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High-fidelity parallel entangling gates on a 
neutral-atom quantum computer

Simon J. Evered1,7, Dolev Bluvstein1,7, Marcin Kalinowski1,7, Sepehr Ebadi1, Tom Manovitz1, 
Hengyun Zhou1,2, Sophie H. Li1, Alexandra A. Geim1, Tout T. Wang1, Nishad Maskara1, 
Harry Levine1,6, Giulia Semeghini3, Markus Greiner1, Vladan Vuletić4,5 & Mikhail D. Lukin1 ✉

The ability to perform entangling quantum operations with low error rates in a 
scalable fashion is a central element of useful quantum information processing1. 
Neutral-atom arrays have recently emerged as a promising quantum computing 
platform, featuring coherent control over hundreds of qubits2,3 and any-to-any gate 
connectivity in a flexible, dynamically reconfigurable architecture4. The main 
outstanding challenge has been to reduce errors in entangling operations mediated 
through Rydberg interactions5. Here we report the realization of two-qubit entangling 
gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code 
threshold for error correction6,7. Our method uses fast, single-pulse gates based on 
optimal control8, atomic dark states to reduce scattering9 and improvements to 
Rydberg excitation and atom cooling. We benchmark fidelity using several methods 
based on repeated gate applications10,11, characterize the physical error sources and 
outline future improvements. Finally, we generalize our method to design entangling 
gates involving a higher number of qubits, which we demonstrate by realizing low- 
error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly 
connected system, these advances lay the groundwork for large-scale implementation 
of quantum algorithms14, error-corrected circuits7 and digital simulations15.

Errors limit the computational capabilities of current quantum devices 
and must be made sufficiently low to permit efficient quantum error 
correction. In particular, two-qubit-gate error rates below 1% (that is, 
fidelities above 99%) are required to surpass quantum error-correcting 
thresholds7. Moreover, maintaining a combination of such low error 
rates, highly parallel control and a high degree of connectivity while 
scaling system size is crucial to realizing large-scale quantum comput-
ers. Although high-fidelity entangling operations were realized on 
isolated qubit pairs early on16–19, only recently have these techniques 
been extended to larger systems. State-of-the-art examples include 
99.4% fidelity on a 72-qubit superconducting chip20 and 99.4–99.6% 
fidelity on a 31-ion chain21. Scaling these systems to even larger num-
bers of qubits while maintaining low error and efficient control is an 
exciting frontier22,23, yet it also presents substantial platform-specific 
scientific and engineering challenges.

Recently, arrays of neutral atoms have emerged as a promising quan-
tum processing platform capable of coherent control of hundreds of 
qubits2,3 for analogue quantum simulations. This platform also features 
a flexible, dynamically reconfigurable architecture4, whereby entan-
gling operations can be performed between neutral-atom qubits with 
arbitrary connectivity and in a highly parallel manner. Although these 
capabilities open unique opportunities for both large-scale digital 
simulations1 and computation with error-corrected qubits7, the main 
outstanding challenge in the field has been to improve the two-qubit 

gate fidelity substantially above the previously demonstrated value 
of approximately 97.5% (refs. 5,24). In this article, we experimentally 
realize two-qubit controlled phase (CZ) gates with 99.5% fidelity 
while operating on up to 60 neutral-atom qubits in parallel, closing 
the gate-fidelity gap to other state-of-the-art platforms20,21,23,25. This 
advance is achieved by using a family of optimal gate schemes8,26 relying 
on the Rydberg-blockade mechanism that are robust to experimental 
imperfections and spontaneous scattering, alongside the implementa-
tion of several experimental tools to overcome previously dominant 
error sources. To characterize the two-qubit gates, we use several 
complementary benchmarking methods using repeated gate appli-
cations, each giving consistent results. Finally, these techniques are 
generalized to entangling operations involving a higher number of 
qubits, allowing us to experimentally realize parallel, high-fidelity, 
three-qubit entangling gates.

Neutral-atom entangling gates
In our approach, quantum information is encoded in long-lived 
mF = 0 hyperfine qubits27, in which high-fidelity (>99.97%) coherent  
single-qubit rotations are driven by Raman laser pulses. Entangling 
operations are performed in parallel by positioning the atoms, 
trapped in individual optical tweezers, into designated gate sites, 
followed by state-selective excitation into highly excited atomic 
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Rydberg states using a two-photon transition (Fig. 1a). Errors in such 
quantum operations can occur owing to spontaneous emission 
from the intermediate atomic state |e⟩, atomic temperature effects, 
Rydberg-state decay during the gate (Fig. 1a inset), as well as mis-
calibrations and experimental imperfections, such as laser noise or  
inhomogeneity.

We address these errors through the combination of gate schemes 
relying on optimal control and experimental improvements. Our 
method for gate implementation is inspired by the recently proposed 
time-optimal gate by Jandura and Pupillo8, which uses a numerically 
optimized continuous phase profile8,24,28 for a single laser pulse  
(as opposed to a discrete phase jump between two laser pulses5). We 
generalize this gate scheme to a family of single-pulse gates with a small 
set of tunable gate parameters, including a version of the time-optimal 
gate consisting of a parameterized sinusoidal phase modulation,  
as well as a second, smooth-amplitude gate (Fig. 1c; see Methods  
for details).

We calibrate these gates by tuning several global parameters (Fig. 1d), 
which lends robustness to experimental imperfections: an optimal set 
of gate parameters can be found even in the presence of systematic 
offsets, such as finite Rydberg laser pulse rise time (Extended Data 
Fig. 4a). We further optimize our control pulses to suppress scattering 
from the short-lived intermediate state |e⟩ by minimizing population 
in the ‘bright’ dressed state ( B e r| � ∝ |1� + | � + | �2Ω

∆
) containing |e⟩ and 

maximizing population in the ‘dark’ state (|D⟩ ∝ −|1⟩ + |r⟩) not contain-
ing |e⟩ (in which Ω is the two-photon Rabi frequency and Δ is the 
intermediate-state detuning)9,29. This optimization is achieved through 
the appropriate selection of the relative signs of the intermediate and 
two-photon detunings (Fig. 1b), as well as through smooth pulse shap-
ing for the smooth-amplitude gate (Extended Data Fig. 2).

Our experimental realization makes use of the apparatus described 
previously in refs. 2,4, with which we rearrange 87Rb atoms into 

programmable, defect-free arrays. Two main experimental upgrades 
facilitate high-fidelity entangling-gate operation. First, we suppress 
scattering by substantially increasing intermediate-state detuning 
while maintaining a high two-photon Rabi frequency (Ω/2π = 4.6 MHz), 
enabled by excitation to a lower-lying (n = 53) Rydberg state with a 
tenfold higher power laser (Extended Data Fig. 1). Second, to suppress 
decoherence from atomic velocity and position fluctuations, we imple-
ment Λ-enhanced grey molasses cooling and an improved optical 
pumping technique (Methods) to achieve colder temperatures (radial 
phonon occupation n ≈ 1 − 2).

Entangling-gate characterization
To characterize the CZ gates realized with this approach, we create 
arrays of ten Bell pairs by arranging qubit pairs into separated gate 
sites (Fig. 2a) and pulsing global Rydberg and Raman lasers. Using  
the parameterized time-optimal gate from Fig. 1c, we create a Bell state 

Φ � = ( 00� + 11�)+ 1

2
∣ ∣ ∣  (ref. 5), which is then characterized by measur-
ing the populations of |00⟩ and |11⟩ and the oscillation amplitude of 
the two-atom parity σ σ� �z z

1 2  on applying a global single-qubit π/2 pulse 
of variable phase (Fig. 2b). We extract a raw Bell-state fidelity of 
98.0(2)%, exceeding previous work by about 2% (ref. 5), already sug-
gesting a greatly improved gate fidelity. Because this Bell-state fidelity 
seems to be dominated by state preparation and measurement (SPAM) 
errors (Methods), to characterize the fidelity of the entangling gate 
more systematically, we apply an odd-numbered train of CZ gates to 
repeatedly entangle and disentangle the pairs and then characterize 
the fidelity of the final resulting Bell state25,30 (Fig. 2c). We fit the  
decreasing fidelity to an exponential decay to extract a CZ gate fidelity 
FCZ = 99.52(4)% (Fig. 2d).

As a separate characterization of the gate fidelity, we apply random 
global single-qubit rotations between sequences of CZ entangling 
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Fig. 1 | Parallel implementation of high-fidelity entangling gates on a 
neutral-atom quantum computer. a, Entangling gates are implemented by 
arranging atoms into designated gate sites in which they interact by means of 
Rydberg-blockade interactions when pulsing global Rydberg lasers. Two-qubit 
or three-qubit gates are performed by modulating the Rabi frequency Ω(t) and 
phase ϕ(t) profiles of the laser driving the first leg of the two-photon Rydberg 
excitation. Inset, atoms in the qubit state |1⟩ are excited to the Rydberg state |r⟩ 
through an intermediate excited state |e⟩, whereas atoms in |0⟩ are not excited. 
The main gate error sources include Rydberg-state decay γr, intermediate-state 
scattering γe and Rydberg dephasing T *2 . b, Numerical comparison of average 
bright and dark state populations during the Rydberg gate. Choosing opposite 

intermediate-state (Δ) and two-photon (δ) detuning signs at the beginning of the 
gate maximizes population in the dark state, which minimizes the intermediate- 
state scattering error. c, Entangling gates are implemented with a single Rydberg 
laser pulse with smooth phase modulation ϕ(t), whose slope corresponds  
to a two-photon detuning δ(t). Several global parameters characterize the  
gate, allowing for a family of possible gate implementations, including a 
parameterized version of the time-optimal CZ gate8 and a smooth-amplitude 
CZ gate. d, Example gate calibration sequence. Tuning individual parameters 
of the parameterized time-optimal gate phase profile ϕ(t) = Acos(ωt − φ) + δ0t 
allows for fast and simple global calibration (see Extended Data Fig. 5 for 
further experimental data). Error bars represent 68% confidence intervals.
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gates (Fig. 3a). This method averages over different states involved 
in the entangling operation similar to randomized benchmarking 
(see Extended Data Fig. 3 for numerical comparisons)10,11,31,32. In the 
absence of errors during the gate sequence, a precisely calculated final 
single-qubit operation returns the qubit pair to their initial |00⟩ state. 
Applying a sequence of up to 20 CZ gates with random single-qubit 
rotations in between, we fit the decaying state fidelity as a function 
of CZ gate number and extract FCZ = 99.54(2)% (Fig. 3b), consistent 
with the Bell-state method of Fig. 2d. Not only do these methods agree 
quantitatively but, in practice, we optimize the gate with this global 
randomized benchmarking method (Extended Data Fig. 5) and find that 
the exact same parameters are optimal for generating Bell states. The 
qubits also acquire a single-particle phase during the CZ gate, which this 
benchmarking approach eliminates by using X gates in between CZ gate 
pairs (Fig. 3a). Therefore, we use a second method of global randomized 
benchmarking without these X gates, which allows for calibration of 
the single-particle phase (used for calibrating the Bell-state measure-
ment in Fig. 2b) and also benchmarks a gate fidelity of FCZ = 99.48(2)% 
(Extended Data Fig. 6).

We next demonstrate that our gate methods are versatile, for which 
various pulse profiles can all realize a high-fidelity CZ gate. Specifically, 
in Fig. 3b, we also realize and benchmark the smooth-amplitude gate 

(Fig. 1c) and achieve a similar fidelity of FCZ = 99.55(3)%. Different gate 
implementations can be tailored to specific use cases; for example, 
the smooth-amplitude gate strongly suppresses scattering even with 
a closer-detuned excitation, which can help achieve high gate fidelities 
in situations in which laser intensity is limited.

Scaling up
We next explore the scalability of our approach to larger system sizes. 
Despite the fact that all calibration and control is done globally and not 
for individual gate sites, we find that the fidelity of the time-optimal 
gate is constant across the ten individual gate sites within statisti-
cal error (Fig. 3c). This observation of homogeneity across the array 
highlights the inherent potential for scalability: more gate sites do 
not increase the calibration overhead. Motivated by this observation, 
in Fig. 3d, we extend to a 60-qubit system by using larger Rydberg 
beams (while maintaining the same intensity) and achieve a gate 
fidelity of FCZ = 99.48(2)% with good homogeneity across the array  
(Fig. 3e).

To understand the requirements for continued scaling and realizing 
high-fidelity operation in even larger system sizes, we analyse the 
physical error sources in the system. In particular, we compare observed 
gate fidelities to detailed modelling, which uses two eight-level atomic 
systems (Extended Data Fig. 3a) with quantitative decoherence rates 
informed by experimental measurements. This modelling accounts 
for the remaining CZ gate infidelity and reveals four main error sources 
(Extended Data Table 1): Rydberg decay, coupling to the other Rydberg 
mJ level, intermediate-state scattering and our measured ground- 
Rydberg T * = 3 µs2 , which is dominated by laser-light-shift fluctuations 
and finite atomic temperature. We further analyse error sources by 
studying gate–site correlations in the experimental data. We observe 
that high-weight correlated errors are largely absent from our data, 
which suggests the feasibility of stable, large-scale operation (Extended 
Data Fig. 7). Careful analysis reveals small growth in the covariance 
between neighbouring gate sites (Extended Data Fig. 8), which can 
result from either correlated detuning fluctuations (corresponding to 
our T *2 ) or long-range interactions caused by a Rydberg atom decaying 
into an adjacent Rydberg state (corresponding to our finite Rydberg 
lifetime; see further discussion in Methods).

Informed by these microscopic error sources, we conclude that the 
dominant challenge in maintaining high fidelity at an even larger num-
ber of parallel gate sites is to continually scale laser power and maintain 
beam homogeneity, as the other decoherence mechanisms seem to be 
independent of system size. However, we emphasize that, even with 
the present laser parameters, system sizes can be directly increased to 
hundreds of qubits by shuttling atoms in and out of the entangling zone 
during a quantum circuit4,33 or by redirecting the beam to dynamically 
redefine the position of the entangling zone.

Fast multi-qubit gates
Finally, we explore the generalization of these methods to multi-qubit 
gates. Using optimal control methods, we find a time-optimal CCZ 
gate and corresponding ansatz phase profile (Fig. 4c) that realizes a 
native CCZ gate between three qubits5,12,13 in a time only 44% longer than 
the time-optimal CZ and faster than other known CCZ profiles8. This 
CCZ gate is realized experimentally by rearranging triplets of atoms 
into triangular gate sites (Fig. 4a) and applying the CCZ pulse profile 
with our global laser pulse. We characterize our CCZ gate using the 
sequence described in Fig. 4b to repeatedly entangle and disentangle a  
three-qubit Greenberger–Horne–Zeilinger (GHZ) state and subse-
quently measure the final GHZ-state fidelity (see Extended Data Fig. 9d 
for example GHZ states). Although this approach does not constitute a  
rigorous benchmarking of the CCZ gate fidelity (which can be done 
using randomized benchmarking13 for example), our data indicate 

1 5 9 13

Number of CZ gates

0.92

0.94

0.96

0.98

Fi
na

l B
el

l-
st

at
e 

�d
el

ity FCZ = 99.52(4)%

a

b

c

d

0 0.5 1.0

Phase of �nal π/2 pulse ( /2π)

–1.0

–0.5

0

0.5

1.0

Tw
o-

at
om

 p
ar

ity

NCZ 

X(π/2)

Z( )

X

X

X

X

13 – NCZ 

X(π/2) X(π/4)

X(π/4)

X(π/2)

11 10 01 00

Two-particle state

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

ili
ty

10 μm2 μm

Z( ) X(π/2)|0〉

|0〉

Fig. 2 | High-fidelity CZ gates characterized with Bell states. a, Parameterized 
time-optimal CZ gates are implemented on 20 atoms in parallel. b, Raw Bell-state 
measurements on application of a single CZ gate, with raw Bell-state fidelity of 
98.0(2)%. We estimate a SPAM-corrected fidelity of 99.4(4)% (not plotted; see 
Methods for details). c, Circuit used to benchmark two-qubit gate fidelity by 
making a Bell state after an odd number of CZ gates interleaved with single-qubit 
X gates. d, Decay of Bell-state fidelity after applying a variable number of CZ 
gates. A fidelity of 99.52(4)% per CZ gate is extracted from an exponential fit. 
The y axis is rescaled by a SPAM correction factor that does not affect the 
extracted gate fidelity (Methods). Note that the same number of single-qubit 
gates is performed for each point, so that no normalization of single-qubit 
errors is necessary, which thereby results in a reduced y-axis intercept. Error 
bars represent 68% confidence intervals.
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high-performing three-qubit entangling gates across 21 qubits in  
parallel, consistent with a fidelity F = 97.9(2)% (Fig. 4d). These optimal 
control methods extend to higher-qubit-number controlled-Z gates. We 
numerically search for and find fast gates for up to six qubits (Fig. 4e), 
with gate times markedly shorter than those required to decompose 
an N-qubit controlled-Z gate into 2N CZ gates and various single-qubit 

gates34. Generically, with these global pulses and Rydberg blockade, one 
can natively realize symmetric, diagonal gates8 (for example, CPHASE 
gates as illustrated in Extended Data Fig. 4b), which are important for 
efficient realization of digital quantum simulation algorithms15.

Discussion and outlook
Our results enable a new era of high-fidelity digital circuits with neutral 
atoms. On the basis of the detailed microscopic understanding of error 
sources, we anticipate various paths to further improve gate fidelity in 
future work. For example, performing the gate at three times higher 
Rabi frequency and two times further detuning would theoretically 
result in a gate fidelity of 99.9%. This would require suppressing the 
coupling to the adjacent Rydberg state, optimization of pulse rise times 
and managing high laser intensity35 (Methods). The understanding of 
microscopic error sources can also be used to analyse the type of error, 
that is, the decomposition into different Pauli channels, atom loss and 
leakage36, as described in Extended Data Table 1.

These observations open the door for explorations of large-scale 
quantum error correction with efficient parallel control of logical 
qubits4,7. The remaining ingredients associated with mid-circuit  
readout can be implemented by moving atoms33 away from the 
entangling zone to a readout zone, using a second atomic species 
as ancilla qubits37, shelving data qubits in auxiliary atomic levels38, 
non-destructive readout with optical cavities39,40 or ancillary atomic 
ensembles41. Alkaline-earth atoms also present further opportuni-
ties, including single-photon Rydberg excitation and nuclear spin  
control42–44, as well as using erasure conversion for efficient quantum 
error correction45–47. Furthermore, high-fidelity multi-qubit gates 
enable many possible scientific directions based on digital quantum 
simulation27 of models including non-Abelian topological physics15, 
quantum gravity48,49 and quantum chemistry14. Combining the ana-
logue capabilities of the neutral-atom platform with digital circuits4  
opens the door for hybrid analogue–digital quantum simulation, 
including techniques such as shadow tomography50. Finally, the 
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high-fidelity gate can be used as a tool for other applications with neu-
tral atoms, for example, creating a wide variety of entangled states for 
use in metrology51,52, and enabling new optical lattice simulators53–56.
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Methods

Experimental system
We stochastically load hundreds of 87Rb atoms into a programmable 
array of 850-nm optical tweezers generated by a spatial light modulator. 
A second set of 810-nm optical tweezers generated by a crossed pair of 
acousto-optic deflectors is then used to rearrange into defect-free 
arrangements2. Subsequently, the atoms are cooled first with polariza-
tion gradient cooling on the 780-nm D2 line and then with Λ-enhanced 
grey molasses cooling on the 795-nm D1 line57–60. We implement 
Λ-enhanced grey molasses cooling owing to experimental simplicity 
(simply combined with our existing polarization gradient cooling path) 
as well as the potential for enhanced loading58 (which we do not use in 
this work as it reduces our cycle rate). We estimate an average radial 
motional quantum number of n ≈ 1 − 2 from fitting a drop-recapture 
curve61 to about 10 μK in approximately 1-mK-deep traps.

Following rearrangement and cooling, we prepare atoms in the qubit 
basis, formed from clock states |0⟩ = |F = 1, mF = 0⟩ and |1⟩ = |F = 2, mF = 0⟩. 
In our previous work4,5, we pump into |F = 1, mF = 0⟩ using Raman- 
assisted optical pumping, in which we repeatedly apply π pulses on 
the |F = 1, mF = −1⟩ → |F = 2, mF = −1⟩ transition and the |F = 1, mF = +1⟩ →  
|F = 2, mF = +1⟩ transition, followed by resonant depumping of the |F = 2⟩ 
manifold. The main disadvantage of this scheme is that it can require 
scattering many photons (we performed 40–70 pumping cycles in 
refs. 4,5) to end up in |F = 1, mF = 0⟩ and, empirically, we find that this 
causes enough heating to negate the benefits of the colder atoms fol-
lowing the Λ-enhanced grey molasses cooling step we use in this work.

To address this challenge, here instead we first optically pump 
into the |F = 2, mF = +2⟩ stretched state with σ+-polarized 780-nm 
light, which scatters only several photons38,62. Then we rotate the 
magnetic field by 90° such that the Raman laser propagation axis 
has an orthogonal component and can thus drive σ±-polarized transi-
tions in the hyperfine manifold (see ref. 63). We apply two separate 
Raman pulses that transfer population first from |F = 2, mF = +2⟩ to 
|F = 1, mF = +1⟩ and then to |F = 2, mF = 0⟩. We use Knill composite π 
pulses64 for these transfer steps and suppress unwanted transitions 
to adjacent mF states by using Gaussian-shaped optical pulses64. We 
note that, during this transfer process, the magnetic field direction is 
along the axis of the tweezer, which quadratically suppresses vector 
light shifts from the tweezer polarization gradient65 that would other-
wise limit coherence of the non-clock mF states. Finally, we rotate the 
magnetic field back to its original configuration before performing  
quantum circuits.

The measurements in Fig. 2b and Fig. 4d have better SPAM perfor-
mance than other measurements in this paper owing to suppression of 
previously undetected resonant leaked light that we discovered at the 
end of our measurements, as well as adding a final eight rounds of our 
previous Raman-assisted optical pumping (also using Gaussian-shaped 
optical pulses to suppress off-resonant excitation) to further improve 
the state preparation fidelity. With leaked light managed and with these 
two steps of optical pumping, we achieve both low temperatures and an 
estimated pumping fidelity of about 99.7–99.8%, probably dominated 
by residual leaked light.

To measure in the computational basis, we illuminate with a strong 
resonant light coupling F = 2 to the F′ = 3 on the D2 transition, which 
heats up and expels all atoms in the |1⟩ state; the remaining atoms are 
imaged in |0⟩. We estimate the combined fidelity of pushout and imag-
ing to be about 99.83%. Finally, we also have a background atomic loss 
of roughly 0.25% before the circuit begins and about 0.1% after the 
circuit ends, dominated by a 10-s vacuum lifetime.

To drive arbitrary single-qubit rotations, we use a Raman laser 
system63, which globally illuminates the atoms with a Raman Rabi 
frequency of 1 MHz. Single-qubit rotations are implemented using 
robust BB1 pulses64,66, whereas Z rotations are implemented by adjust-
ing the phase in the control software. By applying sequences of random 

single-qubit rotations, we estimate a fidelity of 99.97% when sampling 
over a Haar-random ensemble of single-qubit rotations, implemented 
by a combination of two Z rotations and an arbitrary BB1 pulse. This 
fidelity of 99.97% is consistent with the Raman scattering limit at our 
180-GHz detuning and therefore fidelity can be improved by detuning 
the Raman laser further.

Rydberg excitation
Extended Data Fig. 1 presents an overview of the atomic-level structure 
used and an example pulse sequence for running a quantum circuit, 
largely the same as our previous work4. The atoms are excited from the 
|F = 2, mF = 0⟩ state to the 53S1/2 Rydberg state in a two-photon scheme 
with a 420-nm σ+-polarized and a 1,013-nm σ−-polarized light. We are 
able to increase the intermediate-state detuning from our previous 
works, while maintaining similar or higher two-photon Rabi frequen-
cies, in two ways. First, by operating at n = 53, we benefit from a 50% 
increase in the Rabi frequency compared with the previously used 
n = 70. Furthermore, we upgraded our 10-W 1,013-nm fibre amplifier 
laser to a 100-W 1,013-nm laser (IPG Photonics), which we operate at 
20–50 W with a duty cycle <1%. Combined, this allows us to operate 
at the intermediate-state detuning of Δ/2π = 7.8 GHz with a Rabi fre-
quency of Ω/2π = 4.6 MHz. For the data in Fig. 3d,e, we use the same Rabi 
frequency but an intermediate-state detuning of 6.3 GHz, which mar-
ginally increases scattering but allows us to work with lower Rydberg 
beam intensity.

The 1,013-nm laser seed originates from a TOPTICA DL pro external- 
cavity diode laser, which is then locked to and filtered through a  
Stable Laser Systems ultra-low-expansion cavity (finesse of 50,000 
at 1,013 nm) that then injection locks another laser diode, which 
then seeds our 100-W laser. Our 420-nm laser is an 840-nm TiSapph  
(M Squared), which is locked (but not filtered) to the same cavity 
(finesse of 30,000 at 840 nm) and then frequency doubled with an 
M Squared ECD-X. For realizing the pulses and waveform shaping for 
quantum gates, we use an arbitrary waveform generator (Spectrum 
M4i.6631-x8) that allows for arbitrary amplitude, frequency and phase 
control, which simultaneously drives two 420-nm acousto-optic modu-
lators (AOMs) (MQ240-B40A0,2-UV, AA Opto Electronic) in a tandem 
configuration and maps the RF waveform onto the 420-nm light. The 
1,013-nm AOM (M1377-aQ80L-1 coated for 1,013 nm, Isomet) is pulsed 
on for several hundred microseconds and intensity stabilized during 
the duration of the entire circuit.

The two Rydberg beams are shaped into flat intensity top-hat profiles 
by spatial light modulators to maximize intensity while maintaining 
homogeneity across the gate region2. For the 20-atom, one-row data, 
we aim for a flat 10 μm × 10 μm beam cross-section (to suppress sen-
sitivity to drift) and for the 60-atom, two-row data, we aim for a flat 
20 μm × 10 μm region so that both rows are homogeneous. We tune 
beam parameters, including X and Y positions, focus and aberrations, 
to optimize homogeneity as measured by the differential light shift 
on the hyperfine qubit states. We stabilize the beam positions using a  
reference camera and motorized mirror mounts. To compensate for 
relative drift between the beam position and the atom array, we recali-
brate the position often (several times per day) by stepping the beam 
positions to maximize the intensity at the atoms as measured by the 
differential light shift on the qubit transition, which takes about 5 min. 
We find that keeping the beams well centred on the atoms is impor-
tant to ensure homogeneity and reduce sensitivity to relative beam 
drifts, and further find that gate parameters are highly reproducible 
(consistently reproducing fidelities of 99.5%) as long as the beams are 
properly positioned.

We extract the single-photon Rabi frequencies of the Rydberg exci-
tation using measurements of the two-photon Rabi frequency and the 
420-nm light shift on the ground-Rydberg transition, taking note of 
the appropriate Clebsch–Gordan coefficients for the multiple inter-
mediate states. We extract Ω420 = 2π × 237 MHz and Ω1013 = 2π × 303 MHz, 



Article
in which we adopt a convention such that the two-photon Rabi fre-
quency is given by Ω = Ω420Ω1013/2Δ. Note that, because of the presence 
of several intermediate states, the first-order scattering estimate is 
proportional to × (Ω /2∆)4

3 420
2 and thus—from the scattering perspec-

tive—the effective single-photon Rabi frequencies are well balanced 
(273 MHz versus 303 MHz).

Finally, we comment on the motivation for choosing the princi-
pal quantum number n = 53 for the Rydberg state. There are several 
effects that depend on n, including the finite Rydberg-state lifetime 
(∝n3 for radiative decay, ∝n2 for black-body decay), matrix elements 
influencing the 1,013-nm Rabi frequency (∝n−3/2), interaction energy 
(∝n11) and sensitivity to electric fields (∝n7). Weighing these relative 
benefits, we work at n = 53, for which Rydberg lifetime effects begin 
to become more relevant but for which the matrix element is favour-
able for increasing intermediate-state detuning. A technical challenge 
relevant to this choice is that, because of the small blockade radius, we 
place atoms at 2-μm separation to achieve strong interaction strength 
VRyd/2π ≈ 450 MHz. Operating at such close spacing is enabled by using 
high-numerical-aperture objectives (NA = 0.65 from Special Optics) 
and allows us to pack many atoms into the entangling zone.

Parameterized entangling gates
Inspired by the methods used in ref. 8 to find the time-optimal gates, 
we use optimal control to design gates with phase profiles given by 
simple analytical formulas. We find that this approach makes the gate 
experimentally robust and reproducible, as small systematic offsets 
(for example, rise time, atom–atom separation etc.) can often be com-
pensated for and are captured by a slightly different set of optimal 
parameters.

In this work, we focus on two main gates: one with a fixed amplitude 
and a phase profile similar to the time-optimal gate of ref. 8 and a second 
one in which the amplitude is also varied. We note that, in the past, many 
schemes were proposed to implement two-qubit gates with Rydberg 
interactions5,8,29,35,67–75, to engineer robustness to errors28,76–84 and to 
perform multi-qubit gates85–91. The fixed-amplitude gate, which we 
refer to as ‘time-optimal’ because it resembles and is only 0.2% slower 
than the Jandura–Pupillo gate8, has the phase profile given by

φ t A ωt φ δ t( ) = cos( − ) + . (1)0 0

This profile is plotted in the left column of Fig. 1c for the parameters

A ω
φ δ

= 2π × 0.1122, = 1.0431 Ω,
= −0.7318, = 0 × Ω,0 0

which constitutes an exact gate with time (ΩT/2π) = 1.215, that is, 
slightly longer than a resonant single-atom 2π pulse. Note that this 
set of parameters is not unique and other parameter values can also 
realize an exact gate, for example, at non-zero detuning δ0 as used in 
Extended Data Fig. 4a.

The smooth-amplitude gate has a varying phase and a varying Rabi 
frequency of the 420-nm laser. We used optimal control methods in 
a three-level atomic system to find a gate that optimally suppresses 
scattering, for a fixed intermediate-state detuning and 1,013-nm Rabi 
frequency. The scattering from the intermediate state was incorporated 
through a non-Hermitian Hamiltonian proportional to the scattering 
rate (−iγe|e⟩⟨e|). Finally, we inferred an analytical form of the phase and 
amplitude profiles, which are given by

t ω τ

φ t δ τ B λτ

Ω ( )/Ω = Ω + Ω sech[ ] ,

( ) = + tanh( ),

α
420 1013 0 1 Ω

0

in which τ = t −T/2; in principle, one can also add a relative phase offset 
similar to φ0 in equation (1) for further fine-tuning. This ansatz realizes 
an exact CZ gate for the gate parameters

B

λ

ω δ
α

Ω = 32.7403, = 2π × 0.2503,

Ω = −31.1404, = 0.9372Ω,

= 0.2668Ω, = −0.9491Ω,
= −0.1131,

0

1

Ω 0

which has a duration of (ΩT/2π) = 1.207. We set the reference point 
such that, for Ω420 = Ω1013, the system is at two-photon resonance and 
has a two-photon Rabi frequency Ω. This smooth-amplitude gate has 
advantages of stronger intermediate-state scattering suppression 
and reduced off-resonant coupling to other states. On the other hand, 
owing to a larger peak Rabi frequency, this gate is more susceptible to 
finite-blockade effects. The error budget for both gates can be found 
in Extended Data Table 1.

Extending beyond two-qubit gates, we find that a slightly more gen-
eral ansatz allows us to implement a nearly time-optimal three-qubit 
CCZ gate with the phase profile given by

φ t A ω τ A ω τ B λτ δ τ( ) = sin( ) + sin( ) + tanh( ) + ,1 1 2 2 0

in which the Rabi frequency is kept constant and the parameters are

A ω
A ω

B λ
δ

= 2π × 2.1460, = 0.2101Ω,
= 2π × − 0.0719, = 1.8957Ω,

= 2π × − 0.6432, = 0.6941Ω,
= − 1.3646Ω,

1 1

2 2

0

which results in an exact gate with duration (ΩT/2π) = 1.751. Finally, we 
note that the same methods can be directly extended to the design of 
CPHASE(θ) and CCPHASE(θ) gates, which is important in the context 
of digital quantum simulation15. In Extended Data Fig. 4b,c, we show 
how the two-qubit gate duration scales with the phase θ.

Dark states in two-photon Rydberg gates
In this section, we describe the physics associated with the three-level 
system present in the two-photon transition to the Rydberg state and 
derive how the Rydberg population can be realized through either the 
dark or the bright states. The basic intuition can be developed at the 
single-particle level, at which the system is described by the three-level 
Hamiltonian in the {|1⟩, |e⟩, |r⟩} basis,
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in which we use symbols Ωb ≔ Ω420 and Ωr ≔ Ω1013 in this section for clar-
ity of expressions. We also assume that the amplitude and phase of the 
red 1,013-nm laser are kept constant at all times and the blue 420-nm 
phase is captured by the time-dependent two-photon detuning 
δ δ t φ t( ) ∝ − ′( )≔ .

At large intermediate detunings (Δ ≫ δ, Ωb/r), this system is conveni-
ently described in the dark-state basis (as summarized in Extended Data 
Fig. 2a,b) formed by the eigenstates of equation (2) at the two-photon 
resonance (δ = 0), which to the leading order in Ωr/Δ is,
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in which α = Ωb/Ωr. Note that the ‘dark state’ |D⟩ has no contribution from 
the intermediate state, the ‘bright state’ |B⟩ populates the intermediate 
state ∝ 1/Δ2 and |E⟩ is composed essentially entirely from |e⟩.

For our purposes, the initial state is always |1⟩, which is subsequently 
dressed by the blue light to ∣∼

1�. This is because the amplitude rise time 
of the blue laser to its initial value of Ωb(0) is on the timescale of 10 ns, 
which is much slower than the adiabaticity limit set by Δ and much 
faster than the two-photon Rabi frequency relevant for populating the 
Rydberg state; thus, the initial state indeed corresponds to
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which is well supported on the {|D⟩, |B⟩} states alone. Moreover, the 
excited state |E⟩ is detuned from the other two by Δ and all direct cou-
plings to it are on the order of Ωr/Δ; thus any population transfer out 
of the {|D⟩, |B⟩} manifold will be suppressed by (Ωrδ)2/Δ4 and the sub-
sequent evolution of state 1�∣∼

 is described by an effective two-level 
system (Extended Data Fig. 2b). In this picture, the energy splitting is 
set by the AC Stark shift (diagonal terms) and the effective off-diagonal 
coupling is given by a combination of the two-photon detuning and 
diabatic terms (off-diagonal terms). Crucially, the Rydberg-state pop-
ulation can be realized in many inequivalent ways; for example, for 
α = 1, states of the form ∣ ∣β B β D1 − � + �  have the same Rydberg 
population for β and β → 1 − β (in which β ∈ [0, 1]), despite very different 
intermediate-state contributions.

First, consider the case of the parameterized time-optimal gate in 
which the blue Rabi frequency is kept constant throughout the duration 
of the gate (α(t) = 1), up to the finite rise and fall times. The initial state 
is simply D B( � − �)/ 2∣ ∣  and the Hamiltonian is equivalent to
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in which the magnetic field sign is decided by Δ and the phase of the 
Rabi frequency is given by the sign of the two-photon detuning δ. The 
time evolution under this Hamiltonian (which corresponds to driving 
the two-photon transition) can be solved exactly for fixed δ and the 
population in the dark state is
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which can go above or below 1/2, depending on the relative sign of the 
detunings. More precisely, the Rydberg population is realized predomi-
nantly by means of the dark state when δΔ < 0 (PD > 1/2), that is, when 
the intermediate-state detuning Δ and the two-photon detuning δ have 
opposite signs; for a time-dependent detuning, the relevant sign is the 
one at the beginning of the pulse. In Extended Data Fig. 2c, we plot the 
intermediate-state population and the Bloch-sphere trajectories for the 
time-optimal gate at two different signs of the two-photon detuning δ. 
As expected, one of the trajectories realizes the Rydberg population 
through the dark state and, as a result, minimizes the intermediate-state 
population, leading to suppressed scattering.

The remaining scattering comes mostly from the large admixture 
of the bright state in the initial state and can be further reduced by 
using a smooth-amplitude profile, which starts at low blue Rabi fre-
quency (α ≪ 1) and only later increases to larger values, as is the case 
in gate schemes based on the adiabatic passage29. Note that operating 
at a fixed lower α does not further reduce scattering because a larger 
admixture of the bright state is necessary to realize the same integrated 

Rydberg population as before. In Extended Data Fig. 2d, we show the 
intermediate-state population and the effective Bloch-sphere trajec-
tory for the smooth-amplitude gate introduced in the previous section. 
This gate occupies the instantaneous dark state for most of its execu-
tion time, admixing only as much bright state as is necessary to realize 
the required Rydberg population. We find numerically that the degree 
of scattering suppression depends on the speed relative to the 
time-optimal gate (assuming fixed 1,013-nm Rabi frequency): scatter-
ing is suppressed by a factor of 1.2 (relative to the time-optimal gate) 
if the two gates take the same time and by a factor of roughly 2.5 if the 
smooth-amplitude gate is twice as long as the time-optimal gate. This 
tunability is useful for choosing a gate based on the dominant error 
source: a slower gate could be more beneficial when scattering domi-
nates, whereas a faster gate can be used when T *2  or Rydberg decay is 
the main source of errors.

We note that, despite the presence of several intermediate states 
(Extended Data Figs. 1 and 3a), which are at slightly different detun-
ings and couple with different Rabi frequencies, the dark-state picture 
remains valid. We find that this is the case numerically and note that 
the intermediate-state population plots in Extended Data Fig. 2c,d 
include contributions from all intermediate states in a numerical model 
realistic for 87Rb.

Simulating two-qubit gate error sources
The level diagram in Extended Data Fig. 3a summarizes the atomic-level 
structure used for numerical modelling, as well as the assumed 
scattering rates, lifetimes, branching ratios, Rabi frequencies and 
detunings. We model scattering and Rydberg lifetime by perform-
ing a full density-matrix simulation of the two atoms with the eight 
levels depicted in Extended Data Fig. 3a (including three intermedi-
ate states). Our modelling also explicitly includes the coupling to the 
other (mJ = −1/2) Rydberg state, which is 24 MHz lower in energy and is 
driven with a Rabi frequency suppressed by a factor of three (owing to  
Clebsch–Gordan coefficients). For the gate, we assume approximately 
20 ns min-max rise/fall times of our AOM pulse profile (in a Blackman 
profile), which has substantial implications for the off-resonant cou-
pling to the adjacent Rydberg state, in terms of whether it is adiabati-
cally ‘dressed’ or diabatically occupied. Because the impact of the other 
Rydberg state on the gate fidelity depends on the details of the pulse 
power profile and degree of calibration, we report a range of values 
that is reasonable for the assumptions mentioned above.

Finite temperature is also assumed in our error modelling, in which—
for our given temperature—we calculate the position spread of the 
atom in a trap and the corresponding fluctuation in interaction strength 
from the distance-dependent blockade interaction VRyd ∝ r−6. We note 
that finite temperature can also contribute to single-qubit dephasing 
through both velocity spread and photon recoil92, but these effects are 
already encompassed by our single-qubit ground-Rydberg T *2  measure-
ments. The T *2  can also have contributions from other phenomena, 
such as electric-field fluctuations and fluctuations in the 1,013-nm light 
shift (which has a differential light shift of about 20 MHz on the 
ground-Rydberg transition), and so, for our simulations, we simply use 
the measured T * = 3 µs2  assuming a Gaussian distribution of detunings.

Projecting path to 99.9% and error breakdown
We can also use our detailed microscopic error modelling, which repro-
duces similar fidelities as the measured 99.5%, to project future per-
formance. To reach 99.9% fidelity, the sum of the errors in Extended 
Data Table 1 needs to be suppressed to below 0.1%, which can be 
achieved by, for example, going two times further detuned, having a 
three times longer Rydberg lifetime (for instance, exciting to a higher 
n state), two times longer T *2  (note that dephasing error scales as 

T∝ 1/(Ω *)2
2) and suppressing coupling to the other mJ state. This sup-

pression can be achieved by applying a larger magnetic field, using the 
smooth-amplitude gate or eliminating coupling altogether by exciting 
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from a stretched state or through the 6P1/2 excited state. An alternative 
approach to reaching 99.9% fidelity could be going to three times higher 
Rabi frequency (again while suppressing coupling to the other mJ state) 
and two times larger detuning. Other unique opportunities towards 
future improvements include single-photon excitation to the Rydberg 
state, which circumvents intermediate-state scattering but has higher 
Doppler and recoil sensitivity79,82,92, and has been explored in a variety 
of contexts with both alkali93,94 and alkaline-earth(-like) atoms46,47,51.

Separately, this microscopic error analysis can also be used to analyse 
the type of error produced, that is, whether it is a Pauli (X, Y, Z) error, 
atom loss or leakage to other mF states. Such an understanding is par-
ticularly important for quantum error correction36,45, for which neutral 
atoms have various unique opportunities95,96, as knowing the noise 
structure can be used to enhance the performance of error-correcting 
schemes. Our present modelling suggests that most errors are Z-type 
and loss/leakage-type errors, as previously highlighted in ref. 36. If 
atom loss is directly detected, these errors would constitute a so-called 
erasure error45 and, moreover, atom loss in this case is in fact a biased 
erasure error because almost all of it originates from state |1⟩, as  
pointed out and developed in ref. 96. Alkaline-earth(-like) atoms are 
particularly well suited to erasure conversion, owing to their metastable  
qubit structure45–47. In Extended Data Table 1, we summarize how each 
error source breaks down into the five error types mentioned above and 
find that only the scattering and Rydberg decay errors can lead to X and 
Y Pauli errors. For simplicity, we estimate the effective single-particle 
error channel; that is, we compute the process matrix for the two-qubit 
gate and then trace out one of the qubits. The full process matrix can be 
used to study more complicated properties of this Pauli + loss/leakage 
noise model, such as correlations.

Gate calibration and benchmarking
We calibrate the gate using the global randomized benchmarking 
method shown in Fig. 3. In Extended Data Fig. 5, we show an example 
sequential optimization of CZ gate parameters for the time-optimal 
gate and the smooth-amplitude gate, leading up to the measurements 
in Fig. 3b. Once found, these gate parameters are empirically optimal 
for all the other benchmarking methods, such as the Bell-state meas-
urements in Fig. 2, and are consistent from day to day.

The qubits also pick up a global single-particle phase during the 
gate, which we cancel here using global X gates between pairs of CZ 
gates for simplicity. For many applications, such as quantum error 
correction, our gates are naturally used in this configuration (as was 
done for the quantum circuits implemented in ref. 4). We also further 
calibrate and benchmark the CZ gate without the X gate, by perform-
ing randomized benchmarking composed of repeated application of 
CZ gates and random single-qubit rotations, as shown in Extended 
Data Fig. 6a. Here the final several CZ gates and random rotations are 
calculated to return the qubit pair from the resulting entangled state 
back to the initial product state. We perform a single-qubit Z rotation 
after each CZ gate to compensate for the accumulated single-particle 
phase, which we calibrate as simply another parameter of the gate to 
scan and optimize. As well as calibrating this single-qubit Z rotation, 
this circuit also benchmarks a gate fidelity of 99.48(2)% on 20 atoms. 
To measure the raw Bell-state data in Fig. 2b, we used both the CZ gate 
calibration by means of the first method of global randomized bench-
marking and this single-particle phase calibration, as two independent 
calibration stages.

We note that all of our randomized benchmarking methods use only 
global rotations for simplicity. The symmetry introduced by global 
rotations makes us less sensitive to certain types of error97, SWAP being 
an extreme example, which we expect to be negligible. Nonetheless, 
because the atoms are identical and placed very close together, there 
is a large degree of symmetry between the two qubits and we expect 
this global benchmarking procedure to faithfully capture our gate 
fidelity, which we confirm with numerical simulations. This is further 

confirmed by the fact that the experimentally extracted fidelity is con-
sistent between this method and the Bell-state measurement. Quan-
titatively, in Extended Data Fig. 3e, we simulate all the benchmarking 
methods, including the full randomized benchmarking protocol, 
using the microscopic error model developed in this work. We find 
that all methods give consistent results, with the Bell-state fidelity 
lower-bounding the other curves.

Here we describe some experimental procedures used while taking 
data. First, for the benchmarking curves involving varying numbers of 
CZ gates, we take data in a cyclic manner to avoid systematic biases that 
could be introduced by experimental drift (for example, alternating in 
the sequence of 20, 0, 16, 4, 12 and 8 CZ gates for the data taken in Fig. 3). 
We perform several rounds of this cyclic sequence in one continuous 
stretch of time (over roughly a few hours for each plot in Figs. 2 and 3). 
For each gate number, we average over 300 sets of random rotations.

To extract a gate fidelity, we fit our data to exponential decays. We 
note that, as we are mostly in the linear regime of the exponential curve, 
adding an offset to the fit (and then rescaling the fitted exponent, as 
done in some randomized benchmarking works) has a negligible effect 
on the extracted fidelity and so we fit to an exponential decay without 
an offset.

Bell-state fidelity
Here we outline the method used for the Bell-state data in this work. 
We measure the Bell-state fidelity as the average of coherences and 
populations5. The coherence is extracted by measuring the amplitude 
of parity oscillations, using the circuit in Fig. 2c. The populations are 
calculated as the sum of the |00⟩ and |11⟩ states, which we correct for 
further atom loss as described below. The Bell-state populations can 
be overestimated owing to atom loss contributing to the perceived 
detection of state |11⟩ (ref. 5), because loss shows up identically as |1⟩ 
in our state-detection procedure. To account for this, here we measure 
the atom loss probability when applying the sequence of gates (by 
turning off the pushout of state |1⟩ for state discrimination), to find 
the extra contribution of atom loss to the Bell-state population. To 
perform this loss subtraction, we subtract the observed |11⟩ (that is, 
observed loss of both atoms) population during the loss measure-
ment directly from the measured populations, as well as measuring 
the loss-per-atom-per-gate, which can also contribute to state |11⟩ by 
converting |01⟩ and |10⟩ to |11⟩. This loss subtraction is performed for 
Fig. 2d. We emphasize that this correction strictly lowers the measured 
gate fidelity (without applying this loss subtraction, the measured 
CZ gate fidelity on the raw Bell-state fidelity data is extracted to be 
99.57(4)%).

We next evaluate a SPAM-corrected Bell-state fidelity from the meas-
ured raw Bell-state fidelity of 98.0(2)% after a single gate in Fig. 2b. To 
extract a SPAM-corrected Bell-state fidelity, we first measure relevant 
SPAM errors. In particular, we measure a population of 99.6(1)% in state 
|0⟩ when we try to prepare into |0⟩ and, likewise, a population of 99.4(1)% 
in state |1⟩ after state preparation into |1⟩. These measurements include 
further effects from loss and imaging/pushout fidelity. Specifically, 
there is a 0.35(5)% probability that an atom is lost during the sequence 
and the gate itself causes 0.17% further loss on top of this baseline loss. 
Our pushout fidelity of 99.83(1)% affects the measurement fidelity of |1⟩, 
for which we also correct. From these measurements, we estimate the 
amount of population leaked into other mF levels during state prepara-
tion, as well as the probability of atom loss both before and after the 
circuit. From these values, we follow the method described in ref. 5 to 
extract a SPAM-corrected Bell-state fidelity of 99.4(4)%.

Analysis of correlations between gate sites
Here we further analyse our data to characterize whether gate errors 
across the array are correlated. We study the 20-atom and 60-atom 
global randomized benchmarking data from Fig. 3 and consider the 
distribution of the number of errors that occurs in each experimental 



shot, in which an error is defined as whenever a qubit pair does not 
return to the initial |00⟩ product state. In Extended Data Fig. 7a,c, we 
plot the number of errors occurring in each shot as a function of the 
number of CZ gates applied, in which the mean number of errors grows 
owing to the 0.5% error per CZ gate. We compare our data (bottom) 
with a model consisting of a Poissonian distribution of errors centred 
at the experimental mean (top). We find that the Poisson distribution 
model approximates our data and large-scale correlated errors are not 
common in our system.

To analyse more quantitatively in a single plot, we average the data 
for all numbers of gates and plot the resulting distribution in Extended 
Data Fig. 7b,d. We find that higher weight errors for both the 20 atoms 
and 60 atoms data are greatly suppressed. More quantitatively, we 
compare our data to the average of the Poissonian distributions plot-
ted in Extended Data Fig. 7a,c and find small deviation from the Poisson 
distribution. We find that these data are better described by a model 
in which the CZ gate fidelity is sampled from a Gaussian distribution 
in each shot (which would arise from, for example, global shot-to-shot 
fluctuations in detuning, captured by our T *2 ).

In Extended Data Fig. 8a,c, we plot the covariance matrix between 
gate sites for the return to the initial state P|00⟩, after 0 CZ gates and 
after 20 CZ gates, qualitatively observing evidence of small positive 
covariance between nearby gate sites. In particular, Extended Data 
Fig. 8b,d shows the growth of covariance between neighbouring gate 
sites as a function of the number of CZ gates applied. These observa-
tions are consistent with known physical effects related to our error 
budget, namely, Rydberg lifetime and T *2 . For example, decay of Rydberg 
atoms to nearby P states during the gate can cause detuning shifts 
owing to strong long-range interactions between S and P Rydberg  
states (decaying as 1/R3), as well as hopping of the P state to nearby gate 
sites. Furthermore, fluctuations in Rydberg 1,013-nm beam intensity 
can give rise to shot-to-shot fluctuations in gate fidelity with a spatial 
dependence. Classical Monte Carlo simulations of these two phenom-
ena (not plotted here) reveal that both error sources can result in 
non-zero covariance, which seems to be described by quadratic growth 
for a small number of gates but linear asymptotically. We note that  
the crosstalk between gate sites, on the scale of 10 kHz, should be  
negligible.

This measurement of covariance after 20 gates is a highly sensitive 
probe to small correlations between gate sites building up over the 
course of the circuit. After one applied gate, this covariance seems to 
be smaller than other main error sources, so these correlations will 
have little effect for quantum circuits in which atoms are involved in 
gates not just at a single gate site but across the entire entangling zone. 
Moreover, when running quantum circuits using atom transport4, the 
approximately 100-μs delay between subsequent gates would result 
in leftover Rydberg states being expelled from the array, completely 
suppressing the effect from Rydberg decay described above.

CCZ gate design
To find time-optimal gates for the multi-qubit controlled phase gates, 
such as the CCZ gate, we use the optimal control methods similar to 
ref. 8. The gates in ref. 8 are found by looking for two-qubit diagonal 
gates up to global single-qubit Z rotations. However, for more than 
two qubits, there are several distinct ways of realizing the controlled-Z 
gates that are not connected by a Z rotation but rather by a general 
single-qubit rotation, and these various gate realizations can be differ-
ent. We use the approach in which the controlled phase flip is applied 
to the |000⟩ state to find multi-qubit controlled Z gates for a larger 
number of qubits; we present the obtained times in Fig. 4e and Extended 
Data Fig. 9a. In Extended Data Fig. 9b, we show the time-optimal pulse 
profiles of multi-qubit CZ gates up to the six-qubit CCCCCZ. Finally, 
we note that an analytical ansatz (defined in the section dedicated to 
parameterized gates) similar to that used for the CZ gate allows us to 
parameterize the three-qubit controlled-Z gate with only a marginal 

decrease in speed (ΩT/2π = 1.75). In fact, we find that this ansatz can 
also realize the CCCZ gate and we expect simple generalizations to 
be capable of realizing these gates for even larger numbers of qubits.

GHZ states
To characterize the CCZ gate experimentally, we create a GHZ state 
using the circuit shown in Extended Data Fig. 9c. In Extended Data 
Fig. 9d, we generate GHZ states after application of two CCZ gates, 
with populations of 92.9(3)% and parity contrast of 89(1)%, giving a 
raw GHZ-state fidelity of 90.9(6)% (without any loss subtraction). For 
Fig. 4, we calibrate the gate by repeatedly applying the CCZ-π-CCZ part 
of the circuit such that after six and ten CCZ gates, we generate GHZ 
states with reduced fidelity and we observe a 2.1(2)% reduction in the 
raw GHZ fidelity as a function of the number of CCZ gates applied. For 
the data in Fig. 4d, we operate at 7.8-GHz intermediate-state detuning 
and 3.9-MHz Rabi frequency.

Data availability
The data that support the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Atomic-level diagram and pulse sequence. a, Level 
diagram showing key levels of 87Rb used in our quantum circuits. The clock 
states, |0⟩ and |1⟩, are the qubit states used in this work. Excitation to the 
Rydberg state between |1⟩ and |r⟩ is carried out by a two-photon transition 
driven by 420-nm and 1,013-nm lasers. Single-qubit rotations are realized with 
an amplitude-modulated 795-nm laser that drives Raman rotations between 
the mF = 0 clock states. A DC magnetic field of 8.5 G is applied throughout this 
work. The Rydberg detuning signs and polarization signs are carefully selected 
for various optimizations: for suppressing 420-induced differential light shift 
between |0⟩ and |1⟩, we red-detuned the 6P3/2 transition; for using dark-state 
physics (nominally the phase profile corresponds to a certain sign of two-photon 
detuning), we thereby choose positive two-photon detuning, which—in turn—
then suppresses coupling to mJ = − 1/2 by being primarily on the upper side of 
mJ = +1/2; and, finally, the 1,013-nm light shift is lower (by about 30%) at this 
single-photon detuning sign, as there is a magic wavelength of about 1 GHz 

red-detuned of 6P3/2 for the |1⟩ → 53S1/2 transition98. Two downsides of this 
detuning choice are that this choice of 420-nm polarization and detuning 
causes a vector light shift in the hyperfine ground-state manifold that causes 
the mF levels to be pushed closer together, as opposed to further apart, which 
could exacerbate effects arising from 420-induced vector light shifts coupling 
adjacent mF states in the ground-state manifold (although negligible here), and 
the other downside is that the mJ = −1/2 Rydberg pair states are closer detuned 
to the two-photon excitation and so we require a larger interaction strength to 
suppress their excitation, although the matrix element to these states is smaller. 
b, Example pulse sequence, here for making a ∣Φ �+  Bell state between two qubits. 
Traps are pulsed off for a few hundred ns during the Rydberg gate to avoid both 
antitrapping of the Rydberg state and inhomogeneous light shifts that broaden 
the transition, and the ground-state atoms are then recaptured for roughly 3 μs 
between consecutive gate applications.
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Extended Data Fig. 2 | Dark-state physics in two-photon Rydberg gates. 
 a, In the far-detuned limit, the three-level system can be effectively described 
as a two-level system with a ‘dark’ state |D⟩ and a ‘bright’ state |B⟩. The population 
in the excited state |E⟩ is suppressed by a factor ∝ Δ−4 and does not participate  
in system dynamics. b, The Hamiltonian of the bare atomic system and the 
effective two-level system, in which α is the (time-dependent) ratio between 
the blue and red Rabi frequencies and α

.
 is its time derivative. c, Intermediate- 

state population during the parameterized time-optimal gate in the dark and 
bright configurations together with their Bloch-sphere trajectories in the 
{|D⟩, |B⟩} basis. d, Intermediate-state population during the smooth-amplitude 
gate and its Bloch-sphere trajectory in the instantaneous {|D⟩, |B⟩} basis. The 
simulation parameters correspond to those mentioned in Extended Data Fig. 3a 
and Extended Data Table 1.



Extended Data Fig. 3 | Atomic physics error-level diagram and numerical 
comparison of benchmarking methods. a, Level diagram shows the eight 
states assumed in the simulation. We assume a 88-μs Rydberg-state lifetime 
(based on measured T1 with 1,013-nm scattering lifetime subtracted) and a 
110-ns lifetime for the intermediate states. We assume the following branching 
ratios for the intermediate states99: ηe→L = 0.6142, ηe→1 = 0.2504, ηe→0 = 0.1354, and 
the following ones for the Rydberg states100: ηr→L = 0.894, ηr→1 = 0.053, ηr→0 = 0.053. 
We use the branching ratios between different channels of intermediate-state 
scattering as reported in ref. 99 and we also assume a simplified model in which 
all indirect paths (through 4D and 6S) populate the ground-state manifold 
uniformly. The Rydberg lifetime has both radiative decay (170 μs) and black-body 
decay (128 μs) components, which we obtain by rescaling the values in ref. 100 to 
n = 53. The microwave component results purely in atom loss and we assume 

that the radiative decay populates the ground-state manifold uniformly. We 
note that a more accurate treatment of the decay channels36 could increase 
error modelling precision in future work. b, Benchmarking of the CZ-π-CZ 
sequence with global random rotations, which is insensitive to the single-particle 
phase. c, Benchmarking a standalone CZ gate with global random rotations, 
which enables separate calibration of the single-particle phase. d, The usual 
interleaved randomized benchmarking method using random two-qubit 
Clifford gates (not performed in this work). e, Numerical simulation of the 
presented benchmarking methods and the Bell-state-preparation method, 
using the realistic error model developed in this work. All approaches give 
consistent results, with the Bell-state fidelity measurement lower-bounding 
the other curves.
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Extended Data Fig. 4 | Robust and versatile two-qubit gates. a, Robustness to 
experimental offsets. For some systematic experimental offsets, such as finite 
rise time of the 420-nm Rydberg laser pulse, an exact CZ gate can still be found. 
The relative values of gate parameters for the time-optimal gate are plotted as a 
function of pulse rise time. For no rise time, the parameter values used here are: 
A/2π = 0.0988, ω/Ω = 1.3629, φ0 = −2.6082 and δ0/Ω = −0.0187. b, Duration of a 
controlled-phase gate CPHASE(θ). The CZ gate (θ = π) is the longest in this gate 
family. Because faster gates are expected to have higher fidelity, an average 
CPHASE gate should perform even better than the CZ gate reported in this work, 

which is an exciting perspective for near-term digital simulation. c, Plotting on  
a log–log plot, we see that, for small angles θ, the gate time decreases with an 
approximate power law ΩT(θ)/2π = 1.6 × (θ/2π)0.23. This suggests that applying 
very small phases can be costly and should be taken into account when designing 
digital simulation schemes. Although these small-angle gates are time-optimal 
when applying a single, fixed-amplitude pulse, different approaches could 
perform better. Exploring other exact and approximate gate schemes, such  
as Rydberg dressing and a detuned 2π pulse, in the small-angle regime is an 
interesting direction for future work.



Extended Data Fig. 5 | Empirical optimization of two-qubit gate fidelity.  
a, Calibrating gate parameters for the time-optimal gate, indicating the 
chronological sequence of calibrations performed before measurement in 
Fig. 3b. We scan individual gate parameters and measure the probability of 
return to the initial state after application of 20 entangling gates. b, Analogous 

calibration of gate parameters for the smooth-amplitude gate, which we 
performed in the sequence shown before the smooth-amplitude measurement 
in Fig. 3b. Additional calibration of other gate parameters was performed 
before these measurements.
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Extended Data Fig. 6 | CZ gate single-particle phase calibration and 
benchmarking. a, Digital circuit for global randomized benchmarking 
method used to calibrate single-particle phase, in which a Z rotation can be 
performed after each CZ gate to compensate for the acquired phase. Rrand are 
single-qubit rotations sampled from a Haar-random distribution and the five 
rotations Rf are computed to return the atom pair to the initial product state  

in the absence of gate errors. For the 0 CZ gates point, 20 random rotations 
are applied, as well as a final rotation precomputed to return population to 
the initial state. b, Experimental data used for calibrating the single-particle 
phase by optimizing the return probability P|00⟩ after 20 CZ gates (inset). For  
the optimal choice of ϕ, we extract a 99.48(2)% CZ gate fidelity, fitting to an 
exponential decay.



Extended Data Fig. 7 | Correlated errors in experimental shots. a, Distribution 
of errors in each experimental shot as a function of the number of CZ gates 
applied for the 20-atom data in Fig. 3, showing qualitative agreement with a 
Poisson distribution centred at the experimental mean for the number of errors 
in a shot. b, Histogram of the number of errors in a shot, averaging over all 
numbers of gates for the 20-atom data. We compare to one model assuming a 
Poissonian distribution of errors about the mean, finding some deviation from 
our data. In a second model, we consider that, in each shot, there is a slightly 
different gate fidelity, sampled from a Gaussian distribution with a mean of 

99.54% and standard deviation of 0.3%. This second model seems to better 
capture our data. c, Repeating the analysis for the 60-atom data in Fig. 3, we 
notably find no shot (out of the 5,053 total repetitions) with 18 or more errors 
out of the 30 gate sites. Again, the data are qualitatively similar to a Poisson 
distribution model. d, Averaging over the 60-atom data for all numbers of 
gates, we find again a small quantitative deviation between the data and a 
model with a Poisson distribution of errors in each shot. The data seem to be 
better described by a model in which, in each shot, we sample fidelities from a 
Gaussian distribution with a mean of 99.5% and a standard deviation of 0.3%.
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Extended Data Fig. 8 | Correlations between gate sites. a, Covariance 
matrices for the 20-atom data in Fig. 3b after 0 gates and 20 gates, in which 
local correlations appear after 20 gates. b, Covariance averaged over all 
neighbours, next nearest neighbours and next next nearest neighbours, as a 
function of the number of CZ gates applied. As a guide to the eye, data are fit  

to quadratic curves. c, Covariance matrices for 60-atom data in Fig. 3d for  
0 gates and 20 gates. d, Plotting covariance for neighbouring sites for the 60-atom 
data. Once again, the covariance between nearby sites exhibits small growth 
throughout the 20 CZ gates applied, in particular for the nearest-neighbour sites.



Extended Data Fig. 9 | Time-optimal pulses for multi-qubit controlled 
phase gates and GHZ-state data. a, The execution time of a CNZ blockade  
gate as a function of the number of qubits. The N-qubit gates are realized by 
applying a phase flip to the 0� N⊗∣  state, which is not equivalent to the method 
of ref. 8 for N > 2. For the CCZ gate, applying a π phase to the |111⟩ state (|111⟩ →  
−|111⟩), while leaving all other basis states invariant, is related by a global  
bit-flip to applying a relative π phase to the |000⟩ state; however, the two 
implementations are not equivalent up to a global Z rotation, contrary to the 
two-qubit case. The time-optimal CCZ gate using the second approach realizes 
the CCZ gate about 34% faster with (ΩT/2π) = 1.72, as compared with (ΩT/2π) =  
2.61 from the first approach. The two approaches are different because the 
relative phase of π is accumulated between different basis states, which have 
different rates of phase accumulation. In the case of applying |111⟩ → −|111⟩, the 

states with the slowest relative rate are |111⟩ and |011⟩, which are driven with  
the Rabi frequencies of 3 Ω and 2 Ω, respectively, resulting in the phase 
accumulation rate proportional to ( 3 − 2 )Ω ≈ 0.32Ω. By contrast, when the 
relative phase is applied on the state |000⟩, the smallest accumulation rate is 
given by the |001⟩ state, which is driven with the Rabi frequency Ω. In general, 
an arbitrary global single-qubit rotation at the end of the gate can be included 
to incorporate all of the above approaches in the optimization procedure.  
b, Time-optimal phase profiles (without analytic parameterization) for the CNZ 
gates up to six qubits realized by applying a phase flip to the 0� N⊗∣  state.  
c, Circuit used to generate the GHZ state ( 000� + 111�)/ ( 2 )∣ ∣  after two CCZ 
gates. d, GHZ states measured experimentally on applying this circuit to seven 
three-qubit groups in parallel, with populations in |000⟩ and |111⟩ of 92.9(3)% 
and a parity contrast of 89(1)%, giving a raw GHZ-state fidelity of 90.9(6)%.
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Extended Data Table 1 | Simulated error budget for two-qubit CZ gates

Simulations were performed at an intermediate-state detuning of Δ/2π = 7.8 GHz and a two-photon Rabi frequency Ω/2π = 4.6 MHz. *The scattering error for two detuning signs (bright/dark).  
The total fidelity values assume the correct (dark) detuning choice. **AL, atom loss from population left in the Rydberg state; LG, leakage out of the qubit manifold to other mF states.
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