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Logical quantum processor based on 
reconfigurable atom arrays


Dolev Bluvstein1, Simon J. Evered1, Alexandra A. Geim1, Sophie H. Li1, Hengyun Zhou1,2, 
Tom Manovitz1, Sepehr Ebadi1, Madelyn Cain1, Marcin Kalinowski1, Dominik Hangleiter3, 
J. Pablo Bonilla Ataides1, Nishad Maskara1, Iris Cong1, Xun Gao1, Pedro Sales Rodriguez2, 
Thomas Karolyshyn2, Giulia Semeghini4, Michael J. Gullans3, Markus Greiner1, 
Vladan Vuletić5 & Mikhail D. Lukin1 ✉

Suppressing errors is the central challenge for useful quantum computing1,  
requiring quantum error correction (QEC)2–6 for large-scale processing. However,  
the overhead in the realization of error-corrected ‘logical’ qubits, in which 
information is encoded across many physical qubits for redundancy2–4, poses 
substantial challenges to large-scale logical quantum computing. Here we report the 
realization of a programmable quantum processor based on encoded logical qubits 
operating with up to 280 physical qubits. Using logical-level control and a zoned 
architecture in reconfigurable neutral-atom arrays7, our system combines high 
two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable 
single-qubit rotations and mid-circuit readout10–15. Operating this logical processor 
with various types of encoding, we demonstrate improvement of a two-qubit logic 
gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code 
qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–
Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well 
as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we 
realize computationally complex sampling circuits18 with up to 48 logical qubits 
entangled with hypercube connectivity19 with 228 logical two-qubit gates and  
48 logical CCZ gates20. We find that this logical encoding substantially improves 
algorithmic performance with error detection, outperforming physical-qubit 
fidelities at both cross-entropy benchmarking and quantum simulations of fast 
scrambling21,22. These results herald the advent of early error-corrected quantum 
computation and chart a path towards large-scale logical processors.

Quantum computers have the potential to substantially outperform 
their classical counterparts for solving certain problems1. However, 
executing large-scale, useful algorithms on quantum processors 
requires very low gate error rates (generally below about 10−10)23, far 
below those that will probably ever be achievable with any physical 
device2. The landmark development of QEC theory provides a con-
ceptual solution to this challenge2–4. The key idea is to use entangle-
ment to delocalize a logical qubit degree of freedom across many 
redundant physical qubits, such that, if any given physical qubit 
fails, it does not corrupt the underlying logical information. In prin-
ciple, with sufficiently low physical error rates and sufficiently many 
qubits, a logical qubit can be made to operate with extremely high 
fidelity, providing a path to realizing large-scale algorithms4. How-
ever, in practice, useful QEC poses many challenges, ranging from 
large overhead in physical qubit numbers23 to highly complex gate 
operations between the delocalized logical degrees of freedom24. 

Recent experiments have achieved milestone demonstrations of 
two logical qubits and one entangling gate5,6 and explorations of new  
encodings25–28.

One specific challenge for realizing large-scale logical processors 
involves efficient control. Unlike modern classical processors that can 
efficiently access and manipulate many bits of information29, quan-
tum devices are typically built such that each physical qubit requires 
several classical control lines. Although suitable for the implementa-
tion of physical qubit processors, this approach poses a substantial 
obstacle to the control of logical qubits redundantly encoded over 
many physical qubits.

Here we describe the realization of a programmable quantum 
processor based on hardware-efficient control over logical qubits in 
reconfigurable neutral-atom arrays7. We use this logical processor to 
demonstrate key building blocks of QEC and realize programmable 
logical algorithms. In particular, we explore important features of 
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logical operations and circuits, including scaling to large codes, fault 
tolerance and complex non-Clifford circuits.

Logical processor based on atom arrays
Our logical processor architecture, illustrated in Fig. 1a, is split into 
three zones (see also Extended Data Fig. 1). The storage zone is used 
for dense qubit storage, free from entangling-gate errors and featuring 
long coherence times. The entangling zone is used for parallel logical 
qubit encoding, stabilizer measurements and logical gate operations. 
Finally, the readout zone enables mid-circuit readout of desired logical 
or physical qubits, without disturbing the coherence of the computa-
tion qubits still in operation. This architecture is implemented using 
arrays of individual 87Rb atoms trapped in optical tweezers, which can 
be dynamically reconfigured in the middle of the computation while 
preserving qubit coherence7,9.

Our experiments make use of the apparatus described previously 
in refs. 7,8,30, with key upgrades enabling universal digital operation. 
Physical qubits are encoded in clock states within the ground-state 
hyperfine manifold (T2 > 1s (ref. 7)) and stored in optical tweezer arrays 
created by a spatial light modulator (SLM)30,31. We use systems of up to 
280 atomic qubits, combining high-fidelity two-qubit gates8, enabled 
by fast excitation into atomic Rydberg states interacting through robust 
Rydberg blockade32, with arbitrary connectivity enabled by atom trans-
port by means of 2D acousto-optic deflectors (AODs)7. Central to our 
approach of scalable control, AODs10–15,31,33 use frequency multiplex-
ing to take in just two voltage waveforms (one for each axis) to create 

large, dynamically programmable grids of light. Fully programmable 
local single-qubit rotations are realized through qubit-specific, paral-
lel Raman excitation through an additional 2D AOD (ref. 34) (Fig. 1b 
and Extended Data Fig. 2). Mid-circuit readout is enabled by moving 
selected qubits about 100 μm away to a readout zone and illuminating 
with a focused imaging beam7,35, resulting in high-fidelity imaging, as 
well as negligible decoherence on stored qubits (Fig. 1c and Extended 
Data Fig. 3). The mid-circuit10–15 image is collected with a CMOS cam-
era and sent to a field-programmable gate array (FPGA) for real-time 
decoding and feedforward.

The central aspect of our logical processor is the control of individual 
logical qubits as the fundamental units, instead of individual physi-
cal qubits. To this end, we observe that, during most error-corrected 
operations, the physical qubits of a logical block are supposed to real-
ize the same operation, and this instruction can be delivered in paral-
lel with only a few control lines. This approach naturally multiplexes 
with optical techniques. For example, to realize a logical single-qubit 
gate2, we use the Raman 2D AOD (Fig. 1b) to create a grid of light beams 
and simultaneously illuminate the physical qubits of the logical block 
with the same instruction. Such a gate is transversal2, meaning that 
operations act on physical qubits of the code block independently. 
This transversal property further implies that the gate is inherently 
fault-tolerant2, meaning that errors cannot spread within the code block 
(see Methods), thereby preventing a physical error from spreading into 
a logical fault. Crucially, a similar approach can realize logical entan-
gling gates2,4. Specifically, we use the grids generated by our moving 
2D AOD to pick up two logical qubits, interlace them in the entangling 
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Fig. 1 | A programmable logical processor based on reconfigurable atom 
arrays. a, Schematic of the logical processor, split into three zones: storage, 
entangling and readout (see Extended Data Fig. 1 for detailed layout). Logical 
single-qubit and two-qubit operations are realized transversally with efficient, 
parallel operations. Transversal CNOTs are realized by interlacing two logical 
qubit grids and performing a single global entangling pulse that excites atoms 
to Rydberg states. Physical qubits are encoded in hyperfine ground states of 
87Rb atoms trapped in optical tweezers. b, Fully programmable single-qubit 

rotations are implemented using Raman excitation through a 2D AOD;  
parallel grid illumination delivers the same instruction to multiple atomic 
qubits. c, Mid-circuit readout and feedforward. The imaging histogram shows 
high-fidelity state discrimination (500 μs imaging time, readout fidelity 
approximately 99.8%; Methods) and the Ramsey fringe shows that qubit 
coherence is unaffected by measuring other qubits in the readout zone (error 
probability p ≈ 10−3; Methods). The FPGA performs real-time image processing, 
state decoding and feedforward (Fig. 4).
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zone and then pulse our single global Rydberg excitation laser to real-
ize a physical entangling gate on each twin pair of the blocks (Figs. 1a 
and 2a). This process realizes a high-fidelity, fault-tolerant transversal 
CNOT in a single parallel step.

Improving entangling gates with code distance
A key property of QEC codes is that, for error rates below some thresh-
old, the performance should improve with system size, associated with 
a so-called code distance4,24. Recently, this property has been experi-
mentally verified by reducing idling errors of a code6. Neutral-atom 
qubits can be idly stored for long times with low errors, and the central 

challenge is to improve entangling operations with code distance. Thus 
motivated, we realize a transversal CNOT gate using logical qubits 
encoded in two surface codes (Fig. 2). Surface codes have stabilizers 
that are used for detecting and correcting errors without disrupting 
the logical state4,24. The stabilizers form a 2D lattice of four-body pla-
quettes of X and Z operators, which commute with the XL (ZL) logical 
operators that run horizontally (vertically) along the lattice (Fig. 2d). 
By measuring stabilizers, we can detect the presence of physical qubit 
errors, decode (infer what error occurred) and correct the error simply 
by applying a software ZL/XL correction24. Such a code can detect and 
correct a certain number of errors determined by the linear dimension 
of the system (the code distance d).

To test the performance of our logical entangling gate, we first initial-
ize the logical qubits by preparing physical qubits of two blocks in |+⟩ 
and |0⟩ states, respectively, and performing a single round of stabilizer 
measurements with parallel operations7. Although this state prepara-
tion is non-fault-tolerant (nFT) beyond d = 3, we are still able to study 
error suppression of the transversal CNOT (Methods). Specifically, we 
prepare the two logicals in state |+L⟩ and |0L⟩, perform the transversal 
CNOT and then projectively measure to evaluate the logical Bell-state 
stabilizers X XL

1
L
2 and Z ZL

1
L
2 (Fig. 2c). For decoding and correcting the 

logical state, we observe that there are strong correlations between 
the stabilizers of the two blocks (Extended Data Figs. 4 and 5) owing to 
propagation of physical errors between the codes during the transver-
sal CNOT (ref. 36) (Fig. 2b). We use these correlations to improve per-
formance by decoding the logical qubits jointly, realized by a joint 
decoding graph that includes edges and hyperedges connecting the 
stabilizers of the two logical qubits (Fig. 2b, Methods). Using this cor-
related decoding procedure, we measure roughly 0.95 populations in 
the XLXL and ZLZL bases (Fig. 2c), showing entanglement between the 
d = 7 logical qubits.

Studying the performance as a function of code size (Fig. 2d) reveals  
that the logical Bell pair improves with larger code distance, dem-
onstrating improvement of the entangling operation. By contrast, 
we note that, when conventional decoding, that is, independent 
minimum-weight perfect matching within both codes4, is used, the 
fidelity decreases with code distance. This is in part because of the nFT 
state preparation, whose effect is partially mitigated by the correlated 
decoding (Methods).

We emphasize that, although these results demonstrate surpass-
ing an effective threshold for the entire circuit (implying that we 
surpass the threshold of the transversal CNOT), such a threshold 
is higher owing to projective readout after the transversal CNOT. 
In practice, the transversal CNOT should be used in combination 
with many repeated rounds of noisy syndrome extraction6, which is 
expected to have a lower threshold and is an important goal for future  
research.

Fault-tolerant logical algorithms
All logical algorithms we perform in this work are built from trans-
versal gates, which are intrinsically fault-tolerant2. We now also use 
fault-tolerant state preparation to explore programmable logical 
algorithms. We use 2D d = 3 colour codes3,37, which are topological 
codes akin to the surface code, but with the useful capability of trans-
versal operations of the full Clifford group: Hadamard (H), π/2 phase 
(S) gate and CNOT (ref. 37). This transversal gate set can realize any 
Clifford circuit fault-tolerantly. As a test case, here we create a logical 
GHZ state. Figure 3a shows the implementation of a ten-logical-qubit 
algorithm, in which all ten qubits are first encoded by a nFT encoding 
circuit (Methods). Then, five of the codes are used as ancilla logicals, 
performing parallel transversal CNOTs to fault-tolerantly detect errors 
on the computation logicals38, and are then moved into the storage 
zone, in which they are safely kept. Subsequently, four computation 
logicals are used to prepare the GHZ state and logical Clifford rotations 
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Fig. 2 | Transversal entangling gates between two surface codes. a, Illustration 
of transversal CNOT between two d = 7 surface codes based on parallel atom 
transport. b, The concept of correlated decoding. Physical errors propagate 
between physical qubit pairs during transversal CNOT gates, creating 
correlations that can be used for improved decoding. We account for these 
correlations, arising from deterministic error propagation (as opposed to 
correlated error events), by adding edges and hyperedges that connect the 
decoding graphs of the two logical qubits. c, Populations of entangled d = 7 
surface codes measured in the XX and ZZ basis. d, Measured Bell-pair error as a 
function of code distance, for both conventional (top) and correlated (bottom) 
decoding. We estimate Bell error with the average of the ZZ populations and 
the XX parities (Methods). To reduce code distance, we simply remove selected 
atoms from the grid, as shown on the right, ensuring unchanged experimental 
conditions (for d = 3, four logical Bell pairs are generated in parallel). Error bars 
represent the standard error of the mean. See Extended Data Figs. 4 and 5 for 
further surface-code data.
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are used at the end of the circuit for direct fidelity estimation39 and full 
logical state tomography.

We first benchmark our state initialization5,40,41 (Fig. 3b). Averaged 
over the five computation logicals, we find that, by using the 
fault-tolerant initialization (postselecting on the ancilla logical flag 
not detecting errors) our |0L⟩ initialization fidelity is 99.91 %−0.09

+0.04 , 
exceeding both our physical qubit |0⟩ initialization fidelity (99.32(4)% 
(ref. 8)) and physical two-qubit gate fidelity (99.5% (ref. 8)). Then, Fig. 3c 
shows that the resulting GHZ state fidelity obtained using the 
fault-tolerant algorithm is 72(2)% (again using correlated decoding), 
demonstrating genuine multipartite entanglement. Furthermore, we 
can postselect on all stabilizers of our computation logicals being  
correct; using this error-detection approach, the GHZ fidelity increases 
to 99.85 %−1.0

+0.1 , at the cost of postselection overhead.
Because not all nontrivial syndromes are equally likely to cause 

algorithmic failure, we can perform a partial postselection, in which 
syndrome events most likely to have caused algorithmic failure are 
discarded, given by the weight of the correlated matching in the whole 
algorithm. Figure 3d shows the measured GHZ fidelity as a function 
of this sliding threshold converted into a fraction of accepted experi-
mental repetitions, continuously tuning the trade-off between the 
success probability of the algorithm and its fidelity; for example,  
discarding just 50% of the data improves GHZ fidelity to approximately 
90%. (As discussed below, for certain applications, purifying samples 
can be advantageous in improving algorithmic performance.) Finally, 
fault-tolerantly measuring all 256 logical Pauli strings, we perform full 
GHZ state tomography (Fig. 3e).

The use of the zoned architecture directly allows scaling circuits 
to larger numbers, without increasing the number of controls, by 
encoding and operating on logical qubits, moving them to storage 
and then accessing storage as appropriate. This process is illustrated 
in Fig. 4a,b, in which ten colour codes are made and operated on with 
parallel transversal CNOTs, moved to storage and then more qubits are 
accessed from storage. Repeating this process four times, we create 
40 colour codes with 280 physical qubits, at the cost of slow idling 
errors of roughly 1% logical decoherence per additional encoding step 
(Fig. 4c). These storage idling errors primarily originate from global 
Raman π pulses applied for dynamical decoupling of atoms in the 
entangling zone, which could be greatly reduced with zone-specific  
Raman controls.

Because mid-circuit readout10–15 is an important component of logi-
cal algorithms, we next demonstrate a fault-tolerant entanglement 
teleportation circuit. We first create a three-logical-qubit GHZ state 
|0L0L0L⟩ + |1L1L1L⟩ (Fig. 4d,e) from fault-tolerantly prepared colour 
codes. Mid-circuit X-basis measurement of the middle logical creates 
|0L0L⟩ + |1L1L⟩ if measured as |+L⟩ and |0L0L⟩ − |1L1L⟩ if measured as |−L⟩. We 
recover |0L0L⟩ + |1L1L⟩ by applying a logical S gate to the first and third 
logicals conditioned in real time on the state of the middle logical, akin 
to the magic-state-teleportation circuit24. Measurements in Fig. 4e 
indicate that, although ⟨XLXL⟩ and ⟨YLYL⟩ indeed vanish without the 
feedforward step, by applying the feedforward correction, we recover 
a Bell-state fidelity of 77(2)%, limited by imperfections in the original 
underlying GHZ state. By repeating this experiment without mid-circuit 
readout and instead postselecting on the middle logical being in |+L⟩, 
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Fig. 3 | Fault-tolerant logical algorithms. a, Circuit for preparation of logical 
GHZ state. Ten colour codes are encoded non-fault-tolerantly and then parallel 
transversal CNOTs between computation and ancilla logical qubits perform 
fault-tolerant initialization. The ancilla logical qubits are moved to storage  
and a four-logical-qubit GHZ state is created between the computation qubits. 
Logical Clifford operations are applied before readout to examine the GHZ 
state. b, SPAM infidelity of the logical qubits without (nFT) and with (FT)  
the transversal-CNOT-based flagged preparation, compared with physical 

qubit SPAM. c, Logical GHZ fidelity without postselecting on flags (nFT), 
postselecting on flags (FT) and postselecting on flags and stabilizers of the 
computation logical qubits, corresponding to error detection (EDFT). d, GHZ 
fidelity as a function of sliding-scale error-detection threshold (converted into 
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in the circuit. e, Density matrix of the four-logical-qubit GHZ state (with at most 
three flag errors) measured by means of full-state tomography involving all  
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we find a similar Bell fidelity of 75(2)%, indicating high-fidelity perfor-
mance of the readout and feedforward operations.

Complex logical circuits using 3D codes
One important challenge in realizing complex algorithms with logical 
qubits is that universal computation cannot be implemented trans-
versally42. For instance, when using 2D codes such as the surface code, 
non-Clifford operations cannot be easily performed37, and relatively 
expensive techniques are required for nontrivial computation24,43, as 
Clifford circuits can be easily simulated44. By contrast, 3D codes can 
transversally realize non-Clifford operations, but lose the transversal 
H (ref. 37). However, these constraints do not imply that classically 
hard or useful quantum circuits cannot be realized transversally or 
efficiently. Motivated by these considerations, we explore efficient 
realization of classically hard algorithms that are co-designed with 
a particular error-correcting code. Specifically, we implement fast 

scrambling circuits using small 3D codes, which are used for native 
non-Clifford operations (CCZ).

We focus on small 3D [[8,3,2]] codes16,17,26,27 (Fig. 5a), which have 
various appealing features. They encode three logicals per block, 
feature d = 2 (d = 4) in the Z basis (X basis), implying error-detection 
(error-correction) capabilities for Z (X) errors and can realize a trans-
versal CNOT between blocks. Most importantly, by using physical {T, S} 
rotations (T is π/4 phase gate), we can realize transversal {CCZ, CZ, Z} 
gates on the logical qubits encoded within each block, as well as intra-
block CNOTs by physical permutation26,27 (Methods). This gate set 
allows us to transversally realize the circuits illustrated in Fig. 5a,c, 
alternating between layers of {CCZ, CZ, Z} within blocks and layers of 
CNOTs between blocks. Although transversal H is forbidden, initializa-
tion and measurement in either the X or the Z basis effectively allows 
H at the beginning and end of the circuit.

We use these transversal operations to realize logical algorithms 
that are difficult to simulate classically45,46. More specifically, these 
circuits can be mapped to instantaneous quantum polynomial (IQP) 
circuits20,45,46. Sampling from the output distribution of such circuits 
is known to be classically hard in certain instances20, implying that a 
quantum device can be exponentially faster than a classical computer 
for this task.

Figure 5b shows an example implementation of a 12-logical-qubit 
sampling circuit. Here we prepare all logical blocks in |+L⟩, implement a 
scrambling circuit with 28 logical entangling gates and then measure all 
logicals in the X basis. Figure 5b shows the probability of observing each 
of the 212 = 4,096 possible logical bitstring outcomes, showing that, as 
we progressively apply more error detection (that is, postselection) in 
post-processing, the distribution more closely reproduces the ideal 
theoretical distribution. To characterize the distribution overlap, we 
use the cross-entropy benchmark (XEB)18,47, which is a weighted sum 
between the measured probability distribution and the ideal calculated 
distribution, normalized such that XEB = 1 corresponds to perfectly 
reproducing the ideal distribution and XEB = 0 corresponds to the 
uniform distribution, which occurs when circuits are overwhelmed by 
noise. Consistent with Fig. 5b, the 12-logical-qubit circuit XEB increases 
from 0.156(2) to 0.616(7) when applying error detection (Fig. 5e). We 
note that the XEB should be a good fidelity benchmark for IQP circuits 
(Methods).

We next explore scaling to larger systems and circuit depths. To 
ensure high complexity of our logical circuits, we use nonlocal con-
nections to entangle the logical triplets on up to 4D hypercube graphs 
(Extended Data Fig. 6 and Supplementary Video 3), which results in 
fast scrambling19. Exploring entangled systems of 3, 6, 12, 24 and 48 
logical qubits, in all cases, we find a finite XEB score, which improves 
with increased error detection (Fig. 5e,f). The finite XEB indicates suc-
cessful sampling and the improvement with error detection shows the 
benefit of using logical qubits. Although this improvement comes at 
the cost of measurement time owing to error detection, improving the 
sample quality cannot be replaced by simply generating more samples. 
Thus, improving the XEB score yields substantial practical gains. We 
obtain an XEB of approximately 0.1 for 48 logical qubits and hundreds of 
nonlocal logical entangling gates, up to roughly an order of magnitude 
higher than previous physical qubit implementations of digital circuits 
of similar complexity18,48, showing the benefits of a logical encoding 
for this application.

Assuming our best measured physical fidelities, the estimated upper 
bound for an optimized physical qubit implementation in our sys-
tem is also greatly below the measured logical XEB (blue line in Fig. 5f;  
Methods). In attempting to run these complex physical circuits, in prac-
tice, we find that realizing non-vanishing XEB is much more challeng-
ing; we confirm with small physical instances that we measure values 
well below this upper bound (Methods). As well as the error-detecting 
benefits, it seems that the logical circuit is substantially more toler-
ant to coherent errors, exhibiting operation that is inherently digital, 
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being in state |+L⟩ in the final readout. By postselecting on perfect stabilizers of 
only the two computation logicals (error detection in the final measurement), 
the feedforward Bell fidelity is 92(2)% (not plotted). In d, three of the extra 
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just with imperfect fidelity (see, for example, Extended Data Fig. 7a), 
consistent with theoretical predictions49. We also note that, for the 
logical algorithms, we optimize performance by optimizing the stabi-
lizer expectation values (rather than the complex sampling output), 
providing further advantage for logical implementations.

Our 48-logical circuit, corresponding to a physical qubit connectiv-
ity of a 7D hypercube, contains up to 228 logical two-qubit gates and 
48 logical CCZ gates. Simulation of such logical circuits is challenging 
because of the high connectivity (rendering tensor networks ineffi-
cient) and large numbers of non-Cliffords50. To benchmark our circuits, 
we structure them such that we can use an efficient simulation method 
(Methods), which takes about 2 s to calculate the probability of each 
bitstring (Fig. 5d and Extended Data Fig. 8). Modelling noise in our 
logical circuits is even more complicated, as they are composed of 128 
physical qubits and 384 T gates, thereby making experimentation with 
logical algorithms necessary to understand and optimize performance.

Quantum simulations with logical qubits
Finally, we explore the use of logical qubits as a tool in quantum simu-
lation, probing entanglement properties of our fast scrambling cir-
cuits, potentially related to complex systems such as black holes19,51. 

In particular, we use a Bell-basis measurement made on two copies of 
the quantum state (Fig. 6a), which is a powerful tool that can efficiently 
extract many properties of an unknown state21,22,52. With this two-copy 
technique, in Fig. 6b, we plot the measured entanglement entropy in 
the scrambled system. We observe a characteristic Page curve51 associ-
ated with a maximally entangled, highly scrambled, but globally pure 
state. These measurements also reveal a final state purity of 0.74(3), 
compared with the measured XEB of 0.616(7) in Fig. 5f, consistent with 
the XEB being a good proxy for the final state fidelity. Despite postselec-
tion overhead, we find that error detection greatly improves signal to 
noise here, as near-zero entropies are exponentially faster to measure 
(Extended Data Fig. 9).

Two-copy measurements can also be used to simultaneously extract 
information about all 4N Pauli strings22. Using this property and an analy-
sis technique known as Bell difference sampling53, we experimentally 
evaluate and directly verify the amount of additive Bell magic53 in our 
circuits as a function of the number of applied logical CCZs (Fig. 6c). 
This measurement of magic, associated with non-Clifford operations, 
quantifies the number of T gates (assuming decomposition into T) 
required to realize the quantum state by observing the probability 
that sampled Pauli strings commute with each other (see Methods). 
Moreover, combining encoded qubits and two-copy measurement 

a c d

Inc
rea

sin
g

err
or d

ete
cti

on

Theory

Raw

Postselection

b e f

Lo
gi

ca
l b

its
tr

in
g 

p
ro

b
ab

ili
ty

Logical bitstring index
0 4,096

0

0.01

0 1 2 3
Extra CNOT layers

612 24 48
Number of logicals

100

10–2

10–4

106

104

102

100

R
un

tim
e 

p
er

b
its

tr
in

g 
(s

)
R

un
tim

e 
p

er
b

its
tr

in
g 

(s
)

Projected
48 logicals

Measured

3 6 12 24 48
Number of logical qubits

0.01

0.10

1.00

Raw
Error detection
Physical upper bound

3 4 5 6 7
Hypercube dimension

0.001 0.010 0.100 1.000
Accepted fraction

0.01

0.10

1.00

Lo
gi

ca
l X

E
B

Lo
gi

ca
l X

E
B

3
6
12
24
48

Swap

Logical qubits Stabilizers

Permutation
CNOTL1,L2

Logical operations

T†

T† T†

T†

T

T

T

T

CCZL1,L2,L3

S†

CZL1,L2

S

S

S†

Transversal CNOT

51

2 6

3 7

4 8

51

2 6

3 7

4 8

ZL2 XL2

XL3

ZL3

SZ1 = Z1Z2Z3Z4

SZ3 = Z1Z2Z5Z6

SZ2 = Z1Z3Z5Z7

SZ4 = Z1Z2Z3Z4Z5Z6Z7Z8

SX1 = X1X2X3X4X5X6X7X8

ZL1

XL1

1

2

3

7 5

6
4

8

12 logicals 48 logicals

RY
π/2

ZZZZZZZ
H

q1

q48

Fig. 5 | Complex logical circuits using 3D codes. a, [[8,3,2]] block codes  
can transversally realize {CCZ, CZ, Z, CNOT} gates within each block and 
transversal CNOTs between blocks. By preparing logical qubits in |+L⟩, 
performing layers of {CCZ, CZ, Z} alternated with inter-block CNOTs and 
measuring in the X basis, we realize classically hard sampling circuits with 
logical qubits. b, Measured sampling outcomes for a circuit with 12 logical 
qubits, eight logical CZs, 12 logical CNOTs and eight logical CCZs. By increasing 
error detection, the measured distribution converges towards the ideal 
distribution. c, Circuit involving 48 logical qubits with 228 logical CZ/CNOT 
gates and 48 logical CCZs. d, Classical simulation runtime for calculating an 

individual bitstring probability; bottom plot is estimated on the basis of  
matrix multiplication complexity. e, Measured normalized XEB as a function  
of sliding-scale error detection for 3, 6, 12, 24 and 48 logical qubits. For all sizes, 
we observe a finite XEB score that improves with increased error detection. 
Diagram shows 48-logical connectivity, with logical triplets entangled on a 4D 
hypercube. f, Scaling of raw (red) and fully error-detected (black) XEB from e. 
Physical upper-bound fidelity (blue) is calculated using best measured physical 
gate fidelities (see Methods and Extended Data Fig. 7 for scaling discussion). 
Diagrams show physical connectivity. [[8,3,2]] cubes are entangled on 4D 
hypercubes, realizing physical connectivity of 7D hypercubes.



64  |  Nature  |  Vol 626  |  1 February 2024

Article

allows for further error-mitigation techniques. As an example, Fig. 6d 
shows the measured absolute expectation values of all 412 logical Pauli 
strings with sliding-scale error detection. Because in the two-copy 
measurements for each error-detection threshold we also measure the 
overall system purity, we can extrapolate our expectation values to the 
case of unit purity (zero noise)54. This procedure evaluates the averaged 
Pauli expectation values to about 10% relative precision of the ideal 
theoretical values spanning several orders of magnitude (Methods).

Outlook
These experiments demonstrate key ingredients of scalable error cor-
rection and quantum information processing with logical qubits. As well 
as implementing the key elements of logical processing, our approach 
demonstrates practical utility of encoding methods for improving 
sampling and quantum simulations of complex scrambling circuits. 
Future work can explore whether these methods can be generalized, 
for example, to more robust, higher-distance codes and if such highly 
entangled, non-Clifford states could be used in practical algorithms. 
We note that the demonstrated logical circuits are approaching the 
edge of exact simulation methods (Fig. 5d) and can readily be used 
for exploring error-corrected quantum advantage. These examples 
demonstrate that the use of new encoding schemes, co-designed with 
efficient implementations, can allow the implementation of particular 
logical algorithms at reduced cost.

Our observations open the door for exploration of large-scale logical 
qubit devices. A key future milestone would be to perform repetitive 
error correction6 during a logical quantum algorithm to greatly extend 
its accessible depth. This repetitive correction can be directly realized 
using the tools demonstrated here by repeating the stabilizer measure-
ment (Fig. 2) in combination with mid-circuit readout (Fig. 4). The use 
of the zoned architecture and logical-level control should allow our 
techniques to be readily scaled to more than 10,000 physical qubits by 
increasing laser power and optimizing control methods, whereas QEC 
efficiency can be improved by reducing two-qubit gate errors to 0.1% 
(ref. 8). Deep computation will further require continuous reloading 
of atoms from a reservoir source11,15. Continued scaling will benefit 
from improving encoding efficiency, for example, by using quantum 
low-density-parity-check codes55,56, using erasure conversion13,33,57 or 
noise bias35 and optimizing the choice of (possibly several) atomic  
species11,14,47, as well as advanced optical controls34. Further advances 
could be enabled by connecting processors together in a modular 
fashion using photonic links or transport10,58 or more power-efficient 
trapping schemes such as optical lattices59. Although we do not expect 
clock speed to limit medium-scale logical systems, approaches to speed 
up processing in hardware60 or with nonlocal connectivity61 should also 
be explored. We expect that such experiments with early-generation 
logical devices will enable experimental and theoretical advances that 
greatly reduce anticipated costs of large-scale error-corrected systems, 
accelerating the development of practical applications of quantum 
computers.
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Methods

System overview
Our experimental apparatus (Extended Data Fig. 1a) is described 
previously in refs. 7,8,30. To carry out these experiments, several key 
upgrades have been made enabling programmable quantum circuits on 
both physical and logical qubits. A cloud containing millions of cold 87Rb 
atoms is loaded in a magneto-optical trap inside a glass vacuum cell, 
which are then loaded stochastically into programmable, static arrange-
ments of 852-nm traps generated with a SLM and rearranged with a set 
of 850-nm moving traps generated by a pair of crossed AODs (DTSX-
400, AA Opto-Electronic) to realize defect-free arrays30,31,62. Atoms are 
imaged with a 0.65-NA objective (Special Optics) onto a CMOS camera 
(Hamamatsu ORCA-Quest C15550-20UP), chosen for fast electronic 
readout times. The qubit state is encoded in mF = 0 hyperfine clock 
states in the 87Rb ground-state manifold, with T2 > 1s (ref. 7), and fast, 
high-fidelity single-qubit control is executed by two-photon Raman 
excitation7,63 (Extended Data Fig. 1b). A global Raman path illuminating 
the entire array is used for global rotations (Rabi frequency roughly 
1 MHz, resulting in approximately 1-μs rotations with composite pulse 
techniques7), as well as for dynamical decoupling throughout the entire 
circuit (typically one global π pulse per movement). Fully program-
mable local single-qubit rotations are realized with the same Raman 
light but redirected through a local path, which is focused onto tar-
geted atoms by an additional set of 2D AODs. Entangling gates (270-ns 
duration) between clock qubits are performed with fast two-photon 
excitation using 420-nm and 1,013-nm Rydberg beams to n = 53 Rydberg 
states, using a time-optimal two-qubit gate pulse64,65, detailed in ref. 8. 
During the computation, atoms are rearranged with the AOD traps 
to enable arbitrary connectivity7,66,67. Mid-circuit readout is carried 
out by illuminating from the side with a locally focused 780-nm imag-
ing beam, with scattered photons collected on the CMOS camera and 
processed in real time by a FPGA (Xilinx ZCU102), with feedforward 
control signal outputs.

The quantum circuits are programmed with a control infrastructure 
consisting of five arbitrary waveform generators (AWGs) (Spectrum 
Instrumentation), as illustrated in Extended Data Fig. 1c, synchronized 
to <10 ns jitter. The two-channel ‘Rearrangement AWG’ is used for 
rearranging into defect-free arrangements30 before the circuit, the 
one channel of the ‘Rydberg AWG’ is used for entangling-gate pulses, 
the four channels of the ‘Raman AWG’ are used for IQ (in-phase and 
quadrature) control of a 6.8-GHz source7,63 (the global phase reference 
for all qubits) and pulse-shaping of the global and local Raman driving, 
the two channels of the ‘Raman AOD AWG’ are used for generating 
tones that create the programmable light grids for local single-qubit 
control and the two channels of the ‘Moving AOD AWG’ are used for 
controlling the positions of all atoms during the circuit. AODs are 
central to our methods of efficient control62, in which the two voltage 
waveforms (one for the x axis and one for the y axis) control many 
physical or logical qubits in parallel: each row and column of the grid 
simply corresponds to a single frequency tone, and these tones are 
then superimposed in the waveform delivered to the AOD (amplified 
by Mini Circuits ZHL-5W-1+). The phase relationship between tones 
is chosen to minimize interference.

Programming circuits
Most of the system parameters used in our approach do not have hard 
limits but instead result from possible trade-offs. Next, we detail some 
design decisions made for the circuits used in this work.

Zone parameter choices. For simplicity, we keep the entangling zone 
fixed for all experiments. This conveniently allows us to switch between, 
for example, surface code and [[8,3,2]] code experiments, without fur-
ther calibrations. We choose our entangling-zone profile, realized by 
420-nm and 1,013-nm Rydberg ‘top-hat’ beams generated by SLM phase 

profiles30, to be homogeneous over a 35-μm-tall region. As the Rydberg 
beams propagate longitudinally, the entangling zone is longer than it 
is tall. We optimize top hats to be homogeneous over roughly 250-μm 
horizontal extent. Taller regions are also achievable, with a trade-off 
with reduced laser intensity and greater challenge in homogenization. 
The 250-μm width of the zones used here is set by the bandwidth of 
our AOD deflection efficiency. We position the readout zone on the 
other side of the storage zone to further minimize decoherence on 
entangling-zone atoms.

Our two-qubit gate parameters are similar to our previous work in 
ref. 8. During two-qubit Rydberg (n = 53) gates, we place atoms ≲2 μm 
apart within a ‘gate site’, resulting in ≳450 MHz interaction strength 
between pairs, much larger than the Rabi frequency of 4.6 MHz. Nota-
bly, owing to the use of the Rydberg blockade32,68, the gate is largely 
independent of the exact distance between atoms. Hence, precise 
inter-atom positioning is not required. Gate sites are separated such 
that atoms in different gate sites are no closer than 10 μm during the 
gate, resulting in negligible long-range interactions. Throughout this 
work, we use four gate sites vertically (five for the surface-code experi-
ment) and 20 horizontally, performing gates on as many as 160 qubits 
simultaneously (see Extended Data Fig. 1d). Under various conditions, 
with proper calibration, we measure two-qubit gate fidelities in the 
range F = 99.3–99.5%. We do not observe any error on storage-zone 
atoms when Rydberg gates are executed in the entangling zone. Even 
though the tail of the top-hat Rydberg excitation beams is only sup-
pressed to about 10% intensity, the two-photon drive is far off-resonant 
owing to the approximately 20 MHz 1013 light shift detuning that is 
present for the entangling-zone atoms8. We natively realize physical 
CZ gates; when implementing CNOTs, we add physical H gates. We find 
minimal two-qubit cross-talk between gate sites, as examined with 
long benchmarking sequences in ref. 8. Although ref. 8 seems to find 
some small cross-talk seemingly originating from decay into Rydberg 
P states, this should be considerably suppressed in the practical opera-
tion here owing to the approximately 200 μs duration between gates, 
during which time Rydberg atoms should either fly away or decay back 
to the ground state.

Shuttling and transfers. The SLM tweezers can have arbitrary po-
sitions but are static. The AOD tweezers are mobile but have several 
constraints7,69. In particular, the AOD array creates rectangular grids 
(but not all sites need to be filled). During the atom-moving operations, 
they are only used for stretches, compressions and translations of the 
AOD trap array, that is, atoms move in rows and columns, and rows 
and columns never cross7,69. Arbitrary qubit motions and permuta-
tion is achieved by shuttling atoms around in AOD tweezers and then 
transferring atoms between AOD and SLM tweezers as appropriate. We 
perform gates on pairs of atoms in both AOD–AOD traps and AOD–SLM 
traps, with no observed difference for gate performance as measured 
by randomized benchmarking8.

We find that free-space shuttling of atoms (that is, no transfers) in 
AOD tweezers comes essentially with no fidelity cost (other than time 
overhead), consistent with our previous work7. Two further improve-
ments here are the use of a photodiode to calibrate and homogenize 
the 2D deflection efficiency of our 2D AODs to percent-level homo
geneity across our used region and engineering atomic trajectories 
and echo sequences to cancel out residual-path-dependent inhomo-
geneities. For example, we move an atom 100 μm away to realize a 
distant entangling gate and then, before returning the atom, we per-
form a Raman π pulse, so that differential light shifts accumulated 
during the return trip cancel with the first trip. Motion is realized with 
a cubic profile as in ref. 7, the characteristic free-space movement 
time between gates is roughly 200 μs and acoustic-lensing effects 
from the AOD are estimated to be negligible. We pulse the 1013 laser 
off during motion to remove loss effects from the large light shifts. 
Note that the 1013-induced differential light shift on the hyperfine 



qubit is only on the kHz scale but we still ensure its effects are properly  
echoed out.

Transferring atoms between tweezers9 presents further challenges. 
We measure the infidelity of each transfer, encompassing both dephas-
ing and loss, to be ≲0.1%. To achieve this performance, in our transfer 
from SLM to AOD, we ramp up the intensity of the AOD tones (with 
quadratic intensity profile when possible) corresponding to the appro-
priate sites over a time of 100–200 μs to a trap depth about two times 
larger than the SLM trap depth, and then move the AOD trap 1–2 μm 
away over a time of 50–100 μs. These timescales can probably be short-
ened considerably while suppressing errors using optimal control 
techniques. During subsequent motion, we leave the AOD trap depth at 
this 2× value. To transfer an atom AOD to SLM, we perform the reversed 
process. During these transfer processes, the differential light shifts 
on the transferred atoms are dynamically changing and can result in 
large unechoed phase shifts. As such, whenever possible, we engineer 
circuits such that pairs of transfers will echo with appropriately chosen 
π pulses. When echoing pairs of transfers is not possible, we perform 
one cycle of XY4 or XY8 dynamical decoupling during the transfer. 
Finally, we note that low-loss transfer is highly sensitive to alignment 
of the AOD and SLM grid. We fix small optical distortions between the 
AOD and SLM tweezer grids by fine adjustment of individual SLM grid 
tweezers, which can be arbitrarily positioned, to overlap with the AOD 
traps as seen on an image plane reference camera. It is important to 
adjust the SLM and not the AOD, as small adjustments of individual AOD 
tones deviating from a frequency comb causes beating and atom loss.

Dynamical decoupling and local gates. In our circuit design, we engi-
neer our echo sequences to cancel out as many deleterious aspects as 
possible. We ensure that, in our dynamical decoupling, we have an odd 
number of π pulses between CZ gates (whenever possible), as this ech-
oes out both systematic and spurious contributions to the single-qubit 
phase7,8. We apply appropriate X(π) and Z(π) rotations between local 
addressing with the local Raman to cancel out errors induced by the 
global π/2 pulses, as well as between pulses of the 420-nm laser (when 
used for entangling-zone single-qubit rotations7) to echo out small 
cross-talk experienced in the storage zone by the tail of the 420-nm 
beam. For our global decoupling pulses, we use both BB1 pulses70 and 
SCROFULOUS pulses71. To benchmark and optimize coherence dur-
ing our complex circuits, we perform a Ramsey fringe measurement 
encompassing the entire movement and single-qubit gate sequence 
and optimize the observed contrast7. When performing properly, our 
total single-qubit error is consistent with state preparation and meas-
urement (SPAM)8, an effective coherence time of 1–2 s and the Raman 
scattering error of all the Raman pulses7,63. We note that these measured 
coherence times include the movement within and between zones; 
although we use fewer pulses (typically one per movement) than the 
XY16-128 sequence used to benchmark 1.5 s coherence in ref. 7, the 
coherence times here are naturally longer because of further-detuned 
tweezers used (852 nm rather than 830 nm).

Local single-qubit gates34,72 with the Raman AOD are realized in arbi-
trary positions in space on both AOD and SLM atoms. Targeted logical 
qubit blocks are addressed by a grid illumination of the logical block. 
Arbitrary patterns of rotations on the qubit grid (for example, during 
colour-code preparation) are realized with row-by-row serializing, with 
the targeted x coordinates in each row simultaneously illuminated. The 
duration of each row is 5–8 μs (corresponding to several tens of μs for 
an arbitrary pattern of rotations), which can be sped up considerably, 
as discussed in the next section. For simplicity, we carefully calibrate 
rotations on 80–160 specific sites across the array, but also perform 
rotations in arbitrary spots using the nearest calibrated values.

With the local single-qubit gates and entangling-zone two-qubit 
gates calibrated, the entire circuit is simply defined by the appropriate 
trapping SLM phase profile and waveforms for our several AWG chan-
nels and TTL pulse generator. These several channels then program 

complex, varied circuits on hundreds of physical qubits. Animations of 
all of our programmed circuits are attached as Supplementary Videos.

Programmable single-qubit gates
To enable individual single-qubit gates, we use the same Raman laser 
system as our global rotation scheme and illuminate only chosen atoms 
using a pair of crossed AODs. The focused beam waist in the plane of 
the atoms is 1.9 μm, which is large enough to be robust to fluctuations 
in atomic positions and small enough to prevent cross-talk to neigh-
bouring atoms separated by ≳6 μm. For Raman excitation, polarization 
needs to be carefully considered. Unlike the global path, the local 
beam-propagation direction is perpendicular to the atom-quantization 
axis (set by the external magnetic field). Therefore, the fictitious mag-
netic field B

→
fict responsible for driving the transitions, as described in 

ref. 63, preferentially drives σ± hyperfine transitions rather than the 
desired π clock transition73. There exist two possible approaches to 
single-qubit gates, as illustrated in Extended Data Fig. 2a. First, 
off-resonant σ± dressing generates differential light shifts between 
qubit states, enabling fast local Z(θ) gates. Global π/2 rotations convert 
these to local X(θ) gates. Second, we can directly apply local X(θ) gates 
with direct π transitions by slightly rotating the quantization axis 
towards the local beam direction; this could be achieved with an exter-
nal field but, conveniently, B

→
fict has a DC component that naturally 

rotates the axis. Note that, if the local beam is quickly turned on, this 
same fictitious DC field causes leakage out of the mF = 0 subspace, 
therefore Gaussian-smoothed pulses are used throughout this work.

Although we realize both the π and σ± versions above, in these 
experiments, we use the off-resonant σ± dressing procedure because 
of reduced polarization sensitivity, as our polarization homogeneity 
was affected by the sharp wavelength edge of a dichroic after the AOD. 
Furthermore, as for most circuits, we perform local rotations row by 
row (only one Y tone at a time); this enables arbitrary fine-tuning of X 
coordinates and powers at each site for homogenizing and calibrating 
rotations (Extended Data Fig. 2b). We calibrate using the procedure 
in Extended Data Fig. 2c and find that these calibrations are stable on 
month timescales.

To quantify the fidelity, we perform randomized benchmarking using 
0, 10, 20, 30, 40 and 50 local Z(π/2) rotations (per site) on 16 sites, 
obtaining F = 99.912(7)%, as shown in Extended Data Fig. 2d (note that 
the single-qubit gates we execute globally have fidelity closer to 99.99% 
(refs. 7,8)). This approaches the Raman scattering limit for our σ± 
scheme (error of about 7 × 10−4 per π/2 pulse), but when not well cali-
brated is limited by inhomogeneity, in particular, associated with  
distortions of the y position of the rows. In the future, the performance 
can be further improved by using X(θ) gates, which enables robust 
composite sequences such as BB1 (ref. 70), has an improved Raman 
scattering contribution and is faster (roughly 1 μs duration).

Mid-circuit readout and feedforward
To perform mid-circuit readout10–15 of selected qubits without affecting 
the others, we use a local imaging beam focused on the readout zone 
that is roughly 100 μm spatially separated from the entangling zone7,35. 
The local imaging beam consists of 780-nm circularly polarized light, 
with a near-resonant component from F = 2 to F′ = 3 and a small repump 
component. This beam is sent through the side of our glass vacuum 
cell, co-propagating with the global Raman and 1,013-nm Rydberg 
beams (Extended Data Fig. 1a). We use cylindrical lenses to shape the 
beam, with focused beam waists of 30 μm in the plane of the atom array 
and 80 μm out of the plane. After moving some of the atoms to this 
readout zone, we first perform local pushout of population in the F = 2 
ground-state manifold (by turning off the repump laser frequency), 
followed by local imaging of the remaining F = 1 population.

As depicted in Extended Data Fig. 3a, we collect an average of about 
50 photons per imaged atom. To avoid losing the atoms too quickly 
during mid-circuit imaging (which, unlike our global imaging scheme, 
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does not have multi-axis cooling), we use deep (roughly 5-mK) traps 
(helping retain the atoms) and stroboscopically pulse them on and 
off out of phase of the local imaging light to avoid deleterious effects 
of the deep traps, such as inhomogeneous light shifts and fluctuating 
dipole force heating74 (Extended Data Fig. 3b). From a double-Gaussian 
fit to the two distributions in Fig. 3a, we extract an imaging fidelity of 
more than 99.9%. Because this fit can lead to an overestimate of the 
imaging fidelity (for example, owing to atom loss during imaging), 
we compare the total SPAM error (measured by the amplitude of the 
Ramsey fringe) with local imaging versus with global imaging for the 
same state-preparation sequence, extracting 0.14(5)% higher error with 
local imaging; with these considerations, we conservatively estimate 
a local imaging fidelity of around 99.8%.

Various design considerations facilitate local imaging in the readout 
zone while preserving coherence of the data qubits in the entangling 
zone35 (Extended Data Fig. 3e–g). The main sources of decoherence are 
rescattering of photons from the locally imaged atoms, as well as beam 
reflections and tails of the local imaging beam hitting the data qubits. 
As shown in Fig. 1c, for the 500-μs mid-circuit imaging used in this 
work, we are able to achieve unchanged coherence (identical within the 
error bars) of the data qubits with the local imaging light on as without 
it. To understand these effects more quantitatively, we measure the 
error probability of the data qubits in the entangling zone while the 
local imaging beam is on in the readout zone for up to 20 ms and with 
higher intensities than used for local imaging in this work. We suppress 
decoherence by light shifting the 780-nm transition of the data qubits 
to be different from that of the locally imaged qubits by several tens of 
MHz, as studied in Extended Data Fig. 3f–g. Data qubit decoherence is 
further suppressed by the large spatial separation between the readout 
zone and the entangling zone, in which intensity from the Gaussian tail 
of the local imaging beam should theoretically fall off rapidly. Even at 
large separations, we find that stray beam reflections (for example, 
from the glass cell window and other optical elements) can hit the data 
qubit region. To mitigate this effect, we displace reflections away from 
the atom array by angling the local imaging beam as it hits the glass cell 
window. The estimated effects of rescattered photons from the imaged 
atoms, especially with the added relative detuning, is negligible. With 
all these considerations, we find that we are able to suppress data qubit 
decoherence rates to ≲0.1% per 500 μs of local imaging exposure, as 
illustrated in Extended Data Fig. 3h.

The full mid-circuit readout and feedforward cycle occurs in slightly 
less than 1 ms, including local pushout, local imaging, readout of the 
camera pixels, decoding of the logical qubit state on the FPGA and a 
local Raman pulse, which is gated on or off by a conditional trigger 
(Extended Data Fig. 3d). In future work, this approach to mid-circuit 
readout and feedforward can be considerably improved to enable 
mid-circuit readout close to the 100-μs scale75. This method can be 
directly extended to perform many rounds of measurement and feed-
forward, in which groups of ancilla atoms are consecutively brought 
to the readout zone throughout a deep quantum circuit.

Correlated decoding
During transversal CNOT operations, physical CNOT gates are applied 
between the corresponding data qubits of two logical qubits. These 
physical CNOT gates propagate errors between the data qubits in a 
deterministic way: X errors on the control qubit are copied to the target 
qubit and Z errors on the target qubit are copied to the control qubit 
(see Extended Data Fig. 4b). As a result, the syndrome of a particu-
lar logical qubit can contain information about the errors that have 
occurred on another logical qubit, at the point in time in which the 
pair underwent a transversal CNOT operation. We can use the infor-
mation about these correlations and improve the circuit fidelity by 
jointly decoding the logical qubits involved in the algorithm. We note 
that this is closely related to other recent developments in decoding 
entire circuits, or so-called space-time decoding76–79. It is also related 

to Steane error correction80, for which errors are intentionally propa-
gated from a data logical qubit onto an ancilla logical qubit, which 
is then projectively measured to extract the syndrome of the data  
logical qubit.

To perform correlated decoding, we solve the problem of finding 
the most likely error given the measured syndrome. We start by con-
structing a decoding hypergraph based on a description of the logical 
algorithm, which describes how each physical error mechanism (for 
example, a Pauli-error channel after a two-qubit gate) propagates onto 
the measured stabilizers76,81. The hypergraph vertices correspond to 
the stabilizer measurement results. Each edge or hyperedge corre-
sponds to a physical error mechanism that affects the stabilizers it 
connects, with an edge weight related to the probability of that error. 
Each hyperedge can connect stabilizers both within and between logi-
cal qubit blocks (see Fig. 2b). We then run a decoding algorithm that 
uses this hypergraph, along with each experimental snapshot, to find 
the most likely physical error consistent with the measurements. This 
correction is then applied in software (with the exception of Fig. 4e, 
which is decoded in real time).

Concretely, to construct the hypergraph for a given logical circuit, 
we perform the following procedure. For each logical algorithm (in 
this section, considering only Clifford gates), we identify a set of N 
detectors (vertices of the hypergraph) Di ∈ {0, 1} for i = 1,…, N, which 
are sensitive to physical errors occurring during the logical circuit.  
A detector is either on (1) or off (0) to indicate the presence of an error. 
For the general case, we let Di = 0 if the ith stabilizer measurement 
matches the measurement of its backwards-propagated Pauli operator 
at a previous time and 1 otherwise (the latter indicates that an error has 
occurred). In particular, for our surface-code experiments, detectors 
in the final projective measurement are computed by comparing the 
final projective measurement of the stabilizers with the value of the 
ancilla-based stabilizer measurement that occurred before the CNOT 
(note that, owing to our state-preparation procedure, the initial stabi-
lizer measurement is randomly ±1, but the detector is deterministically 
zero in the absence of noise). For our 2D colour-code experiments, the 
initial stabilizers are deterministically +1, so each detector is equal to 
zero if the corresponding stabilizer in the final projective measurement 
is +1. To construct the concrete hypergraph and hyperedge weights, we 
then use Stim76 to identify the probability pj (j = 1,…, M) of each error 
mechanism Ej in the circuit using a Pauli-channel noise model with 
approximate experimental error rates, along with the detectors that 
are affected by Ej.

To find the most likely physical error, we encode it as the optimal solu-
tion of a mixed-integer program, a canonical problem in optimization 
with commercial solvers readily available82, similar to previous work in 
ref. 83. We associate each error mechanism Ej with a binary variable that 
is equal to 1 if that error occurred and 0 otherwise. Our goal is then to 
find the error assignment {0, 1}M with maximum total error probability 
(alternatively, the error with the minimum total weight, in which the 
weight of error i is wi = log[(1 − pi)/pi]), subject to the constraint that 
the error is consistent with the measured detectors. To be consist-
ent with the measured detectors, the parity of the error variables for 
all the hyperedges connected to a given detector should match the 
parity of that detector. Concretely, let f be a map from each detec-
tor Di to the subset of error mechanisms that flip its parity. The most 
likely error is then the optimal solution to the following mixed-integer  
program:
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The objective function evaluates to the logarithm of the probability 
of the assigned error configuration, and each variable Ki ensures that 
the sum of the error variables in f(Di) matches Di, modulo 2. Finally, 
we solve the mixed-integer program to optimality using Gurobi, a 
state-of-the-art solver82, and apply the correction string associated 
with the error indices j for which Ej = 1 in the optimal assignment. We 
explore this correlated decoding in more detail, including its conse-
quences on error-corrected circuits and the asymptotic runtimes of 
different decoders (M.C. et al., manuscript in preparation). See sections 
‘Surface code and its implementation’ and ‘Correlated decoding in the 
surface code’ for further discussion on the surface code in particular.

Direct fidelity estimation and tomography
One challenge with logical qubit circuits is that convenient probes that 
are accessible with physical qubits may no longer be accessible. The 
GHZ state studied here provides such an example, as conventional 
parity-oscillation measurements cannot be performed84. Instead, we 
use a technique known as direct fidelity estimation39, which can be 
understood as follows. The target state ψ is the simultaneous eigenstate 
of the N stabilizer generators {Si} and, so, the projector onto the target 
state is ψ ψ S⟩ ⟨ = ∏ ( + 1)/2i

N
i∣ ∣  (which is 1 if Si = 1 ∀ i and 0 otherwise). 

Thereby, we can directly measure fidelity by measuring the expectation 
values of all terms in this product, which—in other words—refers to 
measuring the expectation values of all elements of the stabilizer group 
given by the exponentially many products of all the Si. The logical GHZ 
fidelity is defined as the average expectation value of all measured 
elements of the stabilizer group. With our four-qubit GHZ state, with 
four stabilizer generators {XXXX, ZZII, IZZI, IIZZ}, the 16-element sta-
bilizer group is given by all possible products: {IIII, ZZII, IZZI, IIZZ, ZIIZ,  
IZIZ, ZIZI, ZZZZ, XXXX, XYYX, YXXY, XXYY, YYXX, YXYX, XYXY, YYYY}.  
We measure the expectation values of all 16 of these operators; for each 
element, we simply rotate each logical qubit into the appropriate 
logical basis and then calculate the average parity of the four logical 
qubits in this measurement configuration. We then directly average 
all 16 elements equally (with appropriate signs, as some of the stabilizer 
products should have −1 values) and, in this way, compute the logical 
GHZ state fidelity. This is an exact measurement of the logical state 
fidelity39. Scaling to larger states can be achieved by measuring ele-
ments of the stabilizer group at random39. To perform full tomography 
in Fig. 3e, we measure in all 34 = 81 bases, thereby measuring the expec-
tation values of all 256 logical Pauli strings, and reconstruct the density 
matrix by solving the system of equations with optimization methods.

Sliding-scale error detection
Here we provide more information about the sliding-scale error- 
detection protocol applied for Figs. 3, 5 and 6. Typically, error detec-
tion refers to discarding (or postselecting) measurements in which 
any stabilizer errors occurred. In the context of an algorithm, however, 
discarding the result of an entire algorithm if just one physical qubit 
error occurred may be too wasteful and we may want to only discard 
measurements in which many physical qubits fail and the probability 
of algorithm success is greatly reduced. For this reason, for the algo-
rithms here, we explore error detection on a sliding scale, for which we 
can set a desired ‘confidence threshold’ such that, on the basis of the 
syndrome outcomes, we determine whether to accept a given measure-
ment. Sliding this confidence threshold enables a continuous trade-off  
(in data analysis) between the fidelity of the algorithm and the accept-
ance probability. When sliding-scale error detection is applied, in 
all applicable cases, we also apply error correction to return to the 
codespace.

We apply such a sliding-scale error detection for the colour-code 
logical GHZ fidelity measurements in Fig. 3d. One possible method 
would be to discard measurements based on the number of detected 
stabilizer errors. However, this is suboptimal, both because on the 
colour code a single physical qubit error can result from anywhere 

between 1 and 3 stabilizer errors and also because errors deterministi-
cally propagate between codes during the transversal CNOT gates, such 
that a single physical error on one code can lead to detected errors on all 
codes, but which are still all correctable errors. As such, we perform the 
sliding-scale error detection using the correlated decoding technique 
and set the confidence threshold as a threshold weight of the overall 
correction weight on the decoding hypergraph. For example, in the 
colour code GHZ experiment, a stabilizer error on all four logical qubits 
that is just consistent with a single physical qubit error that propagated 
to all four logical qubits is in fact a low-weight (or high-probability) 
error, as it corresponds to just a single physical qubit error. If the weight 
of hypergraph correction (inversely related to the log of the probabil-
ity that a given error mechanism would have occurred leading to the 
observed syndrome outcome) is below the cut-off threshold weight, 
then the measurement is accepted; otherwise, it is rejected. For each 
threshold, we then calculate the average algorithm result (y axis of 
Fig. 3d), as well as the fraction of accepted data (x axis of Fig. 3d).

In Fig. 5 with [[8,3,2]] codes, for 3, 6, 24 and 48 logical qubits, we 
apply our sliding-scale detection simply as given by the total number 
of stabilizer errors detected, although—as illustrated above—this can 
probably be improved by considering which stabilizer error patterns 
are more likely to cause an algorithmic failure. For the 12 logical qubits, 
to have a more fine-grained sliding scale, for each of the 24 = 16 possible 
stabilizer outcomes, we calculate the XEB to rank the likelihood that 
each of the observed stabilizer outcomes leads to an algorithmic failure 
and then use this ranking when deciding whether a given measurement 
is above/below the cut-off threshold. In Fig. 6b, we set the threshold by 
the number of stabilizer errors and in Fig. 6d, to have more fine-grained 
sliding-scale information, we take different subsets of stabilizer out-
come events that are all below the threshold of the allowed number 
of stabilizer errors and calculate the y axis (Pauli expectation value) 
and x axis (purity) for all of them. Broadly, there are many ways to per-
form this sliding-scale error detection, and this can be useful both as 
continuous trade-offs between fidelity and acceptance probability, as 
well as for use in techniques such as zero-noise extrapolation in data 
analysis (Fig. 6d).

Overview of QEC methods
Here we provide a brief overview of key QEC methods used in our work.

Code distance, decoding and thresholds. [[n,k,d]] notation describes 
a code with several physical qubits n, several logical qubits k and a code 
distance d. The code distance d sets how many errors a code can detect 
or correct. The code distance is the minimum Hamming distance be-
tween valid codewords (logical states), that is, the weight of the smallest 
logical operator85. In the case of the 2D surface and colour codes studied 
here, d is equivalent to the linear dimension of the system24.

Following this definition, quantum codes of distance d can detect 
any arbitrary error of weight up to d − 1. Such errors cause stabilizer 
violations, indicating that errors occurred. Postselecting on the results 
with no such stabilizer violations corresponds to performing error 
detection, which protects the quantum information up to d − 1 errors 
at the cost of postselection overhead. Conversely, codes can correct 
fewer errors than they detect (but without any postselection overhead). 
The correction procedure brings the system back to the closest logical 
state (codeword); thus, if more than d/2 errors occur, the resulting state 
may be closer to a codeword different from the initial one, resulting 
in a logical error85. For this reason, codes of distance d can correct any 
arbitrary error of weight up to (d − 1)/2 (rounded down if d is even24). The 
process of decoding refers to analysing the observed pattern of errors 
and determining what correction to apply to return to the original 
code state and undo the physical errors created. In many cases, such 
as with the 2D surface and colour codes, one does not need to apply 
the correction in hardware (physically flipping the qubits); instead, it 
is sufficient to undo an unintended XL/ZL operator that was applied by 
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hardware errors by simply applying a ‘software’ XL/ZL operator24, also 
described as Pauli frame tracking86.

As the size of an error correcting code and the corresponding code 
distance is increased, so are the opportunities for errors to occur as the 
number of physical qubits increases. This leads to a threshold behaviour 
in QEC: if the density of errors p is above a (possibly circuit-dependent) 
characteristic error rate pth, then increasing code distance will worsen 
performance. However, if p < pth, then increasing code distance will 
improve performance24. Theoretically, because we require (d + 1)/2 
errors to create a logical error, the logical error rate will be exponen-
tially suppressed as ∝(p/pth)(d+1)/2 at sufficiently low error rates24. The 
performance improvement with increasing code distance, observed 
for the preparation and entangling operation in Fig. 2, implies that 
we surpass the threshold of this circuit. We note that, in this regime, 
improving fidelities by, for example, a factor of 2× can then lead to an 
error reduction of 24 = 16× for the distance-7 code studied and further 
exponential suppression with increasing code distance. This rapid 
suppression of errors with reduced error rate and increased code dis-
tance is the theoretical basis for realizing large-scale computation. We 
emphasize that thresholds can be circuit-dependent, as discussed in 
detail in the surface-code section below.

Fault tolerance and transversal gates. A common definition of fault 
tolerance in quantum circuits85 (which we use in this work) is that a 
weight-1 error (that is, an error affecting one physical qubit) cannot 
propagate into a weight-2 error (now affecting two physical qubits) 
within a logical block. This property implies that errors cannot spread 
within a logical block and thereby prevents a single error from growing 
uncontrollably and causing a logical error.

Distance-3 codes, which are of notable historical importance3,87, can 
correct any weight-1 error. Fault tolerance is particularly important for 
these codes because otherwise a weight-1 error can lead to a weight-2 
error and thereby cause a logical fault. An important characteristic 
of a fault-tolerant circuit that uses distance-3 codes85 is that (in the 
low-error-rate regime) physical errors of probability p lead to logical 
errors with probability ∝p2. We emphasize that the notion of fault toler-
ance refers to circuit structuring to control propagation of errors, but a 
circuit can be fault-tolerant with low fidelity or non-fault-tolerant with 
high fidelity. For example, even if a weight-1 error can lead to a weight-2 
error but the code has high distance, or if this error-propagation 
sequence is possible but highly unlikely, then this property may not 
be of practical importance (for this reason, definitions of fault tol-
erance may vary). In practice, the goal of QEC is to execute specific 
algorithms with high fidelity, and fault-tolerant structuring of a circuit 
is one of many tools in the design and execution of high-fidelity logical 
algorithms.

Transversal gates, defined here as being composed of independent 
gates on the qubits within the code block (that is, entangling gates are 
not performed between qubits within the same code block)42, consti-
tute a direct approach to ensure fault-tolerant structuring of a logical 
algorithm. Because transversal gates imply performing independent 
operations on the physical constituents of a code block, errors cannot 
spread within the block and fault tolerance is guaranteed. In this work, 
all logical circuits we realize (following the logical state preparation) 
are fault-tolerant, as all logical operations we perform are transversal. 
Note, in particular, that even though the transversal CNOT allows errors 
to propagate between code blocks, this is still fault-tolerant, as it does 
not lead to a higher-weight error within the block and, thereby, a single 
physical error can neither lead to a logical failure nor an algorithmic 
failure. Notably, the large family of codes referred to as Calderbank–
Shor–Steane (CSS) codes all have a transversal CNOT (ref. 2), all of 
which can be implemented with the single-step, parallel-transport 
approach here.

Although all the logical circuits we implement are fault-tolerant, 
the logical qubit state preparation is fault-tolerant for our d = 3 

colour code (Figs. 3 and 4) and d = 3 surface code (part of Fig. 2), but 
is non-fault-tolerant for the state preparation of our d = 5, 7 surface 
codes and [[8,3,2]] codes. Thus, all of our experiments with the d = 3 
colour codes are fault-tolerant from beginning to end, and so the entire 
algorithm is fault-tolerant and theoretically has a failure probability 
that scales as p2. However, we note that having a fault-tolerant algorithm 
also does not imply that errors do not build up during execution of the 
circuit. For this reason, deep circuits require repetitive error correc-
tion6,88 to constantly remove errors and continuously benefit from, for 
example, the p2 suppression.

Our logical GHZ state theoretically has a failure probability scaling 
as p2. Nevertheless, the error build-up (increasing p) during the opera-
tions of the circuit and the spreading of errors through transversal gates 
limits our logical GHZ fidelity to 72%. This is consistent with numeri-
cal modelling. Similar to the surface-code modelling (Extended Data 
Fig. 4), we use empirical error rates consistent with 99.4% two-qubit gate 
fidelity, as well as roughly 4% data qubit decoherence error (including 
SPAM) over the entire circuit. We simulate the experimental circuit 
(including the fault-tolerant state preparation with the ancilla logical 
flag) and measurements of all 16 elements of the stabilizer group (see 
the ‘Direct fidelity estimation and tomography’ section), and extract 
a simulated logical GHZ fidelity of 79%. This is slightly higher than our 
measured 72% logical GHZ fidelity, possibly originating from imperfect 
experimental calibration. This modelling indicates that our logical GHZ 
fidelity is limited by residual physical errors, which will be reduced 
quadratically as p2 with reduction in physical error rate p, in particular 
by reducing residual single-qubit errors, which were larger during this 
measurement and are dominating the error budget here.

Surface code and its implementation. In 2D planar architectures, 
such as those associated with superconducting qubits6,88, stabilizer 
measurement is the most important building block of error-corrected 
circuits24. In such systems, stabilizers need to be constantly measured 
to correct qubit dephasing and increase coherence time, as demon-
strated recently6. Logic operations are implemented by changing 
stabilizer measurement patterns, enabling realization of techniques 
such as braiding24 and lattice surgery89. Similar techniques can be used 
to move logical degrees of freedom to implement nonlocal logical 
gates23. Owing to this gate-execution strategy, d rounds of stabilizer 
measurement are required for each entangling gate for ensuring fault  
tolerance24.

Neutral-atom quantum computers feature different challenges and 
opportunities. Specifically, they feature long qubit coherence times 
(T2 > 1s), which can be further increased to the scale of tens to hun-
dreds of seconds with well-established techniques72. By using the stor-
age zone, qubits can be idly and safely stored for long periods without 
repeated stabilizer measurements. Hence, from a practical perspective, 
increasing qubit coherence by using a logical encoding does not pro-
vide immediate gains in improving quantum algorithms and the gains 
will be from improving the fidelity of entangling operations. Moreover, 
logic gates and qubit movement do not have to be performed with 
stabilizer measurements. Instead, they can be executed with nonlocal 
atom transport and transversal gates. Because such transversal gates 
are intrinsically fault-tolerant, they do not necessarily require d rounds 
of correction after each operation. Even syndrome measurement may 
be better executed in certain cases by techniques such as Steane error 
correction80 (similar to our ancilla logical flag with colour codes as used 
in Fig. 3), as opposed to repeated stabilizer measurement. For these 
reasons, the transversal CNOT is among the most important building 
blocks in error-corrected circuits. Hence, we focus here on improving 
the transversal CNOT by scaling code distance.

Specifically, we use the so-called rotated surface code6, which has 
code parameters [[d2,1,d]]. Our distance-7 surface codes (as drawn in 
Fig. 2d) are composed of 49 physical data qubits, with 24 X stabilizers 
(light-blue squares) and 24 Z stabilizers (dark-blue squares), and one 



encoded logical qubit described by anticommuting weight-7 operators, 
the horizontally oriented XL and the vertically oriented ZL. The X and 
Z stabilizers commute with the XL and ZL logical operators, allowing 
the measurement of the stabilizers without disturbing the underlying 
logical degrees of freedom. In our experiments, we prepare one surface 
code in |+L⟩ and one surface code in |0L⟩. In the first code, this is realized 
by preparing all physical data qubits in |+⟩, thereby preparing an eigen-
state of XL and the 24 X stabilizers, and then projectively measuring 
the 24 Z stabilizers with 24 ancilla qubits (Fig. 2d red dots) using four 
entangling-gate pulses24. The second code is prepared similarly but 
with all physical qubits initialized in |0⟩, thus preparing an eigenstate 
of ZL and the 24 Z stabilizers, and then projectively measuring the 24 
X stabilizers with 24 ancillas. The CNOT is directly transversal because 
these two surface-code blocks have the same orientation and does 
not require rotation of the lattice to implement a H. The projective 
measurement of the ancillas defines the values of the stabilizers. Dur-
ing the transversal CNOT, the values of the stabilizers are copied onto 
the other code as well and is tracked in software.

Because we only perform a single round of stabilizer measurement, 
our state-preparation scheme is nFT for the d = 5, 7 codes. Consider, for 
instance, the case when all stabilizers are defined as +1 and no errors 
are present in the system, but an ancilla measurement error in the 
middle of the surface-code lattice yields a stabilizer measurement 
of −1. Correction then causes a large-weight pairing of this apparent 
stabilizer violation to the boundary4. Hence, this single ancilla meas-
urement error can lead to several data qubit errors, resulting in nFT 
operation. The d = 3 code initialization is a special case that does not 
suffer from this issue38. Higher-order considerations about fault toler-
ance given by gate ordering during stabilizer measurement can also be  
considered6.

The effect of these nFT errors from noisy syndrome extraction is to 
cause X physical errors on the |+L⟩ state and Z physical errors on the 
|0L⟩ state. Thus, in performing just a SPAM measurement, the presence 
of these errors would not be directly apparent, as these errors commute 
with measuring the |+L⟩ in the X basis and |0L⟩ in the Z basis. As such, 
this circuit would not be a good benchmark of surface-code state 
preparation. Conversely, the transversal CNOT experiment is sensitive 
to the various aspects of the circuit and a good indication of perfor-
mance. Because we measure the Bell state in both the X XL

1
L
2 and Z ZL

1
L
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bases, the nFT errors in both bases will propagate through the logical 
CNOT and cause errors on both logical qubits in both the X and Z bases. 
For these reasons, unlike a surface-code SPAM measurement, this 
experiment is a good indication of logical performance. In fact, the 
effect of these nFT errors is such that, if we just apply conventional 
decoding within each logical block, then we find that the Bell state 
degrades substantially with increased code distance (Fig. 2d).

The effects of this nFT preparation are suppressed (but not entirely 
removed) by using the correlated decoding technique. For example, 
consider a nFT-induced apparent stabilizer violation to the left of the 
middle line in the lattice of the d = 7 |+L⟩ state, corresponding to a chain 
of three physical X errors to the boundary. These errors will propagate 
through the logical CNOT onto the second logical qubit and affect the 
independent measurement of both logical qubits in the Z basis when 
investigating the Z ZL

1
L
2 stabilizer. When decoded independently, if 

another single X error occurs on the first block after the CNOT moving 
the stabilizer violation to the right of the middle line, becoming a chain 
of four X physical errors, this will cause an incorrect pairing and lead 
to an independent XL

1 error on this code only and thereby corrupt the 
Z ZL

1
L
2 stabilizer and would correspond to a total weight-6 correction 

between the two codes. However, when decoded jointly with correlated 
decoding, these errors can be effectively decoded, as they will appear 
on the stabilizers of both logical qubits. In this example, the 
lowest-weight pairing would remove this chain of three X errors from 
both codes and leave only the one remaining X error on the first block, 
which can also be decoded successfully (the total pairing weight here 

is only 2). Our correlated decoding technique is thus essential to our 
observation of improved Bell performance with code distance.

Finally, we elaborate on our evaluation of Bell-pair error. Bell-state 
fidelity is given by the average of the populations and the coherences, 
which—for physical qubits—can be measured as the ZZ populations 
and the amplitude of parity oscillations. In the language of stabiliz-
ers, the parity oscillation amplitude is given by the average of ⟨XX⟩ 
and −⟨YY⟩ (ref. 90). With the surface code, we cannot conveniently 
measure the YL operators fault-tolerantly (and that is why we use colour 
codes for programmable Clifford algorithms and full tomography; see 
next section). For this reason, we estimate the logical coherences as 
⟨XLXL⟩, which we then average with the populations for calculating the 
Bell-pair error. To support the validity of this analysis, we can instead 
calculate a lower bound on the Bell-state fidelity90, which also shows 
the same improvement in performance as we increase code distance 
(Extended Data Fig. 4d).

Correlated decoding in the surface code. Following the above dis-
cussion, we provide more insights related to the correlated decoding 
in the case of the surface-code transversal CNOT. Consider a circuit in 
which perfect (noiseless) surface codes are initialized, a transversal 
CNOT is executed and then projective readout is performed. If errors 
occur before the transversal CNOT, then these errors can propagate; for 
example, an X physical error on the control logical qubit will propagate 
onto the target logical qubit and thereby double the density of errors 
on the target logical qubit. By multiplying the projectively measured 
Z stabilizers of the target logical qubit with those of the control logical 
qubit, the propagation is undone. Now the target logical qubit only has 
to decode its original density of X errors. The same considerations can 
be made for Z errors originating on the target logical qubit that propa-
gate onto the control logical qubit. However, if there are errors after the 
transversal CNOT, then multiplying the stabilizers instead doubles the 
density of such errors. Thus, the optimal decoding strategy if errors are 
only after the transversal CNOT is to perform independent matching 
within both codes. The general case in which errors are present both 
before and after the transversal CNOT corresponds to neither case and 
is modelled by our decoding hypergraph that has edges and hyperedges 
connecting the two logical qubits, with edge weights informed by our 
experimental error model. Extended Data Fig. 5 explores decoding 
performance with different values of the scaled weights of the edges 
and hyperedges that connect the stabilizers of the two logical qubits. 
These results illustrate that the correlated decoding is robust (but not 
completely insensitive) to the nFT errors associated with ancilla meas-
urement errors. This feature would also be recovered by the simpler 
multiplication decoder, which would be entirely insensitive to errors 
from ancilla measurement, but is—however—more sensitive to errors 
after the CNOT. Specifically, Extended Data Fig. 5c shows that our op-
timized decoder is not simply a ‘multiplication decoder’, as the ancilla 
measurement values indeed contribute to the correction procedure and 
make the correlated decoding more robust to decoder parameters. For 
a given logical circuit, our correlated decoding procedure generates 
a decoding hypergraph, which we then solve using most likely error 
methods, which is done here for both surface-code and colour-code 
experiments, and can generically be applied to any stabilizer codes and 
Clifford circuits79. More theoretical details and discussion of correlated 
decoding will be presented in M.C. et al, manuscript in preparation.

2D colour codes. 2D colour codes are topological codes that are simi-
lar to surface codes91. Often portrayed in a triangular geometry, the 
colour codes used here are a tiling of three colours of weight-4 and 
weight-6 stabilizers, with XL and ZL operator strings running along the 
boundary of the code91. In this work, we study 2D d = 3 colour codes, 
as portrayed in Fig. 3a, which only contain weight-4 stabilizers given 
by the products of X and Z on the qubits of each coloured plaquette. 
This d = 3 colour code is identical to the seven-qubit Steane code. 
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However, we emphasize that the techniques used here directly apply 
to larger-distance colour codes92.

Although the colour codes are similar to surface codes, an important 
difference is that, in the colour code, the X and Z stabilizers lie directly 
on top of the same qubits (as opposed to being on dual lattices with 
respect to each other) and, similarly, the XL and ZL operators lie on top 
of each other (as opposed to propagating in the orthogonal directions 
on the surface code). In other words, the operators here are symmetric 
and related by a global basis transformation. This has important conse-
quences for the allowed transversal gate set41,93. In particular, although 
the surface code technically has a transversal H that transforms XL ↔ ZL, 
it requires a physical 90° rotation of the code block. Although such 
lattice rotations are possible using atom-motion techniques, for many 
circuits, it is inconvenient. Conversely, in the colour code, H is transver-
sal: it directly exchanges XL ↔ ZL as well as the X and Z stabilizers. This 
difference is even more important for the transversal S gate, which is 
possible for the colour code. Here transversal S exchanges XL ↔ YL (for 
which YL is given by the product of XL and ZL, which lie on top of each 
other) as intended, and the X stabilizer of a given plaquette returns 
to itself by multiplying the Z stabilizer of that same plaquette. (This 
is in contrast to the surface code, which does not have a transversal 
S, for which the YL operator is a product of horizontally propagating 
XL and vertically propagating ZL (ref. 24)). Because the colour code 
has the entire transversal gate set of {H, S, CNOT} and also does not 
require tracking any lattice rotations, it is well suited to exploration of  
programmable logical Clifford algorithms.

For fault-tolerant preparation of the d = 3 colour code, we use a modi-
fied version of the scheme summarized in ref. 38, in which, instead of the 
eight-gate encoding circuit, we use a nine-gate encoding circuit that is 
more conveniently mapped to specific atom movements in our system 
(corresponding to graph-state preparation similar to ref. 7), followed by 
a transversal CNOT with an ancilla logical flag. The logical SPAM fidelity 
is then calculated as the probability of observing |0L⟩ after decoding. 
We note that, in Fig. 3, we could also have made a five-qubit GHZ state 
but instead made a four-qubit GHZ state for simplicity of performing 
full tomography. In Fig. 4, when Bell-state fidelities with feedforward 
are reported, we estimate the logical coherences as the average of 
⟨XLXL⟩ and −⟨YLYL⟩, which we then average with the ZLZL populations 
(not plotted) for calculating the Bell-pair fidelity. Finally, we note that 
the feedforward Bell state in Fig. 4e could also be performed with a 
software ZL rotation on either of the two qubits, allowing correction 
to the appropriate Bell state, but here we perform the feedforward S 
on both qubits to test our feedforward capabilities; this technique 
is directly compatible with performing magic-state teleportation24.

Clifford and non-Clifford gates and universality. 2D topological 
codes such as the surface and colour codes have transversal imple-
mentation of Clifford gates (for example, {H, S, CNOT}). This gate set 
is not universal, that is, it cannot alone be used to realize an arbitrary 
quantum computation and requires a non-Clifford gate such as {T, CCZ} 
for achieving universal computation. Moreover, circuits composed 
solely of stabilizer states and Clifford gates can be simulated in poly-
nomial time because of the Gottesman–Knill theorem44. This can be 
understood as stabilizer tracking; for example, consider a three-qubit 
system in which a stabilizer of the state is X ⊗ I ⊗ I, such that X stabilizes 
the |+⟩ state and I is the identity. Applying two CZ entangling gates 
CZ1,2 ⊗ CZ1,3 transforms this stabilizer to X ⊗ Z ⊗ Z because an X flip 
before the CZ simply changes whether a Z flip will be applied to the 
other qubits. Even though Clifford circuits create superposition and 
entanglement between qubits, the N initial stabilizers of the state can 
simply be tracked as they propagate through the circuit (so-called 
operator spreading94) and thereby simulation of the circuit can be 
easily accomplished.

The effect of non-Clifford gates, however, is far more complex. For 
example, passing the stabilizer X ⊗ I ⊗ I through a CCZ maps into a 

superposition of Pauli strings, that is, X ⊗ I ⊗ I → 1/2(X ⊗ I ⊗ I + X ⊗ 
Z ⊗ I + X ⊗ I ⊗ Z − X ⊗ Z ⊗ Z), as an X flip now changes whether a CZ 
operator will be applied on the other qubits, resulting in four times 
more operators to track after the single CCZ. (The CZ operator matrix 
is simply equal to 1/2[I ⊗ I + Z ⊗ I + I ⊗ Z − Z ⊗ Z]). This causes not only 
operator spreading but also so-called operator entanglement94. As 
we apply further non-Clifford gates, the number of operators to track 
will grow exponentially and eventually will become computationally 
intractable. For example, state-of-the-art Clifford + T simulators can 
handle roughly 16 CCZ gates50. This is the basis behind our complex 
sampling circuits, in which the 48 CCZs on the 48 logical qubits cre-
ate a high degree of scrambling and magic (defined below), rendering 
Clifford + T simulation impractical.

[[8,3,2]] circuit implementation
Here we provide more detail about our [[8,3,2]] circuit implementa-
tions. The [[8,3,2]] code blocks are initialized in the |−L,+L,−L⟩ state with 
the circuit in Extended Data Fig. 6, which can be understood as prepar-
ing two four-qubit GHZ states (corresponding to [[4,2,2]] codes95), that 
is, GHZ ⊗ GHZZ

1,3,5,7
X
2,4,6,8, and subsequently entangling them as illus-

trated in Extended Data Fig. 6a (as well as applying Z gates). In our 
circuit implementations, for system sizes of 3–24 logical qubits for 
both sampling and two-copy measurements, we prepare eight blocks 
encoded over 64 physical qubits. For the 48-logical-qubit circuit (128 
physical qubits in total), we encode eight blocks and entangle them, 
and then drop them into storage; then, we pick up 64 new physical 
qubits from storage, encode them into eight blocks in the entangling 
zone and entangle them. Finally, we bring the original eight blocks 
from storage and entangle them with the second group of eight blocks 
in the entangling zone (Extended Data Fig. 6) (see Supplementary 
Video).

The transversal gate set of the [[8,3,2]] code is enabled as follows 
(see also refs. 16,17,26,27). The transversal CNOT between blocks imme-
diately follows from the fact that the [[8,3,2]] code is a CSS code. 
In-block CZ gates between two logical qubits Li and Lj (CZLi,Lj) can be 
realized by S, S† gates on the face corresponding to logical qubit Lk. For 
example, consider applying the pattern of S, S† gates to the top face in 
Fig. 5, that is, S S S S1 3

†
5
†

7, which transforms XL1 = X1X2X3X4 to X′ = − Y X Y XL1 1 2 3 4, 
which is equal to X′ = X ZL1 L1 L2, and the same applies to give X′ = X ZL2 L2 L1, 
that is, a CZ is realized between logical qubits 1 and 2. This procedure 
can also be used to understand why the pattern of T, T† realizes a CCZ 
between the three encoded qubits. CCZ gates should map XL3 to 
XL3 ⊗ CZL1,L2. By applying the pattern of T, T† in Fig. 5a, each X face maps 
to itself multiplied by a pattern of S, S†, for example, XL3 = X1X3X5X7  
maps to X′ = X S S S SL3 L3 1 3

†
5
†

7, or then X′ = X ⊗ CZL3 L3 L2,L3. This happens for 
all three XL faces, thereby realizing a CCZ gate. Finally, we detail the 
permutation CNOT, which was also developed in ref. 27. Physically 
permuting atoms to swap qubits 4 ↔ 8 and 3 ↔ 7 takes XL1 = X1X2X3X4 
to X′ = X X X XL1 1 2 7 8 or instead X′ = X XL1 L1 L2 (also by multiplying the global 
X stabilizer) and, similarly, it can be seen by tracking the qubit permu-
tations that Z′ = Z ZL2 L2 L1, that is, realizing a CNOT. Finally, although these 
3D codes do not have a transversal H, because they are CSS codes, they 
can be initialized and measured in either the X or the Z basis, effectively 
allowing H gates at the beginning or end of the circuit.

In-block logical entangling gates are applied block by block and any 
in-block gate combination can be realized. For conceptual simplicity, 
we apply only two particular local Raman patterns in layers. The first 
is the gate combination CCZL1,L2,L3 ⋅ CZL1,L2 ⋅ CZL1,L3 ⋅ CZL2,L3 ⋅ ZL1 ⋅ ZL2 ⋅ ZL3, 
given by applying T† on the entire physical qubit block, and the second 
gate combination we apply is CCZL1,L2,L3 ⋅ CZL2,L3 ⋅ CZL1,L3 ⋅ ZL3, given by 
applying T on the top row and T† on the bottom row. In our circuits,  
we alternate layers of in-block transversal entangling gates and 
out-block transversal CNOTs, entangling logical blocks on up to 4D 
hypercubes19,96,97 (see Extended Data Fig. 6). We keep the control and 
target qubits the same throughout the circuit for conceptual 



simplicity, allowing the local physical H gates on the target qubits to 
be compiled with the in-block gate layers, but the control-target direc-
tion can also be chosen arbitrarily. We ensure that in-block logical 
entangling gates are applied such that they do not trivially commute 
through and cancel with earlier entangling-gate applications. As an 
experimental note, we remark that, for the Clifford states realized in 
the other parts of this work, stabilizers take on values of either +1 or −1 
(owing to, for example, use of physical π/2 rotations instead of H), 
which is then simply redefined in software. Because, for our [[8,3,2]] 
circuits, we implement non-Cliffords on the physical level, it is impor-
tant to ensure that all stabilizers are initialized and maintained as +1; 
for example, if a Z stabilizer is −1, then the logical CCZ implementation 
sends the X stabilizer expectation value to 0. This can be understood 
as a physical X on a single site transforming to a superposition (X + Y)/ 2  
by physical T, going into an equal superposition of X stabilizer being 
+1 and −1.

Classically hard circuits with [[8,3,2]] codes
Our implemented circuits are equivalent to IQP circuits98, which 
gives a theoretical basis for understanding why our circuits could be 
classically hard to simulate, for which we also provide numerical evi-
dence of so-called anticoncentration99,100. IQP circuits are defined as 
initializing |+⟩⊗n on n qubits, applying a diagonal entangling unitary 
such as those composed by {CCZ, CZ, Z} and then measuring in the X 
basis20,98. A uniform superposition of 2n bitstrings is created, the diago-
nal gates apply −1 signs in a complicated fashion to the exponentially 
many bitstrings and then ‘undoing the superposition’ with the final 
H before measurement now results in an intricate ‘speckle’ interfer-
ence pattern18. Sampling from the output distribution of this speckle 
pattern can be done efficiently on a quantum device that implements 
the circuit, but is exponentially costly on a classical device for certain 
choices of IQP circuits20. The transversal gate set of the [[8,3,2]] code, 
as described above, contains diagonal gates {CCZ, CZ, Z} that apply −1 
signs to the bitstrings, but is made non-diagonal by the application of 
CNOTs, which permute bitstrings. Because this bitstring permutation 
does not break the IQP framework, these circuits are equivalent to an 
effective IQP circuit, but which is much more complex: for example, 
circuits with 48 CCZs and 96 CNOTs map to effective IQP circuits with 
roughly 1,000 CCZ gates. Nevertheless, because IQP circuits are a well- 
understood framework, we can discuss our circuit properties with this  
toolset.

We experimentally explore these circuits with the XEB18, defined as 
p x q xXEB = 2 Σ ( ) ( ) − 1N

i
i i
L L

L , in which NL is the number of logical qubits, 
q x( )i

L  is the measured probability distribution for our logical qubits 
and p x( )i

L  is the calculated probability distribution; here we normalize 
the XEB by its ideal value such that the XEB for the noiseless circuit is 
1. In typical cases, if noise overwhelms the circuit, the measured distri-
bution will be uniform18 and the measured XEB will be 0.

The IQP circuits are a good setting for quantum-advantage-type 
experiments, as the bitstring distribution of IQP circuits with ran-
domly applied {CCZ, CZ, Z} gates (random degree-3 polynomials) 
is known to be classically hard to simulate20,101. In M.K. et al., manu-
script in preparation, we show that the ensemble of random hyper-
cube IQP circuits, whose instances are experimentally explored 
here, converges to the uniform IQP ensemble as the depth and size 
of the hypercube is increased. In Extended Data Fig. 8a, we show that 
hypercube IQP circuits with random in-block operations and rand-
omized control-targets on the out-block CNOT layers (realizing the 
hypercube) anticoncentrate quickly as the dimension of the hyper-
cube is increased, with XEB eventually reaching the uniform-IQP 
value of 2. We also find that the presence of non-Clifford CCZ gates, 
which are critical for the computational hardness here, further 
improves anticoncentration properties, as we observe that the ideal 
XEB of experimental circuits approach 2 as well, even without much  
randomization.

Moreover, the XEB turns out to be a better benchmark for IQP circuits 
than for generic random circuit sampling settings (such as Haar-random 
circuits)102–104. For IQP, the XEB is close to the many-body fidelity and 
the difference can be theoretically bounded under reasonable noise 
assumptions (M.K. et al., manuscript in preparation). Intuitively, this 
fact is related to the diagonal structure of the IQP circuits, which allows 
the XEB to capture errors in a manner closer to fidelity, despite being 
defined only in the computational basis. In other words, a Z error will 
always corrupt the X-basis measurement, and an X error (except one 
immediately before measurement) will create new Z errors that also cor-
rupt the X-basis measurement. Thus, in the fully postselected regime, 
in which errors at the end of the circuit are well described by logical 
errors, we expect the XEB to be a good measure of fidelity. We further 
note that, as well as the efficient generation of complex IQP circuits 
here, the [[8,3,2]] gate set presented here can realize arbitrary IQP 
circuits composed of {CCZ, CZ, Z} gates105. The in-block {CCZ, CZ, Z} 
operations can be applied to any groupings of qubits by noting that 
combining the in-block and out-block CNOTs allow us to compose 
arbitrary transversal SWAP operations of targeted individual logical 
qubits between different blocks.

Simulation of bitstring probabilities
To calculate the logical bitstring probabilities necessary for evaluating 
the XEB and benchmarking our circuits, we use a hybrid simulation 
approach combining wavefunction and tensor-network106 methods. 
It works best only when performing all of the entangling gates of the 
hypercube a single time and relies on the fact that the final round of 
CNOTs is immediately followed by a measurement, simplifying network 
contraction. Concretely, for a D-dimensional logical hypercube, the 
two subsystems consisting of 2D−1 blocks are simulated independently 
and then the final layer of CNOTs and in-block operations is combined 
with the measurement outcomes (the bitstring of interest), which 
results in a contraction of two 82D−1

 tensors (see Extended Data Fig. 8b). 
This is a square-root reduction in the memory requirement compared 
with the full wavefunction simulation, which uses O(8 )2D

 space. The 
ideal XEB value is calculated by sampling bitstrings from the ideal out-
put distribution and then averaging the corresponding probabilities. 
The bitstrings are sampled using a marginal sampling algorithm, which 
uses the same contraction scheme described above.

We next consider whether the finite XEB scores in this problem can 
be easily ‘spoofed’ by foregoing exact simulation of the implemented 
circuit and using a classical algorithm with fewer resources, similar in 
spirit to the algorithm introduced in ref. 102. For the circuits studied 
in Fig. 5, containing only a single layer of gates on the hypercube, there 
is only a single round of CNOTs connecting the two 2D−1-block partitions; 
thus, removing them from the circuit and sampling from the two inde-
pendent halves might not decrease the XEB substantially while reduc-
ing the memory requirement to 82D−2

. In Extended Data Fig. 8c, we study 
the performance of this spoofing attack and find that the obtained XEB 
rapidly decreases, once further gate layers are introduced, for a par-
ticular extension of our circuit.

The contraction scheme above, used for both the ideal simulation 
and the XEB spoofing, scales exponentially with the number of qubits. 
However, the exponent is substantially reduced by using the fact that 
the hypercube circuits can be naturally partitioned into smaller blocks, 
with only a single inter-partition layer of CNOTs at the end of the circuit. 
This simulation method therefore becomes less efficient if we introduce 
extra CNOT layers (within a single partition) after the inter-partition 
layer, as we estimate in Fig.  5d. Applying l = {0,…, D − 1} further 
intra-partition CNOT layers forces the CNOT tensors in Extended Data 
Fig. 8b to be blocked into groups of 2l, which results in the execution 
time to scale roughly as O(8 /2 )l2l

, in which the numerator comes from 
the tensor contraction complexity and the denominator accounts for 
the reduced number of contractions resulting from blocking. The 
explicit times quoted in Fig. 5d as a function of extra CNOT layers are 
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based on the above matrix-multiplication estimate and fitted such that 
the depth-1 hypercube time matches 1.44 s, which corresponds to our 
implementation. In practice, the actual runtimes might differ owing 
to hardware and software optimization and other factors, such as the 
cost of tensor permutations; however, we expect the general trend to 
hold. Finally, if the 2l-blocked tensors were to be stored directly, the 
memory requirement of this approach would grow as 82l+1

, recovering 
the full 82D

 memory complexity for l = D − 1.
In this work, we use these circuits and XEB results for benchmarking 

our logical encoding, which requires the ability to simulate these cir-
cuits. Future logical-algorithm experimentation can explore quantum- 
advantage18,48,107–109 tests with encoded qubits, as will be detailed in 
M.K. et al., manuscript in preparation.

Physical qubit circuit implementations
To compare our logical-qubit algorithms with analogous circuits on 
physical qubits, we work out a concrete implementation of our sam-
pling/scrambling circuits on physical qubits using the same physical 
gate set, Clifford + T, as used in the logical circuit, which we also then 
attempt to realize experimentally. We replace each [[8,3,2]] block with a 
three-physical-qubit block, decomposing the ‘in-block’ CCZ gates into 
six CNOTs and seven {T, T†} gates and implement ‘transversal’ CNOTs 
directly between the three-qubit blocks. We note that the CZ can be 
compiled into the CCZ implementation, but this has a minor effect 
on our analysis and estimates. These physical circuits are complex: 
48 qubits with 48 CCZs and 228 two-qubit gates (as realized with our 
logical qubits) decomposes into an effective 516 two-qubit gates (384 
if the CZ gates are compiled into the CCZs). In trying to implement 
these circuits in practice, the build-up of coherent errors resulted in 
a vanishing XEB for our physical circuits. These experiments made 
it clear that the logical-circuit equivalent was greatly outperform-
ing the physical circuit, thereby providing direct evidence that our 
logical algorithm outperforms our physical algorithm for this specific  
sampling circuit.

More quantitatively, with a concrete physical implementation, we 
calculate an upper bound by assuming optimistic performance. We 
assume our best-measured fidelities: SPAM of 99.4% (ref. 8), local 
single-qubit gate fidelity of 99.91% (Extended Data Fig. 2), two-qubit 
gate fidelity of 99.55% (ref. 8) and T2 = 2s. We then count the total num-
ber of entangling-gate pulses for the CZ gates, the total number of 
compiled local single-qubit gates and the estimated circuit duration, 
and use these to calculate the estimate presented in Fig. 5f. We further 
confirm this analysis for small-scale circuit implementations. For a 
short three-qubit circuit, we benchmark the XEB for the physical cir-
cuit as approximately 0.87, which is below the estimated three-qubit 
upper bound of roughly 0.92. We note that, in Fig. 5f, we plot estimates 
of physical-qubit fidelity and not the XEB, but we expect the XEB and 
fidelity to be closely related, as discussed previously.

We note several observations made in comparing physical and logical 
implementations of these complex circuits. First, empirically, it seems 
that the logical circuit is much more tolerant to coherent errors49,110,111, 
and understanding the manifestations of this is a subject of continu-
ing investigation. Specifically, it seems that the logical circuit realizes 
inherently digital operation, for which the small coherent errors do not 
substantially shift/distort the bitstring distribution but just reduce the 
overall fidelity49,110 (see, for example, the agreement in Extended Data 
Fig. 7a). This is in contrast to the physical implementation, in which 
coherent errors are seen to substantially alter the shape of the bitstring 
distribution, for example, changing relative amplitudes. Second, we 
note that we optimize our [[8,3,2]] circuits only by optimizing the sta-
bilizer expectation values and not by optimizing the XEB or two-copy 
result directly. When running complex circuits, the stabilizers serve as 
useful intermediate fidelity benchmarks, for both optimizing circuit 
design and ensuring proper execution, especially in regimes in which 
output distributions or other observables cannot be calculated. Overall, 

we find that these complex circuits seem to perform much better with 
logical qubits than physical qubits.

Two-copy measurements
A powerful method to extract various quantities of interest are Bell- 
basis measurements between two copies of the same state21,22,52. First, 
we use these measurements to calculate the purity or entanglement 
entropy of the resulting state7,21,52,112,113. Measuring the occurrences  
of the singlet state 01⟩ − 10⟩

2
 (|11⟩ outcome for our measurements  

after applying the final pairwise entangling operations) probes the 
eigenvalue of the SWAP operator sî at a given pair of sites i. This is in 
turn related to the purity of the state by observing that ρTr[ ]=A

2

s ρ ρTr[Π ⊗ ]i A i A A∈ ̂  for any subsystem A. Thus, the average purity can  
be estimated by the average parity ρTr[ ] = ⟨(−1) ⟩A

2 no. of observed singlets   
within A and, thus, also the second-order Rényi entanglement entropy 
S A ρ( ) = − log Tr[ ]A2 2

2 .
The entanglement entropy calculation only involves the singlet out-

comes. By making use of the full outcome distribution, we can also 
evaluate the absolute value of all 4N Pauli strings, from a single dataset, 
in which N is the number of qubits involved in each copy of the state22. 
More concretely, consider a given Pauli string O = ∏iPi, in which 
Pi ∈ {Xi, Yi, Zi, Ii} are individual Pauli operators on site i (and the identity), 

and a given observed bitstring  a b{→,
→

}, in which a→, b
→

 label the outcomes 
in the control and target copy. The rules of reconstructing the Pauli 
strings through these Bell-basis bitstrings can be worked out through 
considering the computational states to which the Bell states are 
mapped and considering which operators of XX, YY and ZZ have +1 or 
−1 eigenvalue for the various Bell states. We explicitly list the analysis 
procedure: for Pauli term Xi, we assign parity +1 if ai = 0 and −1 otherwise; 
for Pauli term Yi, we assign parity +1 if ai ≠ bi and −1 otherwise; for Pauli 
term Zi, we assign parity +1 if bi = 0 and −1 otherwise; for Ii, we assign 
parity +1 always. The contribution of the bitstring a b{→,

→
} to Oρtr( ) 2 is 

then given by the product of the individual parities.
We can perform the same analysis as a function of the amount of 

error detection applied. As shown in Extended Data Fig. 9a, as more 
error detection is applied, the distribution of Pauli expectation values 
that are expected to be zero and non-zero separate apart further. This 
also provides a natural method to perform error mitigation through 
zero-noise extrapolation: by performing sliding-scale error detection, 
we can extract the Pauli expectation value squared for groups of Pauli 
strings with the same expected value, as a function of the logical purity. 
We perform a linear fit of the Pauli expectation value squared versus 
the logical purity and extrapolate to purity ρtr( ) = 12 , corresponding 
to the case of zero noise, to estimate the error-mitigated values. The 
choice of a linear fit is motivated by the fact that both Oρtr( ) 2  and 

ρtr( )2  scale with power 2 of the density matrix. We expect that more 
detailed considerations of the noise model, using knowledge about 
the weight of each operator, as well as whether detected errors in each 
shot overlap with a given Pauli operator, can further improve the 
error-mitigation results.

We can also compute measures of distance from stabilizer states, 
also known as ‘magic’, using the additive Bell magic measure in ref. 53, 
which only requires O(1) number of samples and O(N) classical 
post-processing time. To do so, we randomly sample subsets of four 
measured Bell-basis bitstrings r, r′, q, q′ and calculate their contribu-
tion to the Bell magic using the check-commute method of ref. 53: 

P P P P σ σ= ∑ ( ) ( ′) ( ) ( ′) [ , ], ′, , ′ ⊕ ′ ⊕ ′ ∞N∈{0,1}2
B ∥ ∥r r q qr r q q r r q q , with ∥ ∥σ σ[ , ]⊕ ′ ⊕ ′ ∞r r q q  

being 0 when the two Pauli strings commute and 2 otherwise. r r⊕ ′ 
denotes bitwise XOR between the two bitstrings. P(r) is the probability 
of observing bitstring r. The Pauli string σr is of length N and the ith 
element is I, X, Z or Y when the target and control qubit at site i read 
00, 01, 10 or 11, respectively. We convert this result to additive Bell 
magic through the formula B B= − log (1 − )a 2 . We use approximately 
107 samples to estimate the additive Bell magic for each dataset. The 



results for the estimated additive Bell magic as a function of the num-
ber of non-Clifford gates applied (circuits shown in Extended Data 
Fig. 9f) are shown in Fig. 6c. These results also use the purity estimates 
in the same dataset, which are used for error mitigation as described 
in equations (13)–(15) of ref. 53. All additive Bell magic data shown are 
with full error detection applied.

The same experiments we perform here can also be interpreted as a 
physical Bell-basis measurement. Using this insight, in Extended Data 
Fig. 9c,d, we show the entanglement entropy for different subsystem 
sizes, when analysing the data as physical Bell-pair measurements 
and applying different levels of stabilizer-based postselection. Nota-
bly, the full-system parity when postselecting on all stabilizers being 
correct is identical when analysing the outcomes as either a physi-
cal or a logical circuit. This is because, in this limit, the results of the 
physical-circuit analysis can be viewed as taking the (imperfect) logical 
state and running a perfect encoding circuit, hence giving identical  
results.

Data availability
The data that support the findings of this study are available from the 
corresponding author on request.
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Extended Data Fig. 1 | Neutral-atom quantum computer architecture.  
a, Experimental layout, featuring optical tools including static SLM and 2D 
moving AOD traps, global and local Raman single-qubit laser beams, 420-nm 
and 1,013-nm Rydberg beams and imaging system for both global and local 
imaging. b, Level structure for 87Rb atoms, with the relevant atomic transitions 
used in this work. c, Control infrastructure used for programming quantum 
circuits, featuring several AWGs. In particular, the moving and Raman 2D AODs 
are each controlled by two waveforms (one for the x axis and one for the y axis). 
An additional AWG is used in first-in-first-out (FIFO) mode for rearrangement 
before the circuit begins and then the moving AOD control is switched to the 
‘Moving AWG’. See ref. 30 for further SLM and pre-circuit rearrangement details, 
ref. 8 for further Rydberg AWG details and Rydberg excitation details, refs. 7,63 
for further Raman laser and microwave control infrastructure details and ref. 7 
for further moving AWG details. All AWGs (other than the ‘Rearrangement 

AWG’) are synchronized to <10 ns jitter. During Rydberg gates, the traps are 
briefly pulsed off by a TTL. The FPGA processes images from the camera in real  
time and, in this work, sends control signals to the Raman 2D AOD for local 
single-qubit control. d, Example array layout featuring entangling, storage  
and readout zones. Zones can be directly reprogrammed and repositioned for 
different applications, as well as specific tweezer site locations. Tweezer beams 
and local Raman control are projected from out of plane. The entire objective 
field of view is 400 μm in diameter and, consequently, we do not expect or 
observe substantial tweezer deformation near the edges of our processor. 
During two-qubit Rydberg gates, we place atoms ≲2 μm apart within a gate  
site and gate sites are separated such that atoms in different gate sites are no  
closer than 10 μm during the gate. At our present n = 53 and two-photon Rabi 
frequency of 4.6 MHz, the blockade radius is roughly 4.3 μm, such that adjacent 
atoms are well within blockade and distant atoms are well outside blockade.
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Extended Data Fig. 2 | Single-qubit Raman addressing. a, 5S1/2 hyperfine level 
diagram illustrating the two possible implementations of local single-qubit 
gates: resonant X(θ) (purple) and off-resonant Z(θ) (turquoise) rotations with 
two-photon Rabi frequencies ΩRaman. In this work, we use the Z rotation scheme 
and are blue-detuned by 2 MHz from the two-photon resonance. Owing to 
Clebsch–Gordan coefficients, Ω = − 3 Ω

Z Z
Raman Raman

͠ . b, Schematic showing the 
conversion of local Z(π/2) into local X(±π/2) gates, in which the pulses before 
(after) the central Y(π) have positive (negative) sign, while leaving non-addressed 
qubit states unchanged. The Gaussian-smoothed local pulses have duration 
2.5 μs for π/4 pulses and 5 μs for π/2 pulses and are performed on single rows  
at a time with a 3-μs gap between subsequent gates to allow the RF tones in the 
AODs to be changed (including this, duration is 5–8 μs per row). In this way, 
arbitrary patterns of qubits, such as the example drawn, can be addressed.  

c, Calibration procedure used to homogenize the Rabi frequency over a 
220 μm × 35 μm array. The position calibration is illustrated for 80 sites: 
approximate X(π/2) gates are locally performed and the horizontal/vertical 
position of all tones is scanned in parallel such that a Gaussian fit returns the 
optimal alignment. After this, powers are iteratively calibrated until the fitted 
scale factors for the individual RF tones converge to unity. d, Single-qubit 
randomized benchmarking of local Z(π/2) gates. The local gates are interleaved 
with random global single-qubit Clifford gates and the final operation Cf is 
chosen to return to the initial state. Each data point is the average of 100 
random sets of Clifford gates and fitting an exponential decay to the return 
probability quantifies the fidelity F  per local gate. Note that we apply all 51 
global Clifford gates for each data point, such that errors from the global 
Clifford gates (as well as SPAM errors) do not contribute to the fitted value.



Extended Data Fig. 3 | Mid-circuit readout and feedforward. a, Single-shot 
500-μs local image in the readout zone, in which the peak corresponds to 
roughly 50 photons collected by the CMOS camera. b, Atomic transition and 
pulse sequence used for local imaging of ancilla qubits. The data-qubit 
trap-light shift suppresses data qubit errors, as well as the large spatial 
separation between entangling and readout zones. We avoid quickly losing the 
readout-zone atoms during local imaging by using a 5× higher trap depth and 
we pulse the ancilla qubit traps and local imaging light to image directly on 
resonance while avoiding negative effects of large trap-light shifts. c, Diagram 
of components involved in mid-circuit readout and feedforward steps. Atom 
detection and logical-state decoding occur using the FPGA, which then outputs 
a conditional TTL to gate local Raman pulses performed on logical qubits in  
the entangling zone. d, Diagram of approximate timings for a mid-circuit 
feedforward cycle. First, the F = 2 population is pushed out (in 10 μs) and then 
the remaining F = 1 population is imaged locally for 500 μs. The 24 rows of 
pixels covering the readout zone are read out to the FPGA in 200 μs, after  
which processing is performed. Finally, a conditional TTL output based on the 
decoded state gates on or off local Raman pulses. The whole readout and 

feedforward cycle takes less than 1 ms and can be sped up in the future by 
optimizing local imaging and camera readout. e–g, Characterization of the 
error probability of data qubits during local imaging. e, Data-qubit error 
probability (fraction of population depumped from F = 2 to F = 1) as a function 
of local imaging duration out to 20 ms to quantify the effect of the local 
imaging beam on data-qubit coherence for very long illumination. f, Data-qubit 
error probability after 20 ms of local imaging, as a function of detuning of the 
local imaging beam, showing suppression of error red-detuned or blue-detuned 
from the data-qubit transition. g, Equivalently, increasing the trap depth of the 
data qubits enables suppression of decoherence owing to the local imaging 
beam. Because qubits in the readout zone are imaged while their traps are 
pulsed off, any light shift of the data-qubit transition from the traps contributes 
directly to the relative detuning. h, For a long, 10.5-ms local beam illumination 
with optimal local imaging parameters, we observe a 0.7(1)% increase in 
data-qubit error during an XY8 dynamical decoupling sequence. This suggests 
a roughly 0.034(5)% error probability for the data qubits during the 500-μs 
mid-circuit readout image used in this work.
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Extended Data Fig. 4 | Further surface-code data. a, Depiction of Bell-state 
circuit and d = 7 surface codes. b, Diagram showing the transversal CNOT and 
physical error propagation rules. c, Covariance of the 48 measured stabilizers 
in both bases. The correlations near the diagonal corresponds to adjacent 
stabilizers within each block. Strong correlations are also observed with the 
stabilizers of the other block owing to the error propagation in the transversal 
CNOT. d, Bell-pair infidelity upper bound (as opposed to estimated Bell-pair 
error in Fig. 2d; see Methods), showing improvement with increasing code 
distance. e, Probability of no detected error for each of the 96 measured 
stabilizers, showing agreement when compared with the theoretical values 
from empirically chosen error rates (experiment average = 77%, theory 
average = 82%). Note that X-basis logical 1 and Z-basis logical 2 have higher 

stabilizer error probability owing to the error propagation in the transversal 
CNOT (reducing expectation values relative to if the transversal CNOT is not 
performed). f, Using the empirical error rates that correspond to data-theory 
agreement for the measured stabilizers in e, our simulations for improvement 
in Bell-pair error, as a function of code distance, are in good agreement with 
experiments. The empirical error rates used are consistent with the 99.3% 
two-qubit gate fidelity, measured for this larger array, as well as the roughly 4% 
data-qubit decoherence error (integrated over the entire circuit and measured 
by the Ramsey method). These dephasing error rates are dominated by a 
complex moving sequence as we prepare the two surface codes in a serial 
fashion (see Supplementary Video) and would be much smaller for a repetitive 
error-correction experiment.



Extended Data Fig. 5 | Surface-code preparation and decoding data.  
a, Surface-code stabilizers for the two independent d = 7 codes following state 
preparation. The entire movement circuit corresponding to the transversal 
CNOT is implemented and the transversal entangling-gate pulse is simply 
turned off. The mean stabilizer probability of success across the 96 total 
stabilizers is 83%. The high probability of stabilizer success of the two 
independent codes in both the X and Z bases shows that topological surface 
codes were prepared (and Extended Data Fig. 4 shows that they were preserved 
during the transversal CNOT). We note that physical fidelities were slightly 
lower during this measurement because of calibration drift and, therefore, 
these results slightly underestimate performance relative to the data in  
Fig. 2 and Extended Data Fig. 4. b, Logical Bell-pair error while optimizing  
the decoder by (inversely) scaling the weights of the inter-logical edges and 
hyperedges that connect the stabilizers of the two logical qubits (higher values 
correspond to lower pairing weights). More concretely, the probability p of  
the error mechanism corresponding to the inter-logical edges/hyperedges is 
scaled and the weights are calculated as log((1 − p)/p). Qualitatively, optimizing 
this scaling value optimizes with respect to the probability that errors are 
before or after the transversal CNOT, as errors before the CNOT will lead to 

correlations between the two logical qubits, corresponding to the inter- 
logical edges. As the decoder is optimized by tuning the inter-logical scaling 
factor, the performance for all three code distances improves, and the larger 
code distances improve faster when approaching the optimal decoding 
configuration, as expected. These data are consistent with the decoder being 
properly optimized for all three code distances, consistent with the fact that 
our improvement with code size does not originate from suboptimal decoder 
performance for low distance. Note that the y axis is log scale. c, Logical 
Bell-pair error when using (black) and not using (grey) the ancilla stabilizer 
measurement values, as a function of the scaling of the inter-logical edges and 
hyperedges that connect the stabilizers of the two logical qubits. The ancilla 
measurements contribute to the correction procedure and contribute more 
for smaller values of the inter-logical scaling, as they correspond to errors that 
happen before the transversal CNOT. 0× inter-logical scaling corresponds to 
conventional decoding within the two independent surface codes. For the  
1× inter-logical scaling plotted here, the d = 7 inter-logical scaling parameter is 
chosen slightly different from in Fig. 2d to have consistency across the three 
code distances (which produces measured values within error bars).
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Extended Data Fig. 6 | [[8,3,2]] and hypercube encoding. a, State-preparation 
circuit for the [[8,3,2]] code, in which two four-qubit GHZ states are 
simultaneously prepared and subsequently entangled. This initializes an 
[[8,3,2]] code with logical states |−L1,+L2,−L3⟩. b, 4D hypercube circuit performed 
on 48 logical qubits (128 physical qubits). The circuit is drawn on the block 
level, in which each block consists of three logical qubits and eight physical 
qubits. The first in-block gate layer is performed with a global T†. The local gate 
patterns, and the corresponding logical gates they execute within each code 
block, are illustrated in the inset. c, Diagram illustrating the code-block 
movements and use of the processor’s zoned architecture throughout the 

circuit. Initially, eight [[8,3,2]] code blocks are prepared in the entangling zone 
and atoms for later state preparation of eight additional code blocks are loaded 
in the storage zone. The code blocks in the entangling zone are then picked up 
and interlaced with adjacent blocks to perform three transversal CNOT layers. 
The two groups of eight code blocks are then swapped and the same procedure 
is repeated with the second group of code blocks. The first group of code blocks 
is then moved back into the entangling zone and interleaved with the atoms of 
the first group to perform a final parallel transversal CNOT. The layers of CNOT 
gates connect the code blocks such that a 4D hypercube on 16 blocks of [[8,3,2]] 
codes is constructed. See also Supplementary Video.



Extended Data Fig. 7 | Further [[8,3,2]] circuit sampling data. a, Overlap  
of error-detected 12-qubit sampling data with the theoretical distribution 
(same data as fully error-detected case in Fig. 5b). Progressive zoom-ins show 
the agreement between theory and experiment, down to the level of 10−4 
probability per bitstring. This error-detected dataset is composed of 23,545 
shots (raw dataset is 138,626 shots). Note that we simultaneously measure on 
two groups of 12 logical qubits; plotted here is only one of the two 12-logical 
groups with an XEB of 0.69(1), whereas in plots Fig. 5e,f and Extended Data 
Fig. 7b, we average the two logical groups, which gives a measured XEB of 
0.616(7). b, Same data as Fig. 5f but with purity (orange), as measured by 
two-copy measurement, also plotted. The measured XEB is slightly below the 
measured purity, providing evidence that the XEB is a faithful fidelity proxy.  
We further note that, under error detection, the logical XEB for these IQP 
circuits should be a good fidelity proxy. Notably, the behaviour can be different 

for the raw, uncorrected data, as the circuit we apply on the physical level is  
not IQP. Without applying error detection, not all errors are logical errors  
and, therefore, the circuit differs from IQP behaviour and can lend itself to a 
different scaling. For systems of 3, 6 and 12 logical qubits, several systems are 
measured in parallel and their results are averaged. We note that, although our 
preparation of [[8,3,2]] code states makes these states on a cube, it does not 
have CNOTs between two pairs of qubits in the first step and, therefore, does 
not have the full gate connectivity of a cube. Instead, we can interpret these 
CNOTs as having been included but then compiled away as they commute with 
the state. We neglect this in plotting our physical-qubit connectivity, which is 
derived from entangling 3D cubes on a 4D hypercube connectivity, realizing a 
7D hypercube. c, 48-qubit XEB sliding-scale error-detection data. The point 
with full postselection on all stabilizers being perfect returned only eight 
samples, so we omit this point from the plot in the main text for clarity.
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Extended Data Fig. 8 | Theoretical exploration of hypercube IQP circuits.  
a, Anticoncentration property of our circuits. The circuit is said to be 
anticoncentrated if its output distribution is spread almost uniformly among 
all outcomes, without the probability being concentrated on a subset of 
bitstrings. This property is crucial for many proofs of classical hardness20,100 
and, thus, it is desired for our sampling circuits to anticoncentrate. The plot 
shows that the output distribution of random hypercube circuits (randomized 
in-block operations and randomized control/target in out-block CNOT layers) 
anticoncentrates as the dimension of the hypercube is increased and the XEB 
(which captures the output collision probability) converges to the uniform IQP 
value of 2 (here using Clifford circuits; that is, circuits comprising random CZ 
and Z only)20. This suggests that sampling from the ideal output distribution 
can be classically hard. In general, the hypercube IQP circuit ensemble converges 
to the uniform IQP ensemble in total variation distance as the depth and 
hypercube dimension are increased (M.K. et al., manuscript in preparation). The 
specific circuit instances implemented in the experiment also anticoncentrate 
quickly with increasing hypercube dimension. b, A single layer of the hypercube 
circuit admits an efficient tensor-network contraction scheme, which allows us 
to evaluate the ideal and experimental XEB values. The final out-block CNOT 
layer is immediately followed by the measurement, which can be incorporated 
into a non-unitary tensor that is contracted between the two halves of the 

system (controls and targets of the final CNOT layer). This contraction scheme 
reduces the memory requirements to half the system size, which enables 
bitstring amplitude evaluation for the 48-qubit experiment. This simulation 
approach can be made much more expensive by applying further out-block 
operations within the two subsystems, forcing the blocking of the intra-partition 
tensors, which increases the memory and runtime requirements (Fig. 5d).  
c, To understand the effects of finite XEB on required classical simulation time, 
we explore whether our circuit families can be ‘spoofed’ with a cheaper, 
approximate simulation that achieves moderately high XEB scores102, studied 
here for a 24-qubit system with full state-vector simulation. The spoofing 
algorithm works by independently sampling from the two halves of the  
system (two groups of 12 qubits), effectively removing the final layer of CNOTs. 
This further reduces the simulation complexity, as each of the halves can, in 
principle, be independently simulated with the efficient approach from b. The 
plot shows that the spoofed XEB for the 24-qubit non-Clifford circuit can be 
exponentially reduced by extending the circuit with further gate layers (similar 
to the approach used to decrease the performance of the efficient hypercube 
contraction), for a particular extension of our circuit. This result shows that 
future work can consider adding extra CNOT layers into these circuits to 
demonstrate quantum advantage (in the presence of finite experimental noise).



Extended Data Fig. 9 | Further Bell-basis measurement results. a, Histogram 
of Pρtr( )

2
 for all 46 Pauli strings P in the six-logical-qubit circuit, as a function  

of stabilizer postselection threshold (that is, the number of correct stabilizers 
across the 6 × 2 logical qubits). Blue (red) indicate Pauli strings that are expected 
to have Pρtr( ) = 0.0625

2
 (0). The separation between the histograms improves 

as more postselection is applied. b, Signal to noise (purity divided by statistical 
uncertainty of purity) as a function of sliding-scale error detection (converted 
into accepted fraction) for the 12-logical-qubit two-copy measurements, in 
which subsystem size 1 indicates a single logical qubit in one copy and subsystem 
size 12 indicates all logical qubits. For subsystem size 1, the signal-to-noise  
ratio gets worse as data are discarded, as the signal does not change (maximally 
mixed) but the number of repetitions decreases. By contrast, for the global 
purity, the signal to noise increases, as near-unity purities are faster to measure113. 

c,d, Entanglement entropy when analysing the circuit as a physical Bell-basis 
measurement as opposed to a logical Bell-basis measurement. For logical 
entanglement entropy calculations, we average over all possible subsystems  
of that given subsystem size, which we find behaves very similarly to, for 
example, contiguous subsystems owing to the high-dimensional hypercube 
connectivity. In the physical qubit entanglement entropy calculations, we 
randomly choose from the possible subsystems, as there are many. c, Six logical 
(16 physical) qubits per copy. d, 12 logical (32 physical) qubits per copy. The 
finite sampling imposes a noise floor for very high entanglement entropy 
values. e, Entanglement entropy measurements, as in Fig. 6b, but as a function 
of logical subsystem size. f, Logical circuits used for benchmarking magic. For 
one CCZ, we include U1 and omit U0; for two CCZs, we include U0 and omit U1; for 
the three CCZs, we include both U0 and U1.
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