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Fractal ground state of mesoscopic ion chains in periodic potentials
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Trapped ions in a periodic potential are a paradigm of a frustrated Wigner crystal. The dynamics are captured
by a long-range Frenkel-Kontorova model. We show that the classical ground state can be mapped to the one
of a long-range Ising spin chain in a magnetic field, whose strength is determined by the mismatch between
the chain’s and substrate lattice’s periodicity. The mapping is exact when the substrate potential is a piecewise
harmonic potential and holds for any two-body interaction decaying as 1/rα with the distance r. The ground
state is a devil’s staircase of regular, periodic structures as a function of the mismatch and of the interaction
exponent α. While the staircase is well defined in the thermodynamic limit for α > 1, for Coulomb interactions,
α = 1, we argue that it disappears and the sliding-to-pinned transition becomes a crossover, with a convergence
to the thermodynamic limit scaling logarithmically with the chain’s size. Due to this slow convergence, fractal
properties can be observed even in chains of hundreds of ions at laser cooling temperatures. These dynamics
are a showcase of the versatility of trapped-ion platforms for exploring the interplay between frustration and
interactions.
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I. INTRODUCTION

Chains of laser-cooled ions in linear Paul traps are paradig-
matic realizations of a harmonic crystal in one dimension [1].
In these systems, order emerges from the interplay between
the Coulomb repulsion and the trapping potential. Even in
one dimension, the long-range nature of Coulomb interactions
warrants diagonal (quasi-)long-range order, and any finite
chain is effectively a one-dimensional Wigner crystal [2]. At
the typical temperatures reached by laser cooling the ions
vibrate harmonically at the crystal equilibrium position and
their motion is described by an elastic crystal with power-law
coupling [3]. The experimental capability to image and moni-
tor the individual ions makes ion chains a prominent platform
for studying structural phase transitions [4–7] and the static
and dynamic properties of crystal dislocations [8–15]. The
progress in cooling and trapping [16] paves the way for inves-
tigating these dynamics deep in the quantum regime [17–22].

Interfacing ion chains with optical lattices, as illustrated
in Fig. 1, implements a simulator of nanofriction [21]. In
fact, the Hamiltonian can be reduced to an extended Frenkel-
Kontorova (FK) model [23–26]. The FK model describes the
interaction of an elastic crystal with an underlying periodic
substrate in one dimension [27]. Frustration emerges from
the mismatch between the periodicity of the elastic crystal
and of the substrate. The ground-state phase diagram of the
FK model has been extensively studied for nearest-neighbor
interactions: When the corresponding ratio is an incommen-
surate number, at zero temperature the FK model reproduces
the essential features of the stick-slip motion characteristic
of static friction, with a continuous transition from slid-
ing to pinning at finite lattice depths. As a function of the

mismatch, the ground state is nonanalytic and has the form
of a devil’s staircase, whose steps correspond to the regime of
stability of a commensurate structure, i.e., a periodic structure
pinned by the lattice [28]. The transition to a sliding phase is
characterized by the proliferation of kinks, namely, of local
distributions of excess particles (or holes) in the substrate po-
tential [27]. Experiments with trapped ions observed several
features of this dynamics: Stick-slip motion has been reported
in chains of a few ions [29–31], pinning by an external lattice
has been observed [32], the onset of the Aubry transition has
been measured in an implementation simulating a deformable
substrate [13], and the kinks’ density has been revealed in
small chains as a function of the mismatch [15].

These results show the versatility of trapped-ion platforms
as quantum simulators. Recent progress in cooling large ion
chains [33,34] and loading ions in optical lattices [35,36]
paves the way toward studying kinks’ dynamics and their
mutual interactions, thus shedding light on the interplay be-
tween geometric frustration and quantum fluctuations. In
this regime, long-range forces, such as the Coulomb repul-
sion, qualitatively modify the kinks and the nature of their
interactions [37]. A systematic study can be performed in
the continuum limit, when the substrate potential is a small
perturbation to the chain’s interaction and the kinks are sine-
Gordon solitons for nearest-neighbor interactions [38]. Then,
the long-range interactions modify the sine-Gordon equa-
tion introducing an integral term [39] and the long-range
sine-Gordon model can be mapped to an extended massive
(1 + 1) Thirring Hamiltonian, where the solitons are charged
positive-energy excitations over a Dirac sea [40]. This theory
has a predictive power for ion chains provided the kink’s size
is orders of magnitude larger than the interparticle distance,
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FIG. 1. Illustration of a trapped-ion realization of the Frenkel-
Kontorova model. In the absence of other external potentials, cold
ions (orange circles) confined on a line form a chain at uniform dis-
tance d0 minimizing the Coulomb repulsion. Geometric frustration
is introduced by the standing wave of a laser field (blue shades),
forming a periodic potential with periodicity a. For d0 � a the ions’
motion about the equilibrium positions is described by their har-
monic vibrations about the equilibrium configuration. The dynamics
is captured by a Frenkel-Kontorova model with long-range elastic
forces.

allowing one to discard the discrete nature of the charge
density distribution. The theory does not capture the oppo-
site limit, where either the number of ions is limited to few
dozens [14,15,31] and/or the depth of the substrate potentials
localizes the kinks in chains composed of a few ions as in
Refs. [41,42]. In some treatments the discrete nature of the
charge distribution can be theoretically described as correc-
tions to the continuum limit [43–45], leading to effective
soliton-phonon collisions [43].

In the present work, we choose a different approach and
start from a discrete distribution of interacting particles. Due
to the long-range interactions, the ground state emerging from
the competition of interactions and substrate potential can-
not be found by means of the ingenious dynamical map of
Ref. [28]. We instead implement the method of Hubbard [46],
and map the ground-state configuration of the long-range,
Coulomb Frenkel-Kontorova model to the one of an antifer-
romagnetic spin chain in the presence of a magnetic field. The
mapping is exact for a periodic substrate composed of piece-
wise harmonic oscillators [47], illustrated in the upper panel
of Fig. 2, and is amenable to analytical solutions. Despite the
theoretical abstraction, we show that this mapping sheds light
on the properties of realistic substrate potentials, such as an
optical lattice.

The presentation of our study is organized as follows.
In Sec. II it is shown that the ground state and low-energy
excitations of a Wigner crystal of ions in a linear Paul trap
are described by a Frenkel-Kontorova (FK) model where the
oscillators of the elastic crystal interact via the long-range
Coulomb interactions. This section reviews the arguments
presented in Refs. [23,24,26] and sets the stage for our anal-
ysis. The ground state is determined in Sec. III within a
mean-field approach, which discards the kinetic energy. Here,
we assume a specific function of the periodic substrate and
map the continuous-variable problem onto a long-range Ising
model and in the presence of a magnetic field, as illustrated
in the lower panel of Fig. 2. Our mapping extends the study
of Ref. [47] to a Wigner crystal and allows us to show that
the ground state is a devil’s staircase as a function of the
mismatch between the lattice periodicity and the characteristic
interparticle distance. It allows us, moreover, to determine the

FIG. 2. (a) Frenkel-Kontorova model where the periodic sub-
strate potential is a piecewise parabolic function, Eq. (9) (in blue).
The orange circles represent the interacting particles forming a chain.
(b) The number of vacant sites hj between neighboring particles
is mapped onto a spin whose orientation depends on the value of
hj , as shown in Sec. IV. In the effective model, the depth of the
substrate potential V0 determines the short-range behavior of the
antiferromagnetic spin-spin coupling J0 while the mismatch is a mag-
netic field μ. The central panel is a magnified fragment of the spin
larger chain indicated by the dotted box. The power-law decay of the
interactions is indicated by the gradual attenuation of the connecting
edges.

interval of stability of the individual commensurate structures
as a function of the temperature. In Sec. IV we determine
the low-energy excitations of an ion chain in a sinusoidal
potential across the Aubry transition and identify its exper-
imental signatures. We then discuss the order of magnitude
of quantum fluctuations by means of a semiclassical ansatz.
The conclusions are drawn in Sec. V, where we provide an
outlook of the directions of studies that our work opens toward
the systematic characterization of the interplay between long-
range interactions and geometric frustration with cold-atom
platforms.

II. CHAIN OF INTERACTING PARTICLES
IN A PERIODIC POTENTIAL

This section reviews the basic assumptions and the steps
that connect the Hamiltonian of a one-dimensional Wigner
crystal of ions in a periodic potential with a Frenkel-
Kontorova model of oscillators interacting via power-law
decaying forces. We then generally discuss the geometric
properties of the ground state using the characterization of
Hubbard [46] and introduce the quantities that will be im-
portant for performing the mapping in Sec. III. We refer the
interested reader to Refs. [23,24], where it was proposed to
study the sliding-to-pinning transition using Wigner crystals
of trapped ions in optical lattices.

A. Extended Frenkel-Kontorova model

We consider N particles of mass M in one dimension, or-
dered along the x axis. Let x j be the particles’ positions, with
j = 1, . . . , N , such that x j < xi for j < i. We denote by L the
chain’s length and assume periodic boundary conditions. The
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particles interact via the repulsive two-body potential W (x),
which decays algebraically with the distance x as

W (x) = W0/xα

with W0 > 0. In this section we keep the power-law exponent
α generic, restricting it to values α � 1, hence including also
the Coulomb interaction.

The overall potential energy includes a periodic substrate
potential Vs(x) and takes the form

V = W0

2

∑
i, j

1

|xi − x j |α +
∑

j

Vs(x j ), (1)

where we assume periodic boundary conditions and that Vs(x)
has periodicity a, Vs(x + a) = Vs(x). For later convenience,
we write the substrate potential as

Vs(x) = V0 f (x),

where V0 ∈ R+ determines the depth of the potential and f (x)
is a dimensionless periodic function with unit amplitude.

In order to link the model of Eq. (1) with the paradig-
matic Frenkel-Kontorova model, we assume that the particles
are localized about the equilibrium positions of the potential
W (x). We perform a Taylor expansion of the interaction W (x)
about the classical equilibrium positions x(0)

j assuming that
the average interparticle distance d0 = L/N is much larger
than the lattice periodicity a, thus x(0)

j = jd0. We denote by u j

the local displacement of the particle j from the equilibrium
position x(0)

j , such that x j = x(0)
j + u j . In second order in the

expansion in the small parameter uj (u j � d0) the potential
reads

V � W (0) + V0

∑
j

f (x j ) + 1

2

∑
j

∑
n>0

K

nα+2
(u j+n − u j )

2,

(2)
where W (0) is the interaction potential at the equilibrium
positions,

W (0) = W0

2

∑
i, j

1∣∣x(0)
i − x(0)

j

∣∣α ,

and K is the spring stiffness,

K = α(α + 1)W0

dα+2
0

.

Equation (2) corresponds to the potential of the Frenkel-
Kontorova model with power-law elastic interactions.

Some words of caution about this treatment are in order.
In fact, the validity of the Taylor expansion requires that the
classical ground state be stable against fluctuations. In one
dimension this is not verified for interactions with exponent
α > 1: In that case the treatment here presented is valid
only for sufficiently small chains, while for long chains the
ground state is captured by a Luttinger model; see Ref. [48].
The Coulomb chain, α = 1, is a special case due to the
non-additivity of the energy, which leads to the slow decay
of two-point density correlations with distance [2,3]. As a
consequence, for any finite size the Coulomb chain exhibits
long-range order even at zero temperatures.

B. Potential of the vacant sites

Hereafter, we will assume that at most one particle is
assigned to each lattice site. In order to distinguish classical
configurations, we will introduce the notation of Ref. [47]:
Let hn be the number of vacant sites between two subsequent
particles of the chain. The sequence {h1, . . . , hN } fully char-
acterizes a classical equilibrium configuration. The potential
energy of Eq. (2) can be expressed in terms of the sequence of
vacant sites, {h1, . . . , hN }, via the equivalent reformulation of
the position variables

x j = a
j−1∑
i=1

(hi + 1) + δx j, (3)

where now δx j is the displacement of the particle with respect
to the closest substrate-potential well. Using Eq. (3) and that
f (x j ) = f (δx j ), we cast the potential, Eq. (2), in the form

V �V (0) + V0

∑
j

f (δx j ) + K

2

∑
j

∑
n>0

1

nα+2
(δx j+n − δx j )

2 + aK
∑

j

∑
n>0

1

nα+2
(δx j+n − δx j )

(
h(n)

j − n〈h〉)

+ a2 K

2

∑
j

∑
n>0

1

nα+2

(
h(n)

j − n〈h〉)2
, (4)

where V (0) is the potential in zeroth order in the expansion in
δx j , and we have introduced the notation

h(n)
j =

n−1∑
i=0

h j+i. (5)

Equation (4) is the starting point for performing a mapping to
a potential of interacting spins. A crucial part of this mapping
consists of eliminating the displacement variables δx j and
rewriting the potential energy only in terms of the vacant-site
variables hn, which in turn will be mapped onto spins.

C. Equilibrium configurations

The ground-state configurations of potential (4) are deter-
mined by the competition of the power-law interaction and
the periodic substrate potential. Moreover, they will satisfy the
additional constraint of periodic boundary conditions. We first
note that the length L of the chain will be an integer multiple
Ns of the substrate periodicity a: L = Nsa. This establishes a
relation between the average interparticle distance, d0 = L/N ,
and the lattice periodicity a, given by Nd0 = Nsa. From these
quantities we find the mean number of particles per lattice site,
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which we denote by ρ:

ρ = N

Ns
= a

d0
. (6)

We can further link the density with the average number of
empty sites, 〈h〉 = ∑

j h j/N , by observing that the sum of
vacant sites will fulfill the relation∑

j

h j = Ns − N. (7)

Dividing both sides by N , we link the average number of
empty sites with the density of charges:

〈h〉 = 1

ρ
− 1. (8)

Due to the periodic boundary conditions, the structures
emerging from the competition between the substrate poten-
tial and the two-body interactions are necessarily periodic.
True incommensurate structures will then exist of the strict
thermodynamic limit. For finite-size chains we will denote
a structure as incommensurate when the following condition
occurs. Let P be the period characterizing the structure: P =
L/M with M, a natural number such that M � 1. A structure
will be commensurate when M > 1. On the contrary, incom-
mensurate configurations are characterized by P = L; namely,
the period is the full length of the chain. See also Ref. [49] for
a related discussion.

In what follows we will consider the case ρ < 1. The
Taylor expansion of Eq. (2), in particular, requires that the
particle displacement is of the order of the lattice periodicity
and thus is valid for densities ρ � 1.

III. GROUND STATE OF THE PIECEWISE
PARABOLIC POTENTIAL

We now show that the model of Eq. (4) can be mapped onto
a long-range Ising model in the presence of a magnetic field,
as illustrated in Fig. 2(b). The classical ground state of this
model is a devil’s staircase as a function of the density ρ [50].
The mapping we perform is exact when the periodic substrate
potential is a sequence of piecewise-truncated parabolas of the
form

f (δx) = 4

a2
δx2, (9)

for |δx| � a/2; see Fig. 2(a). This functional behavior has
been used in several analyses (see, e.g., [47,51,52]).

A. Mean-field configuration in Fourier representation

The mapping is performed by first eliminating the displace-
ment δx j from the potential of Eq. (4) and expressing the
potential itself as a function of the segments of vacancies, hj .
For this purpose, we introduce the Fourier components for the
variables of interest

Qq = 1√
N

∑
j

e−iq jaδx j, (10a)

ζq = 1√
N

∑
j

e−iq ja(h j − 〈h〉), (10b)

where q is the wave number in the Brillouin zone of
the lattice. For convenience, we also introduce the Fourier
components of the sequences of vacancies, h(n)

j , namely

ζ (n)
q = 1√

N

∑
j e−iq ja

(
h(n)

j − n〈h〉).
Using Eq. (5), this expression takes the compact form

ζ (n)
q = ζq

n−1∑
j=0

eiq ja = 1 − eiqna

1 − eiqa
ζq. (11)

On the basis of these definitions, the potential energy can be
rewritten in terms of the Fourier components,

V = V (0) + 8V0

a2

∑
q>0

QqQ−q[1 + gφα (q)]

+ a
8V0

a2

∑
q>0

(
Qqζ−q

gφα (q)

e−iqa − 1
+ c.c.

)

+ a2 8V0

a2

∑
q>0

ζqζ−q
gφα (q)

|eiqa − 1|2 , (12)

where the long-range nature of the interactions is now en-
coded in the function φ(q), defined such that

φα (q) =
∑
n>0

|1 − eiqna|2
nα+2

. (13)

Now, the dimensionless coefficient

g = Ka2

8V0
(14)

quantifies the competition between the elastic properties of the
chain and the interaction with the substrate.

For nearest-neighbor interactions (α → ∞) the parameter
g controls the transition from sliding, where kinks proliferate
(g � 1), to pinning (g � 1), where the formation of solitons
is energetically costly.

Our interest lies in determining how the periodic potential
stabilizes a new ordering of the chain of particles. Equilibrium
requires the condition ∂V

∂Qq
= 0 for all values of the wave

number q. This condition leads to a linear relation between
the displacements and the sequences of vacant sites [53]

Qq = −a g
φα (q)

1 + gφα (q)

(
1

eiqa − 1

)
ζq . (15)

We note that the coefficient g is inversely proportional to the
square of the mass of the sine-Gordon kink MSG [27,39]:

M2
SG = π2

3g
. (16)

B. The potential for the vacant sites

By means of Eq. (15), we can recast the expression of the
potential energy in terms of the Fourier components of the
vacant sites only. In real space, the potential for the vacant
sites takes the form

V = V 0 +
∑

	

∑
r

Jα (r)(h	 − 〈h〉)(h	+r − 〈h〉), (17)
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FIG. 3. Scaling of the coefficients of the interacting potential, Eq. (17), with the distance r. The coefficients Jα (r), Eq. (18), are displayed as
a function of r (in units of a) for a deep (g = 1/10) and a shallow (g = 3) substrate lattice. The colors refer to different values of the power-law
exponent α; see legend. The logarithmic scale emphasizes the twofold behavior of the coefficients, which at short distances decay exponentially
while at long distances decay algebraically as 1/rα for finite exponents α. The nearest-neighbor case (α → ∞) is solely characterized by the
exponential decay.

with the interaction coefficient

Jα (r) = 4V0

N

∑
q

cos(qra)
g

1 + gφα (q)

φα (q)

φ∞(q)
, (18)

where φ∞(q) = limα→∞ φα (q) = |eiqa − 1|2.
It is instructive to analyze the generic behavior of the coef-

ficients Jα (r) as a function of r for finite power-law exponents
α; see Fig. 3. We first note that |φα (q)| � 2ζ (α + 2), with
ζ (α) the Riemann zeta function. By means of an analytic
continuation, it becomes visible that the pole of the function
Fα (q) = 1 + gφα (q) determines an exponentially decaying
behavior with a characteristic length that is monotonically
increasing with g; see Appendix A. For nearest-neighbor inter-
actions (α → +∞), the coefficient decays exponentially with
a damping length monotonically increasing with g. Instead,
for finite values of α, we observe a twofold behavior of Jα (r):
at short distances the coefficient decays exponentially, with
a characteristic length depending on g, whereas at long dis-
tances |r| � a the coefficient exhibits a power-law tail solely
determined by the long-range interactions. In Appendix A we
show that the power-law tail takes the form

Jα (r) � Ka2

2


(α)


(α + 2)

1

|r|α , (19)

which is independent of g. At large distances, thus, the coeffi-
cient describes a power-law repulsion at the same exponent
α of the interaction. This is in agreement with the general
considerations of Refs. [37,39,44]. The short-distance and
large-distance behavior of the coefficient Jα (r) is visible in
Fig. 3 for deep (g = 1/10) and shallow lattices (g = 3) for
representative values of the exponent α.

C. The dislocation

By transforming back into the space variables, we obtain
the equilibrium positions of the ions as a function of the empty
sequences. For g � 1 the displacements take the form (see
Appendix B)

δx j ≈ a
g

α + 1

∑
r>0

1

rα+1
(h j+r − h j−r ). (20)

This expression provides the shape of the dislocation. We
introduce the phase field θ j/2π :

θ j = 2π

a

[
x j − ja

(
d0

a
− δ

)]
. (21)

The phase field is displayed on Fig. 4 for two values of the
coefficient g. Each step is a dislocation inside the ion chain.
Decreasing the value of g, thus increasing the amplitude of
the substrate potential, leads to increasingly sharper jumps in
the shape of the phason, as the ions become pinned to the local
minima of the substrate potential.

D. A long-range Ising model

The segments h j in Eq. (17) can be interpreted as interact-
ing spins [47]. For this purpose, it is now useful to recall that
the segments of vacant sites h j can only be integer numbers.
In a commensurate structure where the equilibrium interpar-
ticle distance is d̄0 = (n0 + 1)a, the number of vacancies is

FIG. 4. Dislocations for different lattice depths. A phason θi/2π ,
corresponding to the in-well displacement δx j/a, is displayed as
a function of the ion position xi. Calculations are performed for
N = 99 ions and density ρ = 99/700 in the case of a deep (blue)
and shallow (orange) substrate potential.
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uniform and equal to h j = n0. A discommensurate structure,
instead, is characterized by an average interparticle distance

d0 = d̄0 + δa, (22)

where the parameter δ determines the discommensuration (or
mismatch), 0 < δ < 1. In the ground state the segments rear-
range such that h j can either be n0 or n0 + 1, satisfying the
constraint imposed by Eq. (7); see Refs. [46,50]. Since the
number of vacant sites can only take two values, we will treat
them as classical spins S j = ±1 where

S j = 2(h j − n0) − 1.

Thus, Sj = 1 when h j = n0 + 1 and S j = −1 when h j = n0.
We use that 〈h〉 = n0 + δ and rewrite the potential energy as a
spin Hamiltonian of the form

H = 1

4

∑
i �= j

J (i − j)(Si + 1)(S j + 1) − μ
∑

i

Si, (23)

where J (r) = Jα (r). The first term of this Hamiltonian de-
scribes an antiferromagnetic Ising chain in a polarizing
magnetic field of strength

∑
r>0 J (r). This polarizing field is

shifted by an offset

μ = 2δ
∑
r>0

J (r). (24)

This additional magnetic field, in turn, is proportional to the
discommensuration and tends to align the spin, competing
with the antiferromagnetic order imposed by the interactions.

The Hamiltonian in Eq. (23) is given apart for a constant
energy offset E0, which is positive and depends on the dis-
commensuration: E0 = 2Nδ(δ − 1/2)

∑
r>0 J (r).

E. Devil’s staircase

The parameters δ and g fully characterize the classical
ground state. For nearest-neighbor interactions, the phase di-
agram of the spin model of Eq. (23) entails the so-called
Aubry transition, where, at fixed mismatch δ, a critical depth
of the potential V0 separates the sliding phase from the pinned
phase. Here, the spectrum is gapped and the phase is dy-
namically characterized by stick-slip events. At constant g,
the phase diagram also entails the so-called commensurate-
incommensurate transition: here a critical value of the
mismatch separates an ordered (commensurate) phase from
the sliding phase where kinks proliferate [54]. At both transi-
tions the ground state becomes nonanalytic. The fractal nature
of the ground state becomes visible when considering the
so-called magnetization m as a function of the magnetic field
(and thus of the mismatch). The magnetization m is defined as

m =
∑

S j/N = 2h̄ − 1, (25)

with h̄ = 〈h〉 − n0 the effective discommensuration. In the ab-
sence of the substrate potential, h̄ = δ, and the magnetization
is proportional to the magnetic field. At finite substrate depths
instead, h̄ exhibits a devil’s staircase as a function of δ. The
staircase exists for all values of α > 1 [50]. The Coulomb case
α = 1 is discussed in the next section.

FIG. 5. Devil’s staircase of commensurate structures as a func-
tion of the mismatch. The plot shows the magnetization, here
represented in terms of the ratio h = m/n of up-oriented spins, as a
function of the magnetic field, here given by the discommensuration
δ. The staircase has been numerically determined using the method
of Ref. [55] for a chain of N = 200 ions (α = 1) and g = 1/10. The
displayed plateaus correspond here to the ratios m/n with n � 20.

F. Thermodynamic limit and phase transitions

Figure 5 displays a staircase for a finite chain of ions at a
fixed, small value of g. The stability regions in the g-δ plane
of some commensurate phases are shown in Fig. 6(a). One
observes that the size decreases as the lattice depth decreases
(corresponding to increasing g). The size of the steps of the
devil’s staircase as a function of δ agrees with an analytical
expression obtained by means of sum rules for generic, convex
interactions [46,50]. For a magnetization with h̄ = m/n (m
and n are natural numbers and prime to each other) the interval
of stability is given by [50]

�μα

[m

n

]
=

N∑
j=1

n j[Jα ( jn − 1) + Jα ( jn + 1) − 2Jα ( jn)],

(26)

and does not depend on m. This analytical expression pro-
vides the boundaries of the stability of classical commensurate
structures in the g-δ plane. It is the energy gap for flipping
a spin in the commensurate phase and thus the energy for
generating a kink. When the gap vanishes, flipping a spin
(generating a dislocation) becomes energetically favorable
and kinks proliferate. At fixed mismatch δ, the gap vanishes
at the critical value gc(δ), determining the Aubry transition
separating a sliding (gapless) from a pinned (gapped) phase.
At fixed g, the mismatch δc(g) is the critical value at which the
commensurate-incommensurate transition occurs.

For α > 1, by means of a proper rescaling (Kac’s rescal-
ing) [56,57], the critical values gc and δc tend to a finite value
in the thermodynamic limit N → ∞. For α = 1, instead, the
steps of the staircase vanish. This is a consequence of the non-
additive nature of the energy for Coulomb interactions in one
dimension, which scales as N ln N and tends thus to dominate
over the substrate potential as N → ∞. The vanishing of �μ

as N → ∞ can be illustrated by renormalizing the charge as
Q2 → Q2/ ln N [3,39]. With this rescaling, g ∝ 1/ ln N , the
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(a) (b)

FIG. 6. (a) Magnetization, h = m/n, as a function of the discommensuration δ and of the ratio g between the stiffness and the potential
depth. Colored areas represent plateaus corresponding to ratios h with n � 8. In the gray shaded areas the plateaus of the staircase are below the
chosen resolution. (b) The magnetization h = m/n as a function of the discommensuration δ and of the temperature T for g = 1/10. Colored
areas represent plateaus corresponding to ratios h with n � 8. White areas correspond to a paramagnetic, disordered phase. All calculations
are performed for a chain of N = 200 ions interacting via Coulomb repulsion (α = 1).

interaction coefficients scale as 1/ ln N and correspondingly
the size of the plateaus �μ ∼ 1/ ln N . Therefore, �μ → 0 for
N → ∞ and the staircase disappears in the thermodynamic
limit.

This behavior is in agreement with the prediction that for
Coulomb interactions the fractal dimension is unity [58]. It
is a manifestation of the long-range nature of the Coulomb
interaction which tends to prevail over the order imposed
by the external lattice. As a consequence, the Aubry and
commensurate-incommensurate transitions are crossovers for
all N . Nevertheless, given the extremely slow growth of ln N
with N , a pinned or a commensurate phase can be exper-
imentally measured for any chain size, provided that the
temperature of the chain is sufficiently low, as we quantify
in the next section.

G. Thermal effects

With an argument based on the scaling of entropy in the
free energy, Peierls showed that in one dimension thermal
fluctuations prevent the emergence of magnetic order [59].
This observation holds in the thermodynamic limit and for
systems with additive energy. For finite systems, there is a
temperature T (N ) above which the commensurate structure
becomes unstable. The temperature T (N ) decreases with N ,
and vanishes in the thermodynamic limit.

We estimate T (N ) using a semiclassical model, where
we calculate the change of free energy by creating a defect
in the commensurate structure as �F = �E − T �S, where
�E is the change in energy and �S the one in entropy. By
means of the mapping to the antiferromagnetic spin model,
then �E = �μ of Eq. (26). The change in entropy can be
determined within the spin model. For an n-partite ordered
magnetic phase, the total entropy takes the form [60]

S = NkB

n

[
n ln 2 −

∑
σ=±

n∑
r=1

1 + σmr

2
ln(1 + σmr )

]
, (27)

where the set {mr} corresponds to the magnetization of each
of the n sublattices. For a perfectly ordered phase (mr = ±1),
the entropy cost of flipping a single spin (so for a variation of
magnetization dmr = n/N) scales like in the thermodynamic
limit as S ∼ kB ln(N/n)/2. Therefore, the free energy cost of
flipping a spin starting from the magnetically ordered (com-
mensurate) phase at a given value of h is given by

�F (h) = �μ[h] − kBT
n

4
ln

(
N

n

)
, (28)

and it is stable for �F > 0. The quantity �F (h) provides the
size of the plateaus at finite temperatures. Interestingly, also
the entropy change depends on n and increases with n. This
expression also shows that the temperature below which the
commensurate structure h is stable scales as

kBT (N ) ∼ 4�μ(h)

n

1

ln(N/n)
.

On the basis of this expression, we determine the stability
of the commensurate phase with regard to thermal fluctua-
tions, which we plot in Fig. 6(b) in the δ-T plane. We observe
the progressive shrinking of the plateaus of the staircase as the
thermal fluctuations become increasingly prominent. These
results also allow us to estimate the temperature below which
one can expect to observe an incomplete devil’s staircase in
a realistic trapped-ion experiment. For an experimental setup
similar to the one realized in [31], one can expect to observe
plateaus for temperatures T below T � 1 mK.

H. Discussion

The phenomena featured in this section have been derived
under the assumption that the substrate potential takes the
form of a piecewise set of parabolas, which enables the exact
mapping to a Ising model. While this might seem to be strictly
valid when the substrate potential has the specific, discontin-
uous form, an analysis performed with a substrate potential of
sinusoidal form leads, when the kink size extends to several
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lattice sites, to the mapping to an XXZ Ising model [40].
In the classical limit, this model coincides with the Ising
model of Eq. (26), except in the specific form of the coeffi-
cients [40]. This suggests that the prediction of the piecewise
set of parabolas can extend well beyond this specific substrate
potential. One point of concern when assuming this potential
is the cusps separating the wells. Nevertheless, we expect that
the Ising model of Eq. (26) permits us to estimate the stability
region of commensurate phases in other continuous substrate
potentials that are quadratic at the minima of the wells. In the
next section we discuss an experimentally relevant substrate
potential, the sinusoidal potential, and analyze the impact of
quantum corrections.

IV. PHONON SPECTRA AND SEMICLASSICAL LIMIT

In this section we analyze the low-energy excitations of a
Coulomb chain across the transition assuming the temperature
is below T (N ). In our analysis the spectrum consists of the
linear excitations of the classical ground state. We consider an
experimentally relevant configuration, where the substrate po-
tential is sinusoidal. Correspondingly, the function in Eq. (1)
reads

f (x) = 1 − cos

(
2π

a
x

)
. (29)

This function is continuous and permits us to perform the Tay-
lor expansion about the equilibrium positions for any value of
g. The corresponding kink, in the continuum limit, is a sine-
Gordon soliton with long-range tails [39]. Below we refrain
from taking the continuum limit and keep the discrete nature
of the charge distribution.

A. Ground-state configuration

The equilibrium positions minimize the potential (1) and
are determined numerically via a gradient-descent algorithm.
We denote by {x̄(0)

i } the ensemble of solutions. Defining the
local displacement with respect to these equilibrium positions
as xi = x̄(0)

i + ūi, the potential energy is expanded up to the
second order in the displacement:

H � 1

2M

∑
i

p2
i + V̄ (0) + 1

2

∑
i, j

ūiKi j ū j + O(u3) , (30)

where now V̄ (0) is the potential at the equilibrium positions
{x̄(0)

i } and Ki j are the elements of the symmetric stiffness ma-
trix for the equilibrium configuration of the whole potential.
The diagonal elements read

Kii =
(

2π

a

)2

V0 cos

(
2π

a
x̄(0)

i

)
+

∑
k �=i

2α(α + 1)W0∣∣x̄(0)
i − x̄(0)

k

∣∣α+2 ,

(31)

while the off-diagonal elements take the form

Ki j = − α(α + 1)W0∣∣x̄(0)
i − x̄(0)

j

∣∣α+2 . (32)

The ground-state configuration of this ion chain is deter-
mined via the minimization of the potential energy. In the
regime where g � 1, the particles are essentially confined to

FIG. 7. Magnetization h = m/n as a function of the discommen-
suration δ for N = 100 ions. The blue dots refer to the piecewise
parabolic potential with g = 3, the orange dots to a sinusoidal poten-
tial whose depth V0 is the same as the piecewise parabolic potential,
the red dots to a sinusoidal potential whose curvature at the minima
is the same as the parabolic potential. The staircase for the parabolic
potential has been numerically determined using the method of
Ref. [54]. For the sinusoidal potentials we used a gradient-descent
method. The displayed plateaus correspond here to the ratios m/n
with n � 20. The inset compares the width of the plateaus as a
function of n.

the local minima of the substrate potential: the ground state
of the ion chain is described by a devil’s staircase similar
to the one depicted in Fig. 5. Figure 7 compares the devil’s
staircases of piecewise parabolic potential and sinusoidal po-
tentials for g = 3: the displayed devil’s staircases have very
similar shapes, despite a shift in the position of the plateaus.
Furthermore, based on the prediction of formula (28), the
comparable widths of the plateaus also suggest that commen-
surate structures are stable in temperature ranges compatible
with the ones deduced for the parabolic case.

B. Vibrational spectrum

The vibrational spectrum is found by diagonalizing the
quadratic potential with the usual procedure, consisting of
identifying the corresponding orthogonal matrix O ∈ SO(N ),
such that O−1 = OT . In the quadratic form, the Hamiltonian
H reads

H = V (0) +
∑

λ

[
1

2M
p2

λ + 1

2
Mω2

λu2
λ

]
.

The eigenvalues given by Mω2
λ are positive when the equi-

librium configuration is stable. The frequencies ωλ give the
dispersion relation, where λ labels the eigenmode and is not
the quasimomentum of the lattice since the potential is gen-
erally aperiodic. Figure 8(a) displays the vibrational spectrum
of the ion chain for different values of MSG across the Aubry
transition. An increase of the strength of the substrate poten-
tial V0 (and therefore of MSG) leads to the opening of gaps
in the spectrum. On the other hand, the large-wavelength prop-
erties are relatively unperturbed up to a critical value where
the low-frequency spectrum becomes gapped.
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(a) (b)

FIG. 8. Vibrational spectrum. (a) Eigenfrequencies ωλ for an ion chain and several values of the parameter MSG. Here, λ labels the
eigenmodes for increasing frequency. Here, the density is ρ = 99/721 and the particles interact via the Coulomb repulsion (α = 1). (b) Spectral
gap as a function of MSG for a fixed value of the density ρ and N = 19, 99, 198. The calculations are performed using the parameters of [25],
taking 174Yb+ ions with lattice periodicity a = 185 nm. The interparticle distance d0 = 1.35 µm is chosen in accordance with ρ.

Figure 8(b) shows the value of lowest eigenfrequency,
� = minλ ωλ, as a function of MSG and for a fixed value of
the density. This quantity is an order parameter, which signals
the transition between the incommensurate phase, which is
self-similar, and the commensurate phase, where the array
is pinned by the substrate lattice. One observes a sudden
change from a vanishing gap to a finite one starting from a
threshold value of M2

SG ∼ 0.9. The opening of the gap heralds
the transition toward a pinned phase.

Given that the Hamiltonian is generally not symmetric
under discrete translations, the eigenmodes λ are not phonon
modes. The dependence of the lowest frequency ones is shown
in Fig. 9 as a function of the position and the mass of the
soliton. This figure shows that, when increasing the substrate
potential, and consequently the mass of the soliton, the site-
dependent amplitudes of the lowest-frequency mode depart
increasingly from a uniformly distributed form by displaying
several localized excitations. This structure indicates that the
mode of lowest frequency does not correspond to a phonon at
wave vector k = 0.

FIG. 9. Spatial form of the lowest-energy mode |w0
i |2 as a func-

tion of the mass of the soliton MSG. The considered chain contains
N = 99 ions at a density ρ = 99/721. Calculations are performed
for 174Yb+ ions with the characteristic lengths of the experiment
described in [25].

C. Quantum fluctuations

The mean-field model is amenable to a semiclassical anal-
ysis, which can allow us to estimate its stability against
quantum fluctuations. This is done according to this phe-
nomenological ansatz: We quantize the fluctuations about the
classical ground state and estimate the maximal size at T = 0.
The commensurate phase is stable when the wave packets of
all ions are localized within the corresponding well of the
substrate potential. We note that this ansatz is plausible away
from the transition point.

We now spell out the criterion. We denote by δxi the dis-
placement with respect to the closest potential minimum, such
that |δxi| � a/2. The displacement can be separated into the
sum of two contributions: the mean-field displacement δx(0)

i ,
which determines the equilibrium position of the ion within
the well, and the spatial extension of the wave packet δu,
which we define as

δu = max
i=1,...,N

√∣∣δx2
i

∣∣ − δx(0) 2
i . (33)

We determine δu as follows. We first quantize the displace-
ments, ûλ = √

u0λ/2(âλ + â†
λ), and the canonically conju-

gated momentum, p̂λ = −i
√

(h̄/2u0,λ(âλ − â†
λ), with u0,λ =

h̄/Mωλ and [âλ, â†
λ′ ] = δλ,λ′ . The Hamiltonian for the quan-

tum fluctuations is the sum of quantum harmonic oscillators,
Hq = ∑

λ h̄ωλ(â†
λâλ + 1/2).

The quantum fluctuations can be related to the phonon
modes via the relation ui = ∑

λ wλ
i uλ, where wλ

i are the ele-
ments of the orthogonal matrix O diagonalizing the quadratic
Hamiltonian. Assuming that the system is at temperature
T = 0, then all phonon modes are in their ground state, and
〈u2

i 〉 = ∑
λ

h̄
2Mωλ

(wλ
i )2. The total displacement is shown in

Fig. 10 as a function of the mean-field displacement. The
dashed line represents the value |δxi| = a/2, where the quan-
tum fluctuations become relevant and the mean-field treatment
fails. For MSG > M (c)

SG the quantum corrections are essentially
negligible and the displacement with respect to the local min-
ima of the substrate potential remains below the threshold. As
MSG decreases toward the transition value, one can observe an
increasing role of the quantum fluctuations.

This graphic analysis permits us to roughly estimate an
approximate value MSG � 0.97 at which the semiclassical
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FIG. 10. Local displacement of the particles as a function of
the mean-field displacement, plotted for a fixed density ρ = 99/721
and several values of the soliton mass M2

SG. The black dashed line
represents the threshold value of |δxi| = a/2, while the red dashed
line accounts for the classical behavior. The parameters are the same
as in Fig. 8.

regime becomes invalid. This value lies in the close vicinity
of the value M (c)

SG � 0.95, at which the classical transition
occurs. The narrow size of the interval where the semiclassical
regime breaks down will be compared with the size of quan-
tum fluctuations, which we identified within a full quantum
model [40]. There, we showed that quantum effects are scaled
by the effective Planck constant

β2 =
(

2π

a

)2
√

2h̄2

3MK
. (34)

Using the parameters a = 185 nm, M = 2.9 × 10−25 kg, and
K = 1.9 × 10−10 N/m, this leads to β2 � 0.013, which qual-
itatively agrees with our estimate �MSG/MSG ∼ 0.02.

D. Experimental realization

The theory developed here is motivated by existing ex-
periments that have measured the Aubry transition in ion
chains [13,31]. Their feasibility has been extensively dis-
cussed in previous literature [23–26]. In this section we focus
on the core assumptions of our work. Throughout this work
we have assumed that—in the absence of the optical lattice—
the ions are equidistant. In a linear Paul trap, this is fulfilled
at the chain center [3,14]. It is also possible to shape the
macroscopic trap potential to approximate a box potential
using several electrodes, resulting in a near-homogeneous ion
spacing over an extended region. An interesting alternative is
offered by ring trap geometries [61]. Here, a periodic substrate
along the ring could be created by a second ion species with
different mass [62,63]. Observing reasonably sharp transition
requires chains with several tens of ions. Linear chains with
40 ions have been demonstrated [34] and laser cooled, and
work is under way to extend this number to � 50.

Kinks and dislocations can be imaged [8–10] and spec-
troscopically resolved [12,14]. This permits us to deter-
mine the behavior at the Aubry transition as well as at
the commensurate-incommensurate transition. Features of the
devil’s staircase are visible as long as thermal excitations are
smaller than the gap [17,64]. Our study permits us to identify

the temperatures required: Using the parameters of Ref. [31],
for a chain of 100 ions 174Yb+ with interparticle distance
d0 = 6 µm and lattice periodicity a = 185 nm, steps of the
devil’s staircase with magnetization k = m/n will be measur-
able for temperatures T � 1 mK/n. These temperatures are
easily achieved with sideband cooling or electromagnetically-
induced-transparency (EIT) cooling [16,33,34], which can
reach the quantum ground state of the optical potential, cor-
responding to temperatures of a few microkelvins.

Quantum effects at the transition manifest as tunneling of
the solitons, and tend to stabilize the commensurate phase.
Within our mean-field approach, we have included them as a
perturbation and have analyzed the corresponding qualitative
features numerically. Other studies followed a different ansatz
where the soliton tunnels across the Peierls-Nabarro poten-
tial [20]. The full quantum dynamics have been numerically
studied for a few ions in [19]. Finally, in a recent work we de-
rived a mapping valid deep in the incommensurate phase [40].
All these considerations lead us to predict that quantum ef-
fects at the Aubry and at the commensurate-incommensurate
transition should be experimentally observable for ion chain
cooled to temperatures T � 1 mK.

V. CONCLUSIONS

We have determined the classical ground state of a Frenkel-
Kontorova model with long-range interactions. When the
substrate potential is given by piecewise harmonic oscilla-
tors, the long-range Frenkel-Kontorova model can be exactly
mapped onto a chain of spin with long-range antiferromag-
netic interactions and an external magnetic field. The structure
of the coefficients allows us to shed light on the behavior
at the commensurate-incommensurate transition and at the
Aubry transition. While for power-law interactions scaling as
1/rα and α > 1 the transitions are well defined also in the
thermodynamic limit, for Coulomb interactions, α = 1, they
become a crossover. We have discussed the features signaling
the onset of the transitions in an experiment with trapped ions.
Importantly, we predict that this transition can still be ob-
served in realistic finite-size experiments, given our analysis
of the devil’s staircase as a function of the temperature and of
the number of ions.

In terms of the theoretical model, our study is comple-
mentary to existing works and approaches [19,20,40]. The
mapping, in fact, allows us to take into full account the
discrete nature of the lattice and to assess its role on transi-
tions that are typically characterized in the continuum limit.
The mapping to the model by Ref. [50], moreover, opens
interesting perspectives for studying topological features,
characteristic of the fractional quantum Hall effects in ion
chains [65,66].

Finally, our predictions have been derived for a generic
power-law exponent, and are in principle applicable to other
systems, such as chains of Rydberg atoms in tweezers
arrays [67,68] or dipoles tightly bound in optically lat-
tices [69,70]. While a Luttinger liquid description in these
cases is more appropriate [48], our approach will allow one to
capture finite-size effects and the role of discreteness in these
dynamics.
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Our study contributes to clarifying the role of long-range,
non-additive interactions on the stability of structures that are
commensurate with the external substrate and to identifying
the regime of stability as a function of the physical parameters.
Moreover, it sets a semianalytic benchmark for numerical
investigations of geometric frustration in Coulomb systems.
Future studies will focus on the analysis of quantum corre-
lations between kinks in these systems, based on the study
of Ref. [71] for a few ions. We will consider the effect of
deformable substrate potentials, as realized in Refs. [13,14]
with two ion chains in a linear Paul trap and in Ref. [72]
by trapping ions in the optical lattice of a high-finesse cavity
(see Refs. [26,73] for the theoretical predictions in the strong-
coupling limit).

Our results support the present atom-based quantum tech-
nology platforms as versatile laboratories to probe condensed-
matter and high-energy physics hypotheses.
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APPENDIX A: DETERMINATION
OF THE COEFFICIENTS Jα(r)

We here analyze the behavior of the coefficient Jα (r) with
the distance using the continuum limit of the sum on the right-
hand side of Eq. (18) and performing an analytic continuation.
Note that the integral shares several analogies with the inte-
grals performed in Refs. [57,74] for chains with power-law
decaying interactions, and arguments applied in those works

FIG. 11. Sketch of the contour integration in (A6). Here, the blue
line indicates the integration path C(y) = y along the real axis (y ∈
[η, 2π − η]). The red line shows the contour Cη(y) = η + iy with y ∈
[0, M], CM (y) = y + iM with y ∈ [η, 2π − η], and C2π−η(y) = 2π −
η + i(M − y) with y ∈ [0, M]. Black crosses mark the positions of
the displaced poles (black circles) in the limit ε → 0+.

can be also applied to this case. For convenience, we first
define the dimensionless function Bα (r) = Jα (r)/(4V0). In the
continuum limit, it is an integral over the Brillouin zone:

Bα (r) ≈ lim
η→0+

1

2π

∫ 2π−η

η

dq eiqraMα (q) (A1)

with

Mα (q) = 1

2Fα (q)

φα (q)

φ∞(q)
, (A2)

where we have introduced the function

Fα (q) = 1/g + φα (q). (A3)

It is useful to rewrite the function φα (q), Eq. (13), as

φα (q) = 2ζ (α + 2) − Liα+2(eiqa) − Liα+2(e−iqa), (A4)

and Liγ (z) = ∑∞
n=1 zn/nγ the polylogarithm [75], while

ζ (γ ) = ∑∞
n=1 1/nγ = Liγ (1) stands for the Riemann ζ func-

tion. We also note that in the limit q → 0 the function
limq→0 Mα (q) = gζ (α)/2 for all values of α � 1.

We identify the contour in the complex plane illustrated in
Fig. 11. It consists of a contribution along a segment (in blue)
of the real axis, integrating between [η, 2π − η]. It accounts
for the quantity Bα (r) defined in Eq. (A1). The path in red is
segmented into three contributions: Cη obtained by integrating
along the path z = η + iy, with y ∈ [0, M], CM obtained by
integrating along the path z = y + iM, with y ∈ [η, 2π − η],
and C2π−η obtained by integrating along the path z = 2π −
η + i(M − y), with y ∈ [0, M]. Summing these three integrals
yields the contribution I (r). We also notice that in the limit
η → 0+ the contour intersects with poles located in z = iq0

and z = iq0 + 2π . This pathological case can however be
solved by introducing a shift of the poles by a factor ε. As a
result, we need to include contributions coming from the pole
contained within the contour, namely z = iq0.

Using the residue theorem, we rewrite Eq. (A1) as the sum
of the integral along the contour, I (r), and of the residues it
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contains, R(r), as follows:

Bα (r) = R(r) + I (r). (A5)

The integral is taken along the contour illustrated in Fig. 11
and reads

I (r) = lim
η→0+

[∫
Cη

+
∫
C2π−η

+
∫
CM

]
dq

ei|r|q

2π
Mα (q). (A6)

The summation over the residues in Eq. (A5) goes over the
complex numbers q0 with 0 � Re(q0) < 2π and Im(r0) > 0
for which Res[erqM(q), q0] does not vanish and reads

R(r) = iRes[ei|r|qMα (q), iq0]. (A7)

Below we extend the treatment of Ref. [74] to this case and
argue that the residues contribute to Bα (r) with an exponential
decay [see Eq. (A11)], while the integral term is different from
zero for α finite. In this case its contribution is an algebraic
decay with α [see Eq. (A15)]. In particular, we show that it
also holds for α = 1.

1. Exponential decay

For α > 1 we observe that the only values where
Res[eirqMα (q), s] does not vanish are the zeros of Fα (q),
defined in Eq. (A3). Therefore we search for the values s
such that Fα (s) = 0. Within the area of the contour M(q) is
a meromorphic function and we can take its Laurent series
about the root s of Fα (q):

Mα (q) =
∞∑

	=−∞
a	(s)(q − s)	, (A8)

where the a	 are the coefficients. Moreover, since Mα (q) is
meromorphic there exists a finite and positive index Ls such
that a	(s) = 0 for 	 < −Ls. This index determines the order
of the pole of Mα (q) at s.

Using Eq. (A8) the residues at s can be expressed as

Res[ei|r|qMα (q), q0] = ei|r|sPs(r), (A9)

where Ps(r) is a polynomial in r which depends on the coeffi-
cients of the Laurent expansion as

Ps(r) =
Ls−1∑
	=0

[i|r|]	
	!

a−1−	(s), (A10)

using the expansion of ei|r|(q−s) close to s. Since all poles are
isolated, the behavior of Eq. (A9) in the bulk is dominated
by the residue at the point s′ with the smallest imaginary
part; namely Im(s′) = ξ is such that ξ � Im(s) for all s. We
distinguish two cases, when ξ > 0 and when instead ξ = 0.
For ξ > 0 then for r � 1 the sum over the residues Eq. (A9)
behaves as

R(r) ∼ e−ξ |r|P̃s′ (r), (A11)

where P̃s′ (r) = iPs′ (r)ei|r|Re(s′ ). If s′ is a pole of order one, then
the polynomial Ps′ (r) is simply a constant independent of r.

The residues are simply found for the case α → ∞, where
the interaction is nearest neighbor. Then F∞(q) has two poles,
q± = ±i ln(ε + √

ε2 − 1) = ±iq0, where for convenience we
have introduced ε = 1 + 1/(2g). Only the pole q+ is within
the contour, and we obtain

R(r) = V0

2

(
g

e−q0|r|
√

4g + 1

)
. (A12)

This expression agrees with Eq. (3.23) of Ref. [47] (note that
their coefficient g is our g divided by 2).

When ξ = 0, a pole of Fα (q) lies on the real axis. We note
that it can occur only for g → ∞, which is outside of the
validity of our model. For α = 1, instead, there is no simple
pole.

2. Power-law tails

We will now extract the behavior of the integrals in
Eq. (A6). For this purpose we use that

∫
CM

dqei|r|qMα (q)
vanishes in the limit M → ∞. In this limit the integral to solve
is

I (r) = − 1

π

∫ +∞

0
e−y|r|Im[Mα (iy)]dy. (A13)

Here, Mα (q) is given in Eq. (A2), and its imaginary part
specifically reads

Im[Mα (iy)] = −1

g

Im[Fα (iy)]

|Fα (iy)|2 Re

(
1

2 − ey − e−y

)

+ Im

(
1

2 − ey − e−y

)(
1 − 1

g

Re[Fα (iy)]

|Fα (iy)|2
)

,

(A14)

with the function Fα (q) given by Eq. (A3).
In order to determine the behavior for r � 1, we expand

Im[M(iy)] to leading order of y using the Taylor expansion
of the polylogarithm [76]:

Liγ (e−y) = 
(1 − γ )yγ−1 +
∞∑

k=0

ζ (γ − k)

k!
(−y)k,

Liγ (ey) = 
(1 − γ ) cos[π (γ − 1)]yγ−1 +
∞∑

k=0

ζ (γ − k)

k!
yk

+ i
(1 − γ ) sin[π (γ − 1)]yγ−1.

Here, the real part is well defined only for γ /∈ N, while the
coefficient of the imaginary part is 
(1 − γ ) sin[π (1 − γ )] =
π/
(γ ). To leading order in the expansion, Eq. (A14) is
given by

Im[Mα (iy)] ≈ − g

2

π


(α + 2)
yα−1.

Substituting in Eq. (A13) we obtain

I (r) ≈ g

2

1


(α + 2)

∫ +∞

0
e−y|r|yα−1dy

≈ g

2


(α)


(α + 2)
|r|−α, (A15)
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which is valid for |r| � 1. This expression shows that the
integral vanishes for α → ∞, thus in the nearest-neighbor
case. In this case the coefficient decays as an exponential
function. For 1 � α < ∞, instead, the decay is algebraic with
the same exponent as the interaction potential. For the case we
consider here, where d0 � a and thus |r| � a, the algebraic
decay determines the coefficient’s behavior. Therefore, Bα (r)
takes the form given in Eq. (19).

APPENDIX B: DETERMINATION
OF THE DISPLACEMENTS δxj

The displacements δx j can be expressed in terms of the
segments h j by integrating Eq. (15):

δx j = a
∑

r

F (r)(h j+r − 〈h〉), (B1)

where

F (r) = 1

N

∑
q

eiqra

1 − e−iqa

(
1 − 1/g

Fα (q)

)
, (B2)

and Fα (q) is given in Eq. (A3) Here, Liα (y) = ∑∞
n=1 yn/nα is

the polylogarithm, |y| � 1, and ζ (α) = Liα (1) is Riemann’s
zeta function [76]. Using Eq. (15) we can write the displace-
ments δx j , defined in Eq. (3), as a function of the configuration
of empty sequences. Using the analytic continuation as shown
above we find an explicit expression for F (r) and thus for the
displacements from the well centers as a function of the empty
sequences:

δx j ≈ a
g

α + 1

∑
r>0

1

rα+1
(h j+r − h j−r ). (B3)

This expression shows that the displacement counterbalances
the net force due to the surrounding ions.
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