)).

The Dirac gamma matrices here read then γ 0 = σ x and
γ 1 = iσ y.

APPENDIX B: DISCRETIZATION OF THE FIELDS

The (1+1)-Thirring Hamiltonian is discretized following
the prescription: we introduce a single discrete fermionic field
whose value on even sites correspond to ψ1 and to ψ2 on odd
sites, hence ψ1(x = n) ≡ f̂2n and ψ2(x = n) ≡ f̂2n+1 . There-
fore, integrals transform into discreet sums as

∫
dx → ∑

n
and the Thirring model becomes

Ĥ = − ic

2

∑
n

( f̂ †
n+1 f̂n − f̂ †

n f̂n+1) + g

2

∑
n

f̂n+1 f̂n+1 f̂n f̂n

+
∑

n

((−1)nM0 − h′) f̂ †
n f̂n

+2π2

3β2

∑
n

∑
|r|>1

1

|r| f̂ †
n f̂n f̂ †

n+r f̂n+r .

Discretized fermionic systems can be mapped onto spin
models by the means of a Jordan-Wigner transformation
that identifies the local number of fermions to the orien-
tation of a spin- 1

2 , namely |1〉 ↔ | ↑〉 and |0〉 ↔ | ↓〉. As
a result, one can deduce a simple relation betwwen the
fermionic and the spin operators: f̂ †

n f̂n = Ŝz
n + 1

2 = σ̂ z
n . And to

reconcile both the fermionic and SU (2) spin algebra, the spin-
fermion transformation yields σ̂−

n = exp[−iπ
∑

k<n f̂ †
k f̂k] f̂n

and σ̂+
n = f̂ †

n exp[−iπ
∑

k<n f̂ †
k f̂k]. The corresponding spin-

Hamiltonian then takes the form of the XXZ model with

site-dependent magnetic field and long-range Ising interac-
tions of Eq. (7).

APPENDIX C: KAC SCALING AND MEAN-FIELD LIMIT

In the following, we discuss the derivation of the mean-
field model by means of the rescaling of the spring stiffness.
In one dimension, the energy contribution of Coulomb inter-
actions scales as N ln N . We apply the so called Kac scaling
K = K0/ ln N , with K0 independent of N . This is equivalent
to rescaling the charge or the interparticle distance d0 [67].
Using this scaling then β2 = β2

0

√
ln N where

β2
0 =

(
2π

a

)2
√

2h̄2

3mK0
(C1)

is the rescaled Planck’s constant. Consequently

c = β2
0

√
ln N

8π
+ 2π

β2
0

√
ln N

,

g = −β2
0

√
ln N

4
+ 4π2

β2
0

√
ln N

.

At leading order in an expansion in 1/ln N then

c ∼ β2
0

8π

√
ln N,

g ∼ −β2
0

4

√
ln N .

Moreover, using Kac’s scaling the soliton mass acquires a
scaling with

√
ln N from the dependence on both the stiffness

K as well as from β2,

M0 =
(

8π2

3β2

πV0

K0a2

)√
ln N . (C2)

With this prescription, the scaling of the uniform magnetic
field becomes

h′
N ≈ 8π2

3β2
0

δ
√

ln N . (C3)

Finally, the Coulomb interaction term is now multiplied by the
factor 2π2/(3β2

0

√
ln N ). After collecting the common factor√

ln N (which was introduced by the time rescaling t → τ ),
the XXZ Hamiltonian, Eq. (7), takes the form

ĤAFM = − β2
0

8π

∑
n

(σ̂+
n σ̂−

n+1 + σ̂−
n σ̂+

n+1) − β2
0

8

∑
n

σ̂ z
n σ̂ z

n+1

+ 8π2

3β2
0

∑
n

(
(−1)n πV0

K0a2
− δ

)
σ̂ z

n

+ 2π2

3β2
0 ln N

∑
n

∑
|r|>1

1

|r| σ̂
z
n σ̂ z

n+r ,

which is now extensive. With this rescaling, now for
β2

0 � 1 the ground state is the one of the short range XXZ
Hamiltonian while for β2

0 � 1 the Hamiltonian reduces to
Eq. (8). Note that the limit N → ∞ does not commute with
the expansion on β0, a property characteristic of long-range
interactions [8,17,54].
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nanofriction: Structural phases in few-atom chains, Phys. Rev.
Res. 2, 013380 (2020).

[33] J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, and
T. E. Mehlstäubler, Probing nanofriction and Aubry-type signa-
tures in a finite self-organized system, Nat. Commun. 8, 15364
(2017).

[34] J. Kiethe, R. Nigmatullin, T. Schmirander, D. Kalincev, and
T. E. Mehlstäubler, Nanofriction and motion of topological
defects in self-organized ion Coulomb crystals, New J. Phys.
20, 123017 (2018).

[35] T. Zanca, F. Pellegrini, G. E. Santoro, and E. Tosatti, Frictional
lubricity enhanced by quantum mechanics, Proc. Natl. Acad.
Sci. USA 115, 3547 (2018).

[36] F. R. Krajewski and M. H. Müser, Quantum creep and quantum-
creep transitions in 1D sine-Gordon chains, Phys. Rev. Lett. 92,
030601 (2004).

[37] F. R. Krajewski and M. H. Müser, Quantum dynamics in the
highly discrete, commensurate Frenkel Kontorova model: A
path-integral molecular dynamics study. J. Chem. Phys. 122,
124711 (2005).

[38] P. M. Bonetti, A. Rucci, M. L. Chiofalo, and V. Vuletić, Quan-
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