Landau-Forbidden Quantum Criticality in Rydberg Quantum Simulators

Jong Yeon Lee,1,* Joshua Ramette,2,3 Max A. Metlitski,2 Vladan Vuletić,2,3 Wen Wei Ho,4,5,6 and Soonwon Choi2,7
1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Department of Physics, Stanford University, Stanford, California 94305, USA
5Department of Physics, National University of Singapore, Singapore 117542
6Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
7Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 27 July 2022; revised 27 November 2022; accepted 31 July 2023; published 22 August 2023)

The Landau-Ginzburg-Wilson theory of phase transitions precludes a continuous transition between two phases that spontaneously break distinct symmetries. However, quantum mechanical effects can intertwine the symmetries, giving rise to an exotic phenomenon called deconfined quantum criticality (DQC). In this Letter, we study the ground state phase diagram of a one-dimensional array of individually trapped neutral atoms interacting strongly via Rydberg states, and demonstrate through extensive numerical simulations that it hosts a variety of symmetry-breaking phases and their transitions including DQC. We show how an enlarged, emergent continuous symmetry arises at the DQCs, which can be experimentally observed in the joint distribution of two distinct order parameters, obtained within measurement snapshots in the standard computational basis. Our findings highlight quantum simulators of Rydberg atoms not only as promising platforms to experimentally realize such exotic phenomena, but also as unique ones allowing access to physical properties not obtainable in traditional experiments.

DOI: 10.1103/PhysRevLett.131.083601

The modern theory of continuous phase transitions is rooted in the Landau-Ginzburg-Wilson (LGW) framework. The central idea is to describe phases and their transitions using order parameters: local observables measuring spontaneous symmetry breaking (SSB). In recent years, however, new kinds of critical behavior beyond this paradigm have been shown to exist. For example, quantum phase transitions (QPT) between phases with and without topological order are characterized not by symmetry breaking but rather by singular changes in patterns of long-range quantum entanglement. Another example is the continuous QPT between distinct SSB phases of certain two-dimensional magnets [1,2]. Such a scenario is generally forbidden within the LGW framework since there is no a priori reason why the order parameter of one phase vanishes concomitantly as the order parameter of another develops.

Deconfined quantum criticality (DQC) is a unifying framework proposed to explain such unconventional behavior: instead of order parameters, these critical points are described by emergent fractionalized degrees of freedom interacting via deconfined gauge fields. This can lead to interesting measurable consequences in macroscopic phenomena, such as emergent symmetries and accompanying conserved currents [3–7]. However, despite numerous experimental proposals and attempts [6,8–30], DQC is still a largely theoretical concept, and an unambiguous experimental observation remains to be made.

In this Letter, we propose programmable quantum simulators based on arrays of Rydberg atoms as promising platforms to realize and verify DQC. These are systems of atoms individually trapped by optical tweezers, and pumped by lasers to highly excited Rydberg states through which they interact. Owing to their wide programmability, a host of interesting quantum many-body phenomena can be simulated [31–36]. Here, we similarly leverage their programmability to present a realistic model of interacting spin-$\frac{1}{2}$ particles in 1D, and show that a host of SSB phases and QPTs, including DQC, arise [Figs. 1(a) and 1(b)]. Furthermore, we demonstrate the emergence of an enlarged, continuous symmetry—a smoking gun signature of DQC—is readily observable in experiments through the joint distribution of two order parameters over global measurement snapshots [Figs. 1(c)–1(e)].

Model.—We study an array of neutral atoms trapped in optical tweezers and arranged in a 1D zigzag structure [Fig. 1(a)], with periodic boundary conditions imposed by closing the chain into a ring. An effective spin-$\frac{1}{2}$ degree of freedom $\{|\uparrow\rangle, |\downarrow\rangle\}$ is taken to be encoded by distinct highly excited Rydberg states of each atom [Fig. 1(a)]. Then, the combination of dipolar and Van der Waals interactions among Rydberg atoms naturally induces the following effective Hamiltonian for spins:

$$\hat{H} = -\sum_{i} J_{ij} \hat{S}^x_i \hat{S}^x_j - \sum_{i} D_{ij} \hat{S}^z_i \hat{S}^z_j - \sum_{i} h_i \hat{S}^z_i,$$

where \hat{S}^x_i, \hat{S}^z_i, and \hat{S}^y_i are the components of the effective spin-$\frac{1}{2}$ operator, J_{ij} is the interatomic exchange coupling, D_{ij} is the dipolar interaction, and h_i is the external magnetic field applied to each site.
Importantly, we assume the ability to independently tune interactions, which decay with distance as different nearest-neighbor (NN) to next nearest-neighbor z spin-exchange and Ising interactions for X, Y, Z respectively. By inspecting its symmetries, translation symmetry with a spin-1/2 per unit cell, U(1) ⊗ Z_2 symmetry (spin rotation [spin flip] about the z[x] axis respectively), and site-centered inversion symmetry I, one can already declare that all phases must either be SSB or gapless. This stems from the Lieb-Schultz-Mattis theorem [37–40], which forbids a gapped disordered phase under such symmetry considerations.

Salient features of the phase diagram can be understood upon truncating H_{eff} to at most NNN terms, i.e., ignoring H_{LR} [41–43]. When $J_3 = 0$, the system is purely classical [44]. There is however a competition (tuned by α) between NN Ising interactions, which induce antiferromagnetic (zAFM) order in the z direction that spontaneously breaks the Z^2_3 spin-flip symmetry, and NNN Ising interactions, which induce instead so-called quadrupled antiferromagnetic order (QzAFM), further breaking I. These phases are separated by a first-order transition at $\alpha = 1/\sqrt{2}$ (modified with H_{LR}). When $\alpha = 0$, the model reduces to the familiar XXZ model, which hosts zAFM order at $J_3 < J_6$, and a symmetric but gapless XY phase with quasilong range order (XY QLRO) at $J_3 > J_6$. A final limiting case is when $\alpha = 1/2$ and $J_3/J_6 \to \infty$, called the Majumdar-Ghosh point [45]. There, the valence bond solid (VBS) states describing dimerized patterns of spin singlets are the ground states, which spontaneously break I. Caricatures of the different orders are shown in Fig. 1(b).

We numerically verify the presence of all these phases for the full model H_{eff} with long-range interactions. Concretely, we consider the order parameters

$$O_{\text{zAFM}}(r) \equiv e^{i\pi r} Z_r, \quad O_{\text{QzAFM}}(r) \equiv e^{i\pi/2} Z_r, \quad O_{\text{VBS}}(r) \equiv e^{i\pi} (\hat{S}_{r+1} \cdot \hat{S}_r - \hat{S}_r \cdot \hat{S}_{r-1}),$$

which measure violations of symmetries: Z^2_3 with wave vector π and $\pi/2$, and I respectively. We also consider their correlations $C_{xy}(r) = \langle O_{xy}(0)O_{xy}(r) \rangle$, and $C_{XY}(r) = \langle X(0)X(r) \rangle = \langle Y(0)Y(r) \rangle$, detecting ordering in the easy plane. Employing a density-matrix renormalization group (DMRG) algorithm for infinite systems [46–48], we compute Eq. (2) along various cuts of the phase diagram.

Focusing first along a vertical cut $J_3/J_6 = 0.1$ [Fig. 2(a)], we see that for $\alpha < \alpha_{c1} = 0.678(1)$, the system is zAFM ordered, evinced by a nonzero O_{zAFM} and vanishing O_{VBS} [49]. When $\alpha_{c1} < \alpha < \alpha_{c2} = 0.787(1)$, the converse happens, indicating the system is VBS ordered. For $\alpha > \alpha_{c2}$, another phase appears wherein O_{VBS} remains nonzero, while O_{QzAFM} appears in discontinuous fashion; this is the QzAFM phase. The derivative of the ground state energy across this transition is seen not to be smooth, indicating that it is a first-order transition. For the horizontal cut $\alpha = 0.5$, we see the system has zAFM (VBS) order to the left (right) of $J_3/J_6 = 0.5968$ [Fig. 2(b)]. Interestingly, the two order parameters, O_{zAFM} and O_{VBS}, appear to vanish-appear continuously precisely at this same point—indication that this QPT is unconventional. Further evidence of its continuous nature is provided by a divergent correlation length seen in DMRG.
The microscopic $U(1)_z$ spin-rotation symmetry manifests as the transformation $\theta \mapsto \theta + \phi$ for arbitrary ϕ, translation symmetry as $\phi \mapsto \phi + \pi/2$ and $\theta \mapsto \theta + \pi$, and site-centered inversion as $\phi \mapsto -\phi$. Therefore, symmetry-allowed terms beyond the parenthesis in Eq. (3) have the structure $\cos 4n\phi$. Now, for $K > 1/2$, it can be shown that all such terms are irrelevant under renormalization group flow so that the system is gapless (specifically, a Luttinger liquid), corresponding to the XY QLRO phase [66]. However, for $1/8 < K < 1/2$, the $n = 1$ term is relevant, so that nonzero g_4 leads to condensation of $\phi = 0$ or $\pi/4$ depending on sign, corresponding to the (gapped) zAFM and VBS phases. Crucially, at the critical point $g_4 = 0$, an enlarged $U(1)$ symmetry, associated with $\phi \mapsto \phi + \beta$ for arbitrary β, is seen to emerge (recall higher order terms can be ignored [51]). This emergent symmetry, characteristic of a DQCP, implies that the ground state is invariant under a continuous transformation that rotates O_{zAFM} into O_{VBS} and back. Consequently, $C_{zAFM}(r)$ and $C_{VBS}(r)$ are expected to exhibit power-law decays with identical exponents, as verified in Fig. 2(d).

The boundary between the zAFM and VBS phases is in fact a line of DQCPs [yellow line of Fig. 1(b)]. To examine the critical properties along the line, we employed the level spectroscopy technique [51,54] to extract the Luttinger parameter varying from 0.5 at the bicritical point [white cross of Fig. 1(b)] to ≈ 0.137 at the smallest value of J_3/J_6 we could reliably simulate [see Fig. 2(e)]. We expect that K still decreases for even smaller J_3/J_6 down to 1/8, whereupon the DQC becomes destabilized as the next-order term in Eq. (3) becomes relevant, which is expected to drive a discontinuous transition or phase coexistence [51]. Interestingly, interactions further than NNN appear crucial.

- $O_{zAFM} \sim \cos 2\phi$, $O_{VBS} \sim \sin 2\phi$,
- $O_{zAFM} \sim \cos \theta$, $O_{yAFM} \sim \sin \theta$.

Fig. 2. (a), (b) Magnitudes of spatially averaged VBS, zAFM, and QzAFM order parameters along different cuts in the phase diagram. (a) $J_3/J_6 = 0.1$. The system is zAFM(VBS) ordered to the left(right) of the critical point $\alpha_c \sim 0.677$. Past $\alpha_c \sim 0.787$ the system transitions to QzAFM. (b) $\alpha = 0.5$. The system is zAFM(VBS) ordered to the left(right) of the critical point $J_3/J_6 \sim 0.5968$, whereupon both order parameters vanish with increasing bond dimension in DMRG numerics (and therefore correlation length ξ) [51].

(c) Divergence of correlation lengths at the critical point of (b) with increasing bond dimension $\xi = 70, 100, 200, 300, 400$. Inset: scaling of entanglement entropy versus (log) correlation length yields a slope $c = 1$. (d) Correlation functions behavior at the critical point of (b). (e) Luttinger parameter K, extracted from exact numerical calculations and finite-size scaling analysis, along the DQCP line in the phase diagram of H_{eff}, and its NNN truncation H_{eff}^{NNN}. The microscopic $U(1)_z$ spin-rotation symmetry manifests as the transformation $\theta \mapsto \theta + \phi$ for arbitrary ϕ, translation symmetry as $\phi \mapsto \phi + \pi/2$ and $\theta \mapsto \theta + \pi$, and site-centered inversion as $\phi \mapsto -\phi$. Therefore, symmetry-allowed terms beyond the parenthesis in Eq. (3) have the structure $\cos 4n\phi$. Now, for $K > 1/2$, it can be shown that all such terms are irrelevant under renormalization group flow so that the system is gapless (specifically, a Luttinger liquid), corresponding to the XY QLRO phase [66]. However, for $1/8 < K < 1/2$, the $n = 1$ term is relevant, so that nonzero g_4 leads to condensation of $\phi = 0$ or $\pi/4$ depending on sign, corresponding to the (gapped) zAFM and VBS phases. Crucially, at the critical point $g_4 = 0$, an enlarged $U(1)$ symmetry, associated with $\phi \mapsto \phi + \beta$ for arbitrary β, is seen to emerge (recall higher order terms can be ignored [51]). This emergent symmetry, characteristic of a DQCP, implies that the ground state is invariant under a continuous transformation that rotates O_{zAFM} into O_{VBS} and back. Consequently, $C_{zAFM}(r)$ and $C_{VBS}(r)$ are expected to exhibit power-law decays with identical exponents, as verified in Fig. 2(d).

The boundary between the zAFM and VBS phases is in fact a line of DQCPs [yellow line of Fig. 1(b)]. To examine the critical properties along the line, we employed the level spectroscopy technique [51,54] to extract the Luttinger parameter varying from 0.5 at the bicritical point [white cross of Fig. 1(b)] to ≈ 0.137 at the smallest value of J_3/J_6 we could reliably simulate [see Fig. 2(e)]. We expect that K still decreases for even smaller J_3/J_6 down to 1/8, whereupon the DQC becomes destabilized as the next-order term in Eq. (3) becomes relevant, which is expected to drive a discontinuous transition or phase coexistence [51]. Interestingly, interactions further than NNN appear crucial.
to the small values of K observed (see the Supplemental Material Fig. S2(c) and [51]).

Experimental protocol.—In order to realize the above physics in the laboratory, we have to address three challenges: (i) engineering H_{eff} with tunable parameters, (ii) devising an efficient protocol to prepare a critical ground state, and (iii) providing a measurement and data processing procedure to identify signatures of DQC.

Tunable α is easily achieved by geometrically rearranging atoms using optical tweezers. For tunable J_3/J_6, we propose encoding each spin state as an admixture of Rydberg states with different parities. As a concrete example, we choose $|\uparrow\rangle$ and $|\downarrow\rangle$ both as states of the same parity, denoted as S, and we further address $|\downarrow\rangle$ with two nearby states of opposite parity, denoted as P, using independent off resonant microwave drives [Fig. 3(a)]. Without admixing, VdW interactions between S states give rise to $1/r^6$-decaying Ising-like couplings as already demonstrated in multiple experiments [31,33,34,57]. Admixing P states generally introduces $1/r^3$-decaying dipolar interactions that contain both spin exchange and Ising couplings. Here, by judiciously choosing two different P states, it is possible to engineer a negligible diagonal dipole moment of the dressed state, while keeping a substantial off diagonal (transition) dipole moment such that only exchange couplings are realized [58]. In this way, one can tune J_3/J_6 over a wide range, from nearly zero to greater than unity, with even a modest amount of admixture [51]. This realizes H_{eff} up to a uniform global Zeeman field, i.e., $\propto \sum_j Z_j$, which is inconsequential as long as our state preparation protocol lands us in the desired magnetization sector. We note that utilizing other microwave dressing schemes is possible [51] and also that exact engineering of H_{eff} is not needed as the existence of DQC is robust against perturbations.

To prepare the DQCP ground state, we propose an adiabatic protocol. Three remarks are in order: First, in experiments, atoms are typically initialized in their respective electronic ground states $|g\rangle$; thus, a state preparation protocol necessarily involves an extended Hilbert space of three internal states $\{g, \uparrow, \downarrow\}$ per atom. Second, we desire to prepare the ground state of H_{eff} in the zero magnetization sector, which may not be the global ground state considered over all magnetization sectors. Finally, given finite coherence times in experiments, the many-body gap should ideally remain large throughout the adiabatic passage so that state preparation can be completed as quickly as possible while minimizing diabatic losses.

We present a many-body trajectory that satisfies all three criteria: $H(s) = H_{\text{eff}} + H_{\text{eff}}(s)$ with $s \in [0,1]$, where H_{eff} is assumed to be tuned to a desired DQCP, and

$$H_{\text{eff}}(s) = \sum_i \Omega_L(s)(|\sigma(i)\rangle_i\langle g| + \text{H.c.}) + \Delta_L(s) \sum_i |g\rangle_i \langle g|$$

represents lasers coupling $|g\rangle$ to spin states $|\sigma(i)\rangle$ with $\sigma(i) = \uparrow, \downarrow$ for even (odd) sites i, characterized by time-dependent Rabi frequencies $\Omega_L(s)$ and detunings $\Delta_L(s)$ [Figs. 3(a)–3(c)]. Now, under a sufficiently slow, smooth ramp up of Δ_L from a large negative to positive value while Ω_L is switched on and off, all population from $|g\rangle$ will be transferred to the spin states [59]. Furthermore, $H(s)$ harbors two independent conserved quantities $N_A = \sum_i (n_{2i}^+ + n_{2i}^-)$ and $N_B = \sum_i (n_{2i-1}^+ + n_{2i-1}^-)$ throughout
the entire evolution since \(|H(s), N_{A,B}⟩ = 0 \). Here, \(n_i^a \) represents the occupation number operator for state \(a \) at site \(i \). This ensures that the final state has zero magnetization, provided all population in \(|g⟩ \) is transferred, i.e., \(n_i^g = 0 \) for all \(i \). Such a protocol thus ensures that the instantaneous ground state of \(H(s) = 0 \) is \(|g⟩ \otimes L \), while that of \(H(s = 1) \) is the target DQCP. Finally, the choice of staggered couplings explicitly breaks translation symmetry except at the start and end of the trajectory, opening the many-body gap away from the DQCP, which we numerically observe [Figs. 3(b) and 3(c)].

To demonstrate the protocol’s feasibility, we consider \(\Omega_L(s) = J_6 \sin(\pi s) \) and \(\Delta_1(s) = -2J_6 \cos(\pi s) \), fixing \(\langle \alpha, J_3/J_6 \rangle = (0.5, 0.597) \) (i.e., a DQCP). Up to \(L = 12 \), we can perform exact simulations with realistic values \(J_6 \sim 2\pi \times 25 \text{ MHz} \) (used in Ref. [57]) assuming a linear ramp \(s(t) = t/T \), which reveals that a state with many-body overlap \(>0.99 \) with the exact ground state can be prepared with the state-preparation time \(T = 60/J_6 \sim 0.4 \mu s \), well within typical Rydberg lifetimes \(\sim 150 \mu s \) [57]. Furthermore, based on the Kibble-Zurek scaling ansatz [33,67,68], we find that the condition for the adiabaticity is \(T \geq L^{1.5-k} \). Combined with exact numerical results, we estimate that a system of \(L = 24 \) can be prepared with a state-preparation time \(T \sim 1 \mu s \), and \(L = 64 \) with \(T \sim 5 \mu s \).

The smoking-gun signature of DQC is the emergent symmetry unifying different order parameters. We now argue this can be directly observed in Rydberg simulators. Naively, an explicit way to verify the emergent symmetry is to measure arbitrary linear combinations of order parameters \(O_\eta = O_{\text{zAFM}} \cos \eta + O_{\text{VBS}} \sin \eta \) and to show that the distribution of \(O_\eta \) behaves identically for any \(\eta \) upon potential rescaling of \(O_{\text{zAFM}} \) and \(O_{\text{VBS}} \). This approach, however, is infeasible with existing experimental technologies as measuring \(O_{\eta \neq 0} \) requires applying highly complicated unitary rotations before performing measurements in the standard \(z \) basis. Instead, we can consider \(O_{\text{VBS}}'(r) \equiv (-1)^r (Z_{r+1} Z_r - Z_r Z_{r-1}) \), which behaves identically to \(O_{\text{VBS}}(r) \) under symmetry transformations relevant to \(H_{\text{dfl}} \), and hence serves as an alternative, but bona fide VBS order parameter [69]. Now \(\tilde{O}_{\text{zAFM}} \) and \(\tilde{O}_{\text{VBS}} \) (bar denotes spatial averaging) are simultaneously evaluable within global measurement snapshots in the standard \(z \) basis [Fig. 3(c)]. Such measurements in fact give access to the entire statistical properties of \(\tilde{O}_{\text{zAFM}} \) and \(\tilde{O}_{\text{VBS}} \), captured by their joint probability distribution (JPD). Figures 3(d)-3(f) illustrate the JPD and corresponding radial-angular distributions, derived from simulated snapshots at a DQCP for various system sizes [51]. Already at \(L = 24 \), the rotational invariance between the order parameters can be gleaned, which becomes increasingly prominent with larger sizes. Note that this ring distribution would not arise if the transition were instead characterized only by a simple coexistence of zAFM and VBS orders: the JPD would have four distinct peaks, amounting to overlaying distributions of Figs. 1(c) and 1(e).

[49] In the DMRG simulation for infinite systems, the variationally optimized matrix product state explicitly breaks the symmetry in a spontaneously symmetry broken phase. Therefore, the order parameter expectation values for the resulting ground state can take finite values.

[66] We ignored long-range terms $1/r^m$ with $m \geq 3$; if one writes down such a long-range interaction in terms of operators with positive scaling dimensions, the interaction can be shown to be always irrelevant.

[69] From the field-theoretic derivation [70], O'_{VBS} can be shown to behave as $\sin 2\phi$ as well. Also, due to the emergent singlet nature of the VBS phase, correlations in X, Y, Z are approximately similar which we verified numerically throughout the phase.

