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I. EXPERIMENTAL DETAILS

Fig.[S1|shows the relevant transitions of Yb™, with the
narrow transitions used for isotope shift measurements
depicted in blue. In this work, we probe the 467-nm
transition and combine our measurements with our pre-
vious data on isotope shifts on the 411 nm and 435 nm
transitions from Ref. [I], as well as data from transitions
in neutral Yb from Refs. [2] [3]. We Doppler-cool the
trapped ion (see Fig. to ~ 500uK using 369-nm light
which, aided by repumpers at 935 nm and 760 nm, drives
a cycling transition between the 2S5 and 2Py levels.
Here we also report for the first time the frequencies (for
all stable even isotopes) of the 760 nm-transition which is

used to repump the ion from the 2F7/2 state (see Table

and Sec. . The frequencies of the cooling transition at
370nm and the repumping transition for the 2 D5 /2 state
at 935nm for 1%8Yb* can be found in Table [S1l as well.
To produce 467 nm probe light, we frequency-double a
Ti:Sapphire laser at 934 nm with an M Squared ECD-X
external cavity doubler. As described in detail in Ref. [I],
we divert some of the light before the doubling cavity
and pass it through an electro-optic modulator (EOM) to
produce a sideband several gigahertz away from the car-
rier. We frequency-stabilize this sideband to a ultralow-
thermal-expansion (ULE) high-finesse cavity using the
Pound-Drever-Hall (PDH) protocol. Coarse frequency
tuning of the probe light is then achieved simply by scan-
ning the sideband frequency. Fine-tuning of the probe
frequency is accomplished with an acousto-optic modu-
lator (AOM) for the frequency-doubled light. Our probe
beam power is 160 mW and an achromatic lens is used
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to focus the beam to a waist (1/e2-intensity radius) of
15 pm at the ion.

To determine the center of the 467 nm transition, we
drive two transitions, labeled R and B in Fig. [SI(b), be-
tween symmetrically red and blue-detuned Zeeman com-
ponents of the 251/2 and 2F7/2 states, and average their
center frequencies. To minimize the effect of magnetic-
field drifts, we interleave the scans of R and B (i.e. we
record one data point on the frequency scan of R, then
shift the frequency of the probe laser and take a data
point on the frequency scan of B, then take another point
on the scan of R and so on). A 0.5s pause time is used
after shifting the frequency between the R and B transi-
tions to allow the laser to settle.

Fig. [S3] shows the 500ms-long laser pulse sequence
used to drive the 467 nm transition, and Fig. depicts
the polarization and propagation direction of the laser
beams. The sequence begins by cooling the ion with
369 nm light and optically pumping it with a circularly-
polarized 369 nm-beam to one of the two ms = :I:% levels
of the 25, /2 ground state. We record fluorescence emitted
during cooling to confirm that the ion has been correctly
initialized to the ground state and has not been shelved
to one of the long-lived D or F states. (If the ion goes
dark during this time, the corresponding period of the
sequence is ignored in the data.) A probe laser pulse is
then applied for 390 ms, followed by readout of fluores-
cence by electron shelving [I, 4]. During readout, the
369 nm-cooling light is again applied. When the transi-
tion has occurred, the ion will be in the F7,, state and
will not fluoresce when illuminated by the cooling light.
In this case, we consider the ion to have performed a
quantum jump. However, if the ion did not make the
transition and remained in the ground state, it will emit
fluorescence on the cycling transition when driven by the
cooling light. For each point on a frequency scan of the
probe laser, we repeat this sequence until 10 successful
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FIG. S1. (a) Partial level diagram for the Yb™ ion. In this
work, we measure the 467-nm transition and use our previous
measurements of the 411-nm and 436-nm transitions [I] to
produce the King plots. (b) Zeeman levels of the ground
251/2 and excited 2F7/2 states of the 467-nm transition. We
use a static magnetic field By = 1.05G to split the Zeeman
levels.

periods of the sequence (i.e., the periods staring with
the ion in the ground state) are observed, and determine
what fraction of attempts resulted in a quantum jump.
Fig.[S4]shows the quantum jump probability versus probe
laser frequency for one frequency scan.

We measure isotope shifts between pairs of isotopes by
loading individual ions of each isotope in turn into the
trap. (We can selectively photoionize different isotopes
by tuning the frequency of our 399 nm photoionization
laser.) For a given trapped isotope, we take at least 7
simultaneous frequency scans of the R and B Zeeman
transitions before switching to the other isotope. This
process is repeated at least four times throughout the
course of a day of data taking (i.e., four data segments for
each isotope). We calculate the common frequency drift
for each pair of scans R and B to determine the center
frequency, see Fig. [S5[(a). We then fit this data using a
least-squares fit with varying offset [see the Supplemental
Material of Ref. [I], Eq. (S1)]. As described in detail in
Sec. [[TC] we measured all seven possible combinations
of nearest-even-neighbor (A, A + 2) and next-to-nearest-
even-neighbor isotope pairs (A, A 4+ 4) in order to cross-
check our measurement results for systematic errors, and
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FIG. S2. Schematic drawing of the experimental setup. A
single ytterbium ion is trapped 135 pm away from the sur-
face of a microfabricated planar Paul trap housed in an ul-
trahigh vacuum chamber. The propagation directions of the
laser beams used for cooling, repumping, optical pumping,
and probing the ion are indicated by labeled arrows. Fluores-
cence from the ion is collected using either a photo-multiplier
tube (PMT) or a camera. The probe laser beam is linearly
polarized along the trap axis (the z direction in this figure).
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FIG. S3. Time sequence of the experiment with wavelengths
of lasers indicated.

to improve our precision.

A. Repumping from the 2D3/2 and 2F7/2-states

The state 2F /2 state is repumped by a 760 nm laser
beam that drives the 2F; /5 — 'D[3/2]3/, transition [5-
[10] with a < 10-ms time constant for a ~ 7mW beam
focused to a waist of 100 um (consistent with Refs. [5,[6]).
The absolute frequency of the 760nm beam is mea-
sured by and actively stabilized to a Fizeau wavemeter
(HighFinesse/Angstrom WS/7). The frequencies for this
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FIG. S4. Example of simultaneous frequency scans of the
probe transition on the R and B Zeeman components. Here
the horizontal axis has been offset so that the Zeeman splitting
is not shown. Vertical lines correspond to the statistical mean
value for the frequency for each peak.

transition for all the isotopes, as well as the frequen-
cies for the Dy /o — *D[3/2]; /o repumping transition at
935nm, are shown in Table |S_'ﬁ

II. DATA ANALYSIS
A. Determining the transition center frequency

As described in Sec. [I] for each isotope, we determine
the 25y /o —2 F7 5 transition center frequency by driving
two symmetrically detuned transitions between Zeeman
levels of the ground and excited states, transitions R and
B [see Fig. [SI[b)], and averaging their center frequen-
cies. We scan the probe laser frequency and plot the
quantum jump probability versus frequency, see Fig.
To determine the center frequencies of R and B from
our data, we take the statistical mean of our data points.
This allows us to determine the center frequency without
assuming a known lineshape fit function. However, this
method of determining the center is susceptible to a small
amount of frequency pulling if our scan range is not cen-
tered at the transition resonance frequency (we discuss
this effect in detail in Sec. [TLGl and determine that it is
significantly smaller than our leading error sources). An
analysis where we fit lineshapes Gaussian function with
background offset to find the transition centers gives de-
viations that are smaller than our statistical error bars.
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FIG. S5. (a) Example of the common frequency drift of Zee-

man peaks R and B for the IS measurement. Linear fit follows
the drift of the ULE cavity frequency reference. Orange and
blue color correspond to *®*Yb™ and '"®Yb™, respectively.
(b) Example of the frequency difference between the Zeeman
peaks R and B. The Zeeman splitting is affected by varia-
tions of the external magnetic field, but not by the drifts of
the ULE cavity.

!
B. Inverse-mass difference y4*

Assuming that the errors of the measured masses of all
five isotopes of interest are uncorrelated, we calculate the
inverse-mass differences pA4" = 1/m4 — 1/m4" (where
m? is the mass of the 4Yb* ion) and the correlations
between different p44” for different isotope pairs (A, A").
The values for m4, ,uAA,, and their correlations, are listed
in Table Table I in the main text, and Table
respectively.

The uncertainties in measured atomic masses of Yb
isotopes appear as z-errors in frequency-normalized King
plots [see Eq. (2) in the main text]. The effect of mass un-
certainties is largely suppressed due to the small slopes in
King plots (given by Ky, the two-transition mass shift
coefficients). The maximum uncertainty in measured Yb
masses m* is currently 10~7 u (limited by the '68Yb iso-
tope), translating into an uncertainty of 3.6 x 10712 u~1
in A4 (see Table and Table T in the main text).
This mass uncertainty leads to a 22 Hz uncertainty in
KHX,uAA/, for the maximum value of K, = 6002 GHz-u



TABLE S1. Measured values of absolute frequencies v** (upper table) and isotope shifts A = A A (lower table) for the
%S1/2 = 2Py /5 (369nm) cooling transition, and the Dy /5 — *D[3/2]; 2 (935nm) and *>Fy/» — 'D[3/2]3/» (760 nm) repumping
transitions. 100 MHz, 60 MHz, and 50 MHz uncertainties in measured absolute frequencies of the 369 nm, 760 nm, and 935 nm
transitions, respectively, are specified by the manufacturer of the wavemeter (HighFinesse/Angstrom WS/7). The differences
in the transition frequencies are measured with better precision; 60 MHz, 20 MHz, and 20 MHz are given as upper bounds of

the uncertainties due to the drift of the wavemeter.

Transition frequency [THz]
Isotope A 369 nm transition 935 nm transition 760 nm transition
This work Reference This work Reference This work Reference
168 811.29611(10) 320.562190(50) 394.432865(60)
170 811.29439(10)  811.29440(13) [II]| 320.565910(50)  320.56593(7) [11]| 394.429590(60)
172 811.29274(10)  811.29284(13) [11]| 320.569390(50)  320.56941(7) [11]| 394.426550(60) 394.426 [7
174 811.29146(10)  811.29154(13) [II]| 320.572010(50)  320.57201(7) [II]| 394.424145(60) 394.42 8]
394.42390(F] [
176 811.29025(10)  811.29031(13) [1I]| 320.574515(50)  320.57449(7) [11]| 394.421885(60)
Isotope pair (4, A”) Isotope shift [MHz]
369 nm 935 nm 760 nm
(168,170) 1 720(60) -3 720(20) 3 275(20)
(170,172) 1 650(60) -3 480(20) 3 040(20)
(172,174) 1 280(60) -2 620(20) 2 405(20)
(174,176) 1 210(60) -2 505(20) 2 260(20)

@ Uncertainty not specified.

TABLE S2. Masses of isotopes from Ref. [14] for the *®®Yb™
ion, and from Refs. [I5HI7] for the remaining isotopes. The
ionization energy of 6.254 eV for a neutral Yb atom [I8] [19]
is used to calculate the ion mass from the neutral-atom mass.

Isotope A m? [u]
168 167.93389132(10)
170 169.934767246(11)
172 171.936386659(15)
174 173.938867548(12)
176 175.942574709(16)

(see Table [S§)), which is smaller than the IS uncertainty
in this work. As the precision of IS measurements in-
creases to O(1Hz) [2 [12] and further to O(1 mHz) [13],
the atomic masses should be measured with uncertainty
below O(10781u) and O(1071!u), respectively, to avoid
uncertainties in King plots being dominated by the mass
uncertainties.

C. Cross-checks and improved isotope shifts

To check for systematic errors and improve our un-
certainties, we perform additional redundant measure-

TABLE S3. Correlation coefficients between inverse-mass dif-
ferences p4 for different nearest-even neighboring isotope
pairs.

Isotope pair (A,A")|(168,170) (170,172) (172,174) (174,176)
(168,170) -0.4430  0.1879  -0.0906
(170,172) -0.4241  0.2045
(172,174) -0.4822
(174,176)

ments of the IS by measuring next-next-even neighbor
ISs. Then each measured quantity is a linear combination
of other quantities (e.g., v170:17 = p170,172 4 3/ 172,174)
By combining the measured values, each of the quantities
can be better estimated with a reduced uncertainty, at
the slight complication of correlations between different
quantities. In this work, the measured ISs for nearest-
even neighboring isotope pairs (166 + 2i, 166 + 2i + 2),
i =1,---,4, and next-nearest-even neighboring isotope
pairs (166 + 2,166 + 2i +4), ¢ = 1,---,3, producing
improved values of the nearest-even neighboring isotope
pairs’ ISs from the following relation.



170 47 281;11.88(45) 174

> -
168 +8 587 352.00(47) 172 +6 108 712.93(44) 176

FIG. S6. Measured values of ISs (values along edges in kHz)
for different pairs of Yb™ isotopes (vertices labeled with the
mass numbers A of isotopes “Yb™) and consistency of values
forming shortest loops (o-significance in the center of each
triangle). The IS value 44" = 4 — 1" is shown for an edge
directed from vertex A to vertex A’. The measured values
agree overall with 0.860 significance.
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Finding the best estimates of the four isotope shifts B
from the observations y becomes a typical least square
problem y = X 3. The improved IS values 3 are obtained
via a weighted least squares fit with the weights given by
inverse-squared measurement uncertainties. The values,
errors, and correlations of 3 are listed in Table

The self-consistency of three measured IS values v
vAA" and 144" that involves three isotopes A, A’, and
A" can be tested by, e.g., checking if the difference of
vAA L A" and vA44” is within the combined measure-
ment uncertainty \/(AvA47)2 + (ApA™A7)2 4 (ApAAT)2
(see Fig. [S6). Eq. serves as a test of the self-
consistency of our measurements; we find agreement of
our data with the linear relation given by Eq. within
0.860.

AA’
)

D. Fitting points in King plots

Fitting our data requires a procedure that both ac-
counts for the fact that our data points have error bars
along the x axis of the King Plot (as well as along the
y axis), and for the existence of correlations between
the data points. These correlations arise mainly because

we make redundant measurements of the isotope shifts
and use them to reduce the uncertainties in the pair-
wise shifts. For data with uncertainties only along the y
axis, correlations can be straightforwardly accounted for
by using a generalized least squares (GLS) fitting proce-
dure, which takes as an input the covariance matrix of
the data. To adapt the procedure to account for errors
along z, we translate the z-errors into y-errors via the
slope of the fit line, and then perform an iterative GLS
fit to our data.

For the two-dimensional (2D) King plot (Fig. 1 in the
main text), the effect of a-errors and correlations on the
fit result is not significant if the King plot is frequency-
normalized (see Eq. (2) in the main text) [I]. This is is
because the z-errors, when propagated to the y direction,
are significantly smaller than the y-errors. This is true
in general for heavy atomic species where the field shift
(FS) is significantly larger than the mass shift (MS).

Table [S8| compares the results of the fit with and with-
out z-errors and correlations; we see that the two agree.
This provides one of the main motivations to use the
frequency-normalized King plot instead of the more con-
ventional inverse-mass-normalized King plot, as one can
easily obtain reliable fitting results via standard GLS fit-
ting procedures, which have analytic solutions.

E. Analysis of the nonlinearity pattern

We use the following vector notation for isotope-pair-
dependent parameters:

A A A A Az Al

x=(x ;,ac f-’,x 3,33‘44‘421) (S2)
where A, A) are the isotopes in the k-th pair. This nota-
tion provides an alternative view of King plot: if the
King plot is linear, then the vector with components
pAA = A4 /A pegides in the plane that two King
vectors 1 and @ define, with f,; and K, as the coeffi-
cient of the vectors, respectively.

Since the vectors are four-dimensional, one can define
two vectors Ay and A_ (that we call nonlinearity vec-

tors) that span the space orthogonal to the King plane.
When measured normalized ISs ﬁ?Al do not exactly lie
in the King plane, the out-of-plane component can be
decomposed along the nonlinearity vectors with compo-
nents Ay and A_. In other words, the King plane and
nonlinearity plane corresponds to the best fit and the re-
maining residuals of the ordinary-least-square fit in the
King plot, respectively. There is an infinite number of
ways to define nonlinearity vectors, and we suggest the
following unit vectors:

Ay o (i3 — Tig, iy — fy, fiy — [y, fig — fi3)

o e e (S3)
A o (fiy = Ty, iy — iz, iy — flgs Bz — Fiy)

where 7, = ﬁAR‘A;ﬂ. The proposed nonlinearity vectors

have several advantages: They have a fairly simple, linear



TABLE S4. Improved values and errors of ISs A4 = 1A — 14 between nearest-neighboring even isotope pairs (diagonal

elements; in kHz) from the redundant measurements listed in Table I in the main text. Correlation coefficients between v

for different isotope pairs are given as off-diagonal elements.

AA’

Transition Isotope pair (A, A) (168,170) (170,172) (172,174) (174,176)
(168,170) -4 438 160.85(38) -0.4430 0.1879 -0.0906

~: 467 nm (170,172) -4 149 190.66(32) -0.4241 0.2045

(this work) (172,174) -3 132 321.38(33) -0.4822
(174,176) -2 976 391.58(37)
(168,170) 2 179 098.93(21)
(170,172) 2 044 854.73(30) -0.3286

a: 411 nm [I]
(172,174) 1 583 068.35(31)
(174,176) 1 509 055.29(28)
(168,170) 2 212 391.85(37)
170,172 2 076 421.04(28 -0.4235

B: 436 nm [1] ( ) 28)
(172,174) 1 609 181.29(20)
(174,176) 1 534 144.06(24)
(168,170) 1 358 484.4763(23)
(170,172) 1 275 772.0060(30) -0.7546

0: 578 nm [2]
(172,174) 992 714.5867(23)
(174,176) 946 921.7751(30)
(168,170) 1 781 784.73(55) -0.2210

i (170,172) 1 672 021.40(29)

€: 361 nm [3]
(172,174) 1294 454.41(21) -0.3885
(174,176) 1233 942.14(25)

form while being orthogonal to the King vectors. This
simplifies error propagation in the measured quantities
MAA,, VfA/, and I/;?A, to A4 and Ay. Furthermore, the
A and A_ vectors represent zigzag (+—+—) and curved
(+——++) patterns of nonlinearity if &; to 7i, are in in-
creasing order (i.e., 7iy < Tix41), replacing the role of
¢y =(1,—-1,£1,F1) in our previous work [I].

A drawback of the above basis is that in general A
and A_ are not orthogonal to each other. One can al-
ternatively, for instance, keep Ay and define A_ as the
vector that is orthogonal to the two King vectors and
A . With this kind of choices, however, the propagation
of the uncertainty is less straightforward. Interestingly,
the values of ﬁAA/ for Yb are such that the nonlinearity
vectors in Eq. are very close to being perpendicular
to each other (A4 - A_ =0.0014).

The points representing the measured ISs in the
(A, A=) plane of expansion coefficients for the o:
251/2 — 2D5/2 (41111111), 6: 251/2 — 2D3/2 (43611111),
and ~: 2F7/2 — 2D3/2 (467nm) transitions in Yb™ ions;
and the 0: 1Sy — 3Py (578nm), and e: 1Sy — Dy
(361 nm) transitions in neutral Yb atoms, using Ay as
given by Eq. , for two different choices of the tran-
sition for the normalization (reference transition) are

shown in Fig. 2 in the main text. The Ay plane referenced

to the § transition ()\(ﬁ )) is introduced as the main graph
because the ISs for the § transition have been measured
with a precision that is much higher than the other tran-
sitions, so that the uncertainties in the Ay values (shown
as ellipses) for different transitions are not correlated to
each other.

F. Three-dimensional (3D) King plot

The 3D King plot is a special case of the generalized
King plot introduced in Ref. [20]. If there is one source
of isotope shifts in addition to the MS and FS, denoted
as X,z then the isotope shift is given as

V:)?Al = Ko™ + Fo 64 + X a2 + Yy (S4)
where Y,y24" is a small fou/rth contribution to the IS
shifts (i.e., Xoz44 > Y,y44") that we want to test for.
If the ISs of three transitions v,, vg, and v, are measured,
then the unknown quantities §(r2)44" and 244" can be

eliminated from the expression by solving Eq. (S4) for
the three transitions.



yAA Ys, K, F, Xq pAA
v = s |0 = Ky By X | 60
AL Y, K, F, X,|| =4
N————
T

(S5)
AA’ -1 AA’ AA’
= @ (R v )

x=a,8,y

By rearranging Eq. (S6)), we obtain the expression for
inverse-mass-normalized 3D King plot as follows:

—AA A

—AA —AA —A
vy = vBa t fypaVy +f7a,8”,8 + Y 809 (S7)

—AA' ’ ’ .
wherez" " = 244 /uAY (2 € {va,vp, vy, y}) are inverse-
mass-normalized quantities [I],

B _ X
F X
fage = B x = XW and (S8)
Fy ~ Xp B
F. X
f _ F% - Xi:i _ XVG (89)
0P T Fe T Xs T X,
F. Xo

are the slopes of the plane in 3D the King plot along the
axes corresponding to transitions « and 3, respectively,

Zypa = Ly = [ypaZa = frapZp
X
=T — 2275,
i Xﬂa B

= Zﬂa(zvaﬁ - f“/aﬁ)

(S10)

where Z = K, Y are the z-intercept of the plane and the
electronic factor associated with the nonlinearity source
y24 respectively, and z,ap = 2Zya/Zga (See the main
text for the definition of z., and Z,, for x # k). There
is only one source of nonlinearity in the 2D King plot
(namely XamAA/) if all the points in 3D King plot lie in
a plane, barring the case that y can be decomposed to
w, 8(r?), and = (see Sec. for the vector notation), or
Y., Y, and Y, cancel out in Y, 3,. Therefore, fitting the
points in the 3D King plot serves as a test if there are
one or two contributions to the IS besides the MS and
the FS.

We fit 3D King plots in a similar way as 2D King plots
(see Sec. [[ID)). Uncertainties and correlations in the x
and y values are propagated to the z direction, and iter-
ative GLS fits are performed.

An example 3D King plot and the linear fit are shown
in Fig. |S7|for the (a,7, 8) transitions.
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FIG. S7. Plane fitted to a 3D inverse-mass-normalized King
plot constructed from isotope shifts measured on the o =
411nm [I], 8 = 436 nm [I] and v = 467 nm (this work) tran-
sitions for nearest-neighbor pairs of even Yb™ isotopes, as
described by Eq. . Insets display magnified view of each
point to show deviation from the fitted plane. The origin of
the inset axes has been set to the center of each point. The
red ellipsoids depict 1o confidence intervals of the data. The
fit to the plane gives 3.20 significance of nonlinearity (see Ta-
ble . Each point in the King plot is correlated with other

points (see Sec. [[1 D).

FIG. S8. Two-source-nonlinearity analysis in the (A4, A_)
map with reference transition a. Thick black arrows indicate
the measured vg and v,. The nonlinearity from a4 (yAA/)
is coded with red (blue) color. The blue dotted line shows the
direction of AL due to yAA/. The 3D King plot corresponds
to stretching the nonlinearity from vz (dashed black arrow;
fv8aVg) and moving along y*4"s direction (thin black arrow;
Y, 34Y) to form a triangle with nonlinearity for v..



1. FEquivalence between 3D King-plot linearity and
single-source fit in A+ plane

Consider a frequency-normalized 3D King plot for

(cr, B,7) transitions [equivalent to Eq. (S7)]:
Uy = Kygalt + fypal + frapVs + Yipay (S11)

[see Eq. for the vector notation]. From Fig. one
can easily see that linear fit in 3D King plot corresponds
to finding the values of f,.s and Y, 3, to form a triangle
along nonlinearity patterns for UAA/7 V::‘A/, and yAA/.

Therefore, if the 3D King plot is linear, the area of the
corresponding triangle vanishes. It implies Ug and v,
have to be parallel to each other. Thus a test of whether
two data points lie along a line through the origin in
the A+ plane can be used to probe for the existence of a
second nonlinearity source yAA/ (see Fig. 2 in the main
text).

It is straightforward to see that the ratio fy. =

G%() / G,(f)z (ratio of red arrows’ lengths) determines the
A_/A, ratio for yA4" (dotted lines in Fig. and vice
versa, independent of the A_ /A, ratio of the dominant
source of nonlinearity A4 (i.e., the direction of the red
arrow). The former one is equivalent to fitting the 3D
King plot with a known nonlinearity pattern from nu-
clear parameters yAA/ (see Egs. and . The lat-
ter suggests that if f,,. can be calculated precisely in
the future, the A_/A; ratio of the second nonlinearity
source can be deduced and compared with A_ /Ay from
Quadratic field shift (QFS), a new boson, or any other
proposed sources.

G. New-boson range

As the dominant source of nonlinearity observed in 2D
King plot is expected to be from G®*§(r?) (see Fig. 3 in
the main text), we can eliminate the dominant source by
drawing a 3D King plot. If we assume that the nonlinear-
ity remaining in the 3D King plot is originating primarily
from the new boson, we can obtain the value of vyeDyiy
by fitting the King plot using the relation

AA'

(S12)
We obtain a perfect fit as there are four fitting param-
eters Ky, foex, foxw, and vpeDyy for four isotope
pairs (A4, A’) (see Table[S9). On the other hand, the cal-
culated D, at light new-boson mass mg has statistical
uncertainty from the fitted value of f,,. (see Sec. .
Therefore, the value of new-boson-coupling product

—AA —AA —AA -
Uy = Kyex + forxVy + FoxwVie + UneDnex@

(UneDme)ﬁt
(Dnﬁx)cal

is given by a ratio of fitted parameter to calculated pa-
rameter. Here we use a simple way to treat uncertainties

YeYn = (_1)S+147Thc (513)

in the numerator and the denominator. We consider the
95% confidence interval of each value and conservatively
obtain the range for y.y, from the intervals.

The values of y.y,, as a function of the new-boson mass
mg obtained using Eq. for some choices of (x, , )
from five transitions a to € are shown in Fig. 4 in the
main text. There the fitted v,.D),, have much bigger
fractional uncertainties than the calculated D,,, for the
(x, &, m) = (a,7,9), (B,7,0), and (7,9, €) transitions (see
Table , except in the regions where D, is close to
zero, and we have no sensitivity to a new boson for the
given transition (i.e., yey, diverges).

H. QFS range

Similar to the new-boson bound, the experimental
range of the quadratic field shift [§(r?)2] can be obtained
by assuming that it is the dominant source of the ob-
served nonlinearity in 3D King plot,

—AA’

—AA’ —AA )
Uy = Ky + fnﬁxyx + foxuVi T+ Grmx

—AA
[6(r?)?]
(S14)
We believe that the calculation for the («,<,3) tran-
sitions is the most reliable as the transitions are ob-
tained simultaneously from a single run of the CI calcu-
lation (from GRASP2018; see Sec. , providing maxi-

mum consistency between the calculations for the differ-

ent transitions. The fitted value of G(?a has different
sign and bigger rnaude than the two-transition fac-

tor chz (see Tables and . However, we expect the
three-transition factor to be significantly smaller than the
two-transition factor for G (see Sec. . This implies
that the observed nonlinearity might not be mainly from
QFS, although future measurements of the o and § tran-
sitions with the better precision might result in smaller

(2)
fitted Gﬁva'

IIT. ESTIMATION OF SYSTEMATIC EFFECTS
AND ERRORS

Our measurement error is determined directly from the
scatter of our data points. Most of the systematic effects
pertaining to measurements of transition frequencies in
atoms are common-mode between the isotopes, with only
a small differential component that affects our measured
ISs. Drifts in experimental parameters can lead to uncer-
tainties on these differential shifts, and these are the main
source of our measurement error. Many of the systematic
uncertainties affecting our experiment are the same as for
our previous measurement of the ISs of the quadrupole
transitions [I] and are discussed in detail in the Supple-
mental Material of that work. While we summarize all
effects in Table [S5] here we discuss primarily systematic
effects which differ from the previous work, due to the
transition or modifications in the experimental setup.



TABLE S5. Estimated contributions to systematic shift on the v transition. The systematic uncertainty is dominated by the

laser-induced AC Stark shift.

Estimated magnitude of absolute shift (Hz)

Estimated differential shift (Hz)

Laser-induced Stark shift

Linear Zeeman shift

Absolute frequency stability probe laser
Second-order Doppler shift
Micromotional Stark shift

Electric quadrupole shift

Black-body shift

Quadratic Zeeman shift

Gravitational red shift

FIG. S9.

(A+, A+) values of measured ISs for 8 (green) and
v (red) transitions normalized by ISs for « transition. See
Fig. 2 in the main text for details.

A. AC Stark shift

The 467 nm probe light used to drive the octupole tran-
sition can also couple to other transitions in the atom,
causing an intensity-dependent AC Stark shift of the
transition frequency. This shift has been measured to
be 5.9(8) x 107> HzW~tm? [12]. For our beam waist,
power and polarization, this leads to a shift of ~7kHz.
The shift is common-mode between different isotopes but
can introduce an error in the IS measurement if there is
a systematic variation of the probe laser intensity when
tuned to different isotope transition frequencies or due to
random fluctuations in intensity between isotopes which
do not completely average out over our measurements.
We stabilize the power of the probe beam such that
power fluctuations at a monitor photodiode are kept be-
low 0.5%, corresponding to an error of 35Hz. We also

7(1) x 10° 0(1) x 102
0(3) x 102 0(3) x 102
0(3) x 102 0(3) x 102
5(10) x 107+ 2(100) x 1072
5(1) x 1071 2(100) x 107*
3(3) x 1072 0(3) x 1072
68(3) x 1073 0(3) x 1073
1000(2) x 107* 0(2) x 107*
100(1) x 1074 0(1) x 107
2
2
=
g
8 01
<
é
S
g
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FIG. S10. Position of the ion in the plane of the trap as
a function of time. The z direction is along the trap axis
(black), and z is the direction perpendicular to the trap axis
and parallel to the plane of the trap (red). The ion is inter-
rogated with the same laser pulse sequence used during the
experiment, but the probe laser is detuned from resonance.
Decreased ion displacement along x reflects the tighter con-
finement along the radial trap direction.

note, however, that our UV laser beams can periodically
charge the trap chip, shifting the minimum of the trap-
ping potential and moving the ion relative to the center
of the beam. Any such effect could lead to changes in the
effective intensity seen by the ion. To determine the size
of this effect, we monitored the ion fluorescence on a cam-
era and tracked the ion’s position while subjecting it to
the sequence of laser pulses used in the experiment. We
observed a drift < 2 pm in the ion position in the plane
of the trap (see Fig. [S10), indicating that the ion could
experience intensity fluctuations of around 1%, giving an
error of order 100 Hz. We note, however, that our camera
monitoring of the ion position has no sensitivity to drifts
perpendicular to the plane of the trap. It is possible that
drifts in this direction are a contributing source of the
~ 2kHz spread we observe in the data [see Fig. a) for



an example dataset].

B. Absolute frequency stability of probe laser

The frequency stability of our probe laser is currently
limited by a residual amplitude modulation (RAM) of the
PDH error signal used to lock the laser to a resonance of
the ULE cavity.

1. RAM stabilization

RAM originating from the fiber EOM has the poten-
tial to introduce noise in the PDH frequency stabiliza-
tion. Following Ref. [2I], we employ a RAM stabilization
scheme feeding back to the DC voltage input of the fiber
EOM and the temperature control of the EOM crystal.
Deviating from the scheme employed in Ref. [21], we feed
the DC voltage signal into the temperature control servo.

To obtain a measure of the RAM remaining in our sys-
tem, we continuously monitored the off-resonant PDH
error signal. With our stabilization system engaged, we
found that the effect of RAM was suppressed to a level
below our measurement resolution, bounding its contri-
bution to the probe laser frequency instability to < 300
Hz.

2. ULE-cavity transmission power stabilization

Light at infrared wavelengths is used to lock the
Ti:Sapphire laser to the ULE cavity. Drifts in the power
of the intracavity light can change the heating in the
mirror coatings, and systematically shift the ULE cavity
frequency. To counter this effect, we stabilize the power
transmitted through the cavity with an AOM.

To quantify the effect of intracavity power fluctua-
tions on the probe laser frequency, we performed a spec-
troscopy experiment on the 467 nm transition of 1™ Yb¥.
The cavity transmission power was varied between two
values (29 uW and 42 yW). For each value of power, we
took two transition frequency scans, then switched to the
other power. Each transition scan takes ~ 8 minutes, so
that the total duration of the experiment was 5 hours.
We plot the results in Fig. and determine that the
reference frequency drifts —1.11(85) kHz for 13 uW in-
crease in optical power (i.e., —85(65) Hz/uW).

Residual frequency drifts in the probe laser can origi-
nate from variations in the set point of the servo loop for
the cavity transmission power, at 24 uW. Assuming tem-
perature variations in the laboratory of £2°C, the drift
in the control electronics can introduce a maximum error
of 25 Hz.
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FIG. S11. Measured transition center frequency plotted
against time for two different values of the ULE cavity trans-
mission power. Blue and red data points correspond to 42 uWW
and 29 uW of transmitted power, respectively. An offset was
subtracted from the vertical axis, which is not shown here.
The linear fit corresponds to the common drift of the refer-
ence cavity. The fitted frequency shift is 1.11(85) kHz.

C. Linear Zeeman shift

In order to minimize the uncertainty on the measure-
ment of the transition frequency introduced by drifts in
the magnetic field between scans, we perform interleaved
scans of transitions B and R (the two transitions we mea-
sure to determine the center, which are symmetrically
blue and red detuned from the center) — i.e. we mea-
sure one point on the scan of the red transition, then one
point on the scan of the blue transition, then the next
point on the red transition and so on. The time needed
to measure a point on a given transition and switch to
measuring the other transition is of order 10s.

We can extract an estimate for our magnetic-field noise
by evaluating the differential drift of the measured reso-
nant frequencies of the B and R transitions. We find that
the RMS differential drift to be of order 5 kHz, which im-
plies a magnetic-field noise on the order of 3mG. This
level of noise is expected due to a local subway station
and is consistent with what we measure in other exper-
iments. We find no significant correlation between this
measure of magnetic field and the measured centers of
the transitions, indicating that it is unlikely that our
magnetic-field noise is contributing systematic shifts to
our measurement.

D. Black-body shift

The black-body radiation shifts on the transition are
well approximated by [22]

1 T\
AVBBR = —iAa0(8319Vm_1)2 (3()0}{) (815)



where Aqg is the difference in scalar polarizability be-
tween the atomic states associated with the transition of
interest, measured to be —1.3(6) x 10740 JV~—2m? [5].
This gives a shift of 68 mHz at 300 K. We conserva-
tively estimate that the temperature of the chamber can
drift by 3K during a measurement, yielding a change in
AVBBR ~ 3mHz.

E. Electric quadrupole shift

A frequency shift results from the interaction of the
electric quadrupole moment of the two states with elec-
tric field gradients from the trap. The shift is of order

©-VE

Aunad ~ .

h

(S16)

The quadrupole moment of the 2F /2 state has been mea-
sured at —0.041(5) ea? [5]. Time-varying electric field
gradients due to patch potentials on the chip trap can
lead to a differential shift between isotopes. We observe
a typical day-to-day variation of the DC micromotion
compensation voltages applied to our trap electrodes of
20mV. Conservatively, we consider a maximum varia-
tion of 200mV during the course of a shift measurement
data-taking run. From this, we infer that differential
patch-potential gradients of order ~ 1 Vmm™2 could oc-
cur, which would lead to a differential quadrupole shift
of ~ 30 mHz.

F. Second-order Doppler shift and Stark shift due
to micromotion

Both the second-order Doppler shift and the Stark shift
due to micromotion contribute systematic uncertainties
that are several orders of magnitude below the leading
systematics on our experiment. For completeness, we
update our estimate of these systematics here employing
the same calculation described in the Supplemental Ma-
terial of Ref. [I]. To estimate the stray DC fields and
micromotion amplitudes experienced by the ion, we use
our measurement of the maximum excursion made by the
ion from the trap center over the course of a day while
exposed to the sequence of laser pulses used in the ex-
periment (as described in Sec. we expect that our
tightly focused probe laser beam and UV Doppler cool-
ing beams may cause charging of the trap chip, leading
to drifts in the ion position). We estimate a contribution
to our error budget on the order of 1 Hz from the second-
order Doppler shift and 0.1 Hz from the Stark shift.

G. Frequency pulling of the measured transition
center due to imperfect centering of the scan range

As shown in Fig. the 760nm repumper light is
turned off during the readout stage of our laser pulse se-
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quence. This introduces a small probability of a false
quantum jump reading due to rare events where the
probe transition has not been successfully driven but the
ion still falls into the F% /o state through other channels
(according to Ref. [23]; this likely occurs due to collisions
with background gas and happens once every few hours).
Because we determine the center of a frequency scan by
taking the statistical mean of the points, if our scan range
is not perfectly centered on the transition resonance fre-
quency, this effect could slightly pull our transition center
frequency. However, if we instead find the center by fit-
ting the transition lineshape, we should be insensitive to
this effect (since it would, on average, contribute a back-
ground that is symmetric around the transition center).
To bound this potential error source (and any other po-
tential pulling of the line due to imperfect centering of
our scan range), we compare the results of our analy-
sis with one where we fit the datapoints to a Gaussian
function with background offset. We find that there is no
difference between the two methods within our statistical
error bars.

IV. ATOMIC STRUCTURE CALCULATIONS
AND ELECTRONIC FACTORS

Atomic-structure calculations (ASCs) are performed
using Dirac-Hartree-Fock (DHF) [24] 25] and subsequent
configuration interaction (CI) methods [26H29] using two
different calculation packages available: GRASP2018
[1, B0] and amBiT [311 [32].

A. Calculations using GRASP2018

We use the popular package GRASP2018 [30] to
solve for the electronic wavefunction associated with
each atomic state. We perform two calculations with
GRASP2018: one for the 1S, and 3P, states in neutral
YD for the 576 nm clock transition, and another for the
151/2, 2D3/2, 2D5/2, and 2F7/2 states in singly-ionized
YD for the 435, 411, and 467nm clock transitions. In
both calculations we use multi-configuration DHF calcu-
lations; first we obtain radial wavefunctions for orbitals
in the '™YDb core (up to 5525p%4 f14) followed by the va-
lence orbitals (6s, 6p, and 5d). Then, we construct a
basis for correlation orbitals. Finally, we perform a con-
figuration interaction (CI) calculation to obtain mixing
coeflicients for the different configuration state functions
(CSFs) in the expansion.

For neutral Yb, correlation orbitals up to 10spdfg are
constructed in the Thomas-Fermi approximation. To
construct the CSFs for the 1S, and 3P, states, we begin
with a multireference consisting of the 414652, 414656p,
4f136s525d, and 4f'46s5d configurations. We allow for
a single excitation originating from any of the valence
orbitals or select core orbitals (4spd and 5sp); we find



this produces sufficient agreement with experimentally-
measured clock transition wavelengths.

For the Yb™ ion, correlation orbitals up to 8spdf are
calculated via DHF. For 251/2, 2D5/2, 2D3/2, and 2F7/2
states, single and double excitations from 6s, 6p, and 5d
shells and single excitations from 4f shell are allowed
in 4f'46s, 4f46p, 4f145d, 4f'36s2, 4f'36s5d, 4f136p?,
and 4f135d? to generate the CSFs. Single excitations
from 4sp and 5sp core shells are also allowed for 4f146s,
4f'6p, and 413652 configurations. The total number of
excitations is limited to two.

From the calculated wavefunction for a state speci-
fied by its total angular momentum J and parity P,
the radial electron density p(r)ﬂ can be obtained from
the expression p(r) = <‘I"Zf\;1 d(r — |r;|)|¥) where ¥ =
>, c®(y,PJM;) is the atomic state function with
CSFs ®(v, PJM ;) and associated mixing coefficients ¢,,
d(r — |r;]) are one-dimensional Dirac-delta functions for
i-th electron’s position r;, and N = Z — I is the num-
ber of electrons in an (ionized) atom [33]. REDFI,
a program for extracting radial electron densities from
GRASP2018 calculation results has been developed by
modifying and merging the source codes for RHFS rou-
tine in GRASP2018 and RIS4 routine [33] since our previ-
ous work [I]. The routine is available in Ref. [34]. Finally,
the change in the electron density during the x transi-
tion is given as py (r) = p\ (r)
and pgf) (r) are the densities for the ground and excited
states, respectively.

— P (r) where p{'(r)

B. Calculations using AMBIT

The particle-hole CI calculations using AMBIT [35] are
performed in the closed-core DHF potential (V~~1 for
YbT). The valence 65, 6p, and 5d DHF orbitals are gener-
ated in this potential. Higher orbitals nlj are constructed
by multiplying the upper component of the (n — 1)Ij or-
bital by the simple radial function r, and orthogonaliz-
ing with the lower orbitals [36]. The lower component is
constructed from the upper component using the Dirac
equation. The 5f orbital is specially created by multi-
plying the bd orbital by r and orthogonalizing to 4f.

For Yb*, the CI calculation includes orbitals up to
8spdf. Configurations were then generated by allowing
single and double-electron excitations from the valence
orbitals in the leading configurations 6s, 5d, 6p, 41! 652,
4f~1 5d 6s, 4f~' 5d?, and 4! 6p?. One additional
excitation from the 4 f shell was also allowed. In this way
we captured most of the important configurations. CSFs
were then created for each total angular momentum and
parity J™.

1 1t is the one-dimensional density and normalized as follows:
J[drp(r) = N.
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The calculation for neutral Yb was very similar. The
basis was extended to 12spdf and single and double-
electron excitations were generated from the leading con-
figurations 6s%, 6s 6p, 6p?, and 6s 5d, with additional
single excitations from the 5s and 5p orbitals.

C. Single-transition electronic factors

Single-transition electronic factors can be derived from
the wavefunctions or transition frequencies calculated via
ASCs. From the GRASP2018 output REDF1 routine,
the change in electron density over space p, (r) during
the transition x can be extracted, and the procedures to
obtain single-transition electronic factors Fy, K, Ggf),
and D, are elaborated in the Supplement Material of
our previous paper [I]. We have changed the strategy

to obtain Ggf) to avoid numerical noise from repeated
ASCs pointed out in Ref. [37]. It is assumed that the
finite size of the nucleus caps the electronic wavefunction
which would diverge at the origin if the nucleus were a
point charge. This gives the relation
2 P2 2

px(0; (7)) = Cypy (r° = (r7)) (517)
where p, (O)E| is the change in electronic density at the
origin with the finite nuclear size (r?) during the tran-
sition ¥, pfz is the density for point-charge nucleus, and

Cy is a constant for the size of the nucleus. Then Ggf) is
given as

9 1 821/X 9
G = QW«T )
¢’ Z Opy(0; (r?))
9672 9(r2) (<T2>A)

ca' Z 0pt
= X967T2 877,,);(<7‘2>A)

(S18)

where c is the speed of light, o/ ~ 1/137 is the fine struc-
ture constant, and Z = 70 is the proton number of Yb,
for a reference isotope A (here we choose A = 172).
Therefore, a single atomic structure calculation with a
point-charge nucleus is sufficient to obtain Ggf). It is nu-
merically observed that C, = 1.04, essentially unity, for
transition «: 25’1/2 — 2D1/2 (411 nm) transition. A sim-
ilar idea appears in Ref. [38] for the analytic estimation
of the King plot nonlinearity.

For aMmBiT, The ASCs are repeated for transition y
while varying nuclear parameters z = u, 6(r?), a, and the
rates of the change in transition frequency (dvy)/(0z)

are taken as the associated electronic factors K, F), and

2 Here the electron density function is three-dimensional (i.e.,
[ drple:9) () = (the number of electrons) for ground or excited
states in a given transition).



D,,, respectively. Ggf) is given as the second derivative
1(0%vy)/(96(r?))2. For K, the nuclear inverse mass p is
promoted to a finite field parameter by adding a relativis-
tic mass shift operator to the Coulomb interaction [39].

The values of the single-transition electronic factors for
the five transitions « to € in this paper are tabulated in

Table [S7 and shown in Fig.

D. Two-transition electronic factors

Two-transition electronic factors f., = F./Fy and
Zux = Zx — faxZy where Z € {K,GYW G®? D} are
defined for (2D) King plots (see the main text), and are
calculated from the single-transition factors from ASCs.

The values of the two-transition electronic factors for
all possible transition pairs out of the five transitions «

to € can be found in Table [S§ and Fig.

E. Three-transition electronic factors

Three-transition electronic factors f,y. = G%() /G,SIX)
and Zp.y = Zyy — foxnZey Where Z € {K,G® D} are
defined for the 3D King plot (see Sec. , assuming
that the fourth-moment field shifts G%Lmé (r*);; are the
dominant source of the nonlinearity in 2D King plot (see
Fig. 2 in the main text). Their values are calculated from
the two-transition factors.

We have the choice of using the calculated or the fit-
ted fyye to obtain Z,., = Zuy(zye — fyxs). Unfor-
tunately, the calculated and fitted values of f,. are
significantly different for the current accuracy of our
ASCs (see Table [S9). For the electronic factors Z that
are expected to have a strong correlation to G (i.e.,
Znxe — foxw € 1) such as G® and D at heavy new-
boson mass mg 2 107eV (corresponds to the nuclear
size), using the calculated f,,, would be better to en-
sure Zpyx — fyys << 1 and obtain the right order of mag-
nitude (see Fig. . The strong correlation is because
all of the factors probe the properties of electronic wave-
function near the origin. For K and D at the lighter
mass mg < 10* eV (corresponds to the Bohr radius), the
correlation with G® is not expected in general as they
encode the global shape of the wavefunction. Therefore,
we determine that using experimental value of f, is the
better choice.

Note that the situation for two-transition factors is
similar, Z., = Zy(2xx — fex), and here the calculated
frx are used for all Z as they agree sufficiently well with
the fitted values (see Table [S8).

The values of the electronic factors for all possible
choices of three transitions out of the five transitions «
to € are listed in Table [S9] and plotted in Fig.
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FIG. S12. dyxx = Dyy/Dxy ratio derived from atomic struc-
ture calculations (ASCs) performed using GRASP2018 [30)]
vs new boson mass mg for various transitions (x, x,n) (solid
line) coded with different colors (see legend). Dashed lines
indicate corresponding fryx = G£,4X) / G,(fx) ratios derived from
the ASCs. Dash-dotted lines and shaded area show f,y . and
their 1o uncertainties obtained from linear fit in the corre-
sponding 3D King plots. (The shaded regions are not visible
for (o, 7, 9) and (B,~,0) transitions as the areas are too thin.)
Theoretical and experimental values of f,y. can be found in
Table

F. Estimating mass shift coefficient K, from
reliable K, calculation and K., from measured ISs

It is challenging to calculate mass shift coefficients K,
for heavy atoms precisely [40, [41]. This turns out to be
especially the case for the y: 251, — 2F;/5 (467 nm)
transition; values from calculations with GRASP2018
and AMBIT don’t agree on the sign, and neither of them
predicts K, close enough the experimental value from
the King plot (see Tables[S7|and and Fig. 3(d) in the
main text). On the other hand, the calculated mass shift
coefficient for the a: 2515 — 2D5/5 (411 nm) transition
and the f: 251/2 — 2D3/2 (436 nm) transition are rela-
tively reliable; values from GRASP2018 and AMBIT agree
to about factor of two, and the experimental value of Kz,
agrees relatively well with the values from GRASP2018
and AMBIT. This is presumably because the a and 3 tran-
sitions have relatively simpler electronic configurations,
in which a valence electron is excited to higher orbitals
while the core configuration is maintained, while the
transition corresponds to the excitation of a core electron
from the 4 f shell to 6s valence orbital. In a case like this,
where the value of K, is more reliable than K, we can



relate them via the experimentally accurately measured

quantities K, and fry,
K, = Kgy + for Ky, (S19)

which serves as a benchmark for the calculated K, (See
Fig. 3(d) in the main text).

V. NUCLEAR CALCULATIONS AND
NUCLEAR CHARGE MOMENTS
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FIG. S13. Quadrupole ground-state deformations S for

168,170,172,174,176y'}y obtained in nuclear DFT with different
EDFs compared to empirical values [42].

A. Radii from nuclear mean-field models

For the theoretical description of nuclear charge den-
sities, we use here self-consistent mean-field models at
the level of nuclear DFT [43]. In particular, we em-
ploy the energy density functionals (EDFs) SV-min [44],
RD-min [45], UNDEF1 [46], and Fy(Ar) [47]. SV-min
and UNEDF1 are based on the standard Skyrme func-
tional [43]. RD-min replaces the power-law density de-
pendence of the Skymre functional by a rational approx-
imant. Fy(Ar) uses the Fayans functional which has ad-
ditionally gradient terms in pairing and surface energy.
The model parameters of all four EDFs are calibrated
to a large set of nuclear ground state data. SV-min,
RD-min, and Fy(Ar) use a large set of data from spheri-
cal nuclei and information from the electromagnetic form
factor [44]. In addition Fy(Ar) has also been optimized
to differential charge radii of Ca isotopes [47]. The large
dataset of UNEDF1 employs energies and charge radii
of spherical and deformed nuclei. In all variants, we use
the density-dependent pairing force treated in the BCS
approximation. With these four EDFs we explore dif-
ferent functional forms as well as different optimization
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strategies. This should give an impression on these vari-
ous influences, see the discussion of theoretical results in
the main text.

Another crucial aspect is the post-processing of the
emerging proton and neutron density distributions to ob-
tain a reliable charge density. This requires proper inclu-
sion of the nucleons charge distribution, relativistic cor-
rections, especially magnetic spin-orbit correction, which
must be included in precision calculations of radial mo-
ments. Our DFT calculations take all these effects into
account (see, e.g., Figs. 4, 6, and 7 of Ref. [48]). As there
is no choice in that respect, all four EDFs are processed
with that strategy.

The considered Yb isotopes are all significantly de-
formed. Thus we use a DFT solver employing an ax-
ially symmetric grid in coordinate space which allows
for reflection-symmetric deformations [49]. The radial
charge moments (r") are directly obtained from the
calculated nuclear charge distribution p,(r) (See Ta-
ble [S6). Figure shows dimensionless ground-state
quadrupole proton deformations  obtained in our DFT
calculations and compares them to the empirical values
[42]. The deformations are defined in the usual way:
B = 47Q20/(3Z R%), where Qo is the proton quadrupole
moment and Ry = 1.2fm AY/3. Tt is satisfactory to see
that the calculations are consistent with experiment, con-
sidering the scale of 5. In particular the maximum of g
is predicted by Fy(Ar) at A = 172 in agreement with the
experiment.

B. Nonlinearity pattern from calculated §(r*)

Caution is necessary when calculating nonlinearity
patterns from higher-order charge moments 6(r™) (n > 2)
from nuclear calculations. §(r") and §(r?) are obtained
from difference in nuclear charge distributions §pA4" (1)
between isotopes A and A’ given by a nuclear calculation,
and thus highly correlated to each other. Since the FS,
which is proportional to §(r2), is the dominant source of
total IS, calculated 1Ss using 6(r?) from nuclear calcula-
tion should be used to ensure self-consistency as follows.
It is especially important when the calculated §(r?) do
not reflect actual experimentally determined pattern (see
Fig. 3(a) in the main text), as then the position of the
points in King plot will be different, which changes the
nonlinearity pattern significantly.

——AA ,
G(;gé(r‘lh , the nonlinearity from ¢(r*)44" is given

as the component of the vector

_aa 5<r4>AA’
Gﬁ/‘gé(r‘l} = G(vg AN
B G(ﬁz 5<T4>AA’ (320)

Fa §(r2yaar 4 Ka Ay %ﬁ)d<r4>AA’
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TABLE S6. Upper table: Theoretical and experimental values of difference in nuclear charge moments 6(r?) and §(r*) between
isotopes. The values for nuclear DFT calculations using SV-min, RD-min, UNEDF1, and Fy(Ar) EDFs are listed in columns 2

A

—5and 8 — 11. Columns 6 and 7 tabulate the values of 5%) from measured ISs in « transition and calculated F, and K, for
S7)

GRASP2018 [30] and AMBiT [31], respectively (see Table

. Lower table: Theoretical values of (r?)

, (r*)?, and quadrupole
deformation 8. For %, we show also the experimental values derived from the measured B(E2) values [42]; see also Fig. hslg)

, §(r*) " [fm?] §(r) A [fm]
Iso(t;)‘?z/;;an Nuclear DFT Measured v, Nuclear DFT
SV-min RD-min  UNEDF1 Fy(Ar)| GRASP AMBiT| SV-min RD-min UNEDF1 Fy(Ar)
(168, 170) | —0.159(23) —0.159(43)  —0.175  —0.203 | —0.145 —0.154| —10.6(2.1)—10.6(3.8) —11.8  —14.3
(170, 172) | —0.125(29) —0.128(65)  —0.139  —0.169 | —0.136 —0.145| —7.4(3.1) —7.6(6.7) —83  —11.4
(172, 174) | —0.119(48) —0.127(100) —0.135  —0.120| —0.107 —0.113| —6.8(4.8) —7.4(10.) —8.1 —6.8
(174, 176) | —0.126(32) —0.134(50) —0.134 —0.134 —0.102 —0.108| —7.2(3.7) —7.8(5.2) —8.0 —-7.2
Isotope (r?)y4 [fm?] (r*)yA [fm*] g4
A |SV-min RD-min UNEDF1 Fy(Ar)|SV-min RD-min UNEDF1 Fy(Ar)|SV-min RD-min UNEDF1 Fy(Ar) Exp.
168 27.769 27.776  27.939 27.494 | 1012.9 1012.5 1021.4 991.03 | 0.345 0.347 0.347 0.331 0.324
170 27.927 27.935 28.113 27.697 | 1023.5 1023.1 1033.2  1005.4 | 0.348 0.349 0.350 0.336 0.324
172 28.052 28.064  28.252 27.866 | 1030.9 1030.7 1041.5 1016.8 | 0.344 0.345 0.346 0.337 0.332
174 28.171 28.190 28.388  27.986 | 1037.6 1038.1 1049.6  1023.6 | 0.338 0.340 0.340 0.328 0.323
176 28.297 28.325  28.522 28.120 | 1044.8 1045.9 1057.6 1030.8 | 0.330 0.332 0.332 0.317 0.301
which is orthogonal to 1 and +174.2 GHz-u, which covers three times the difference in
K, values for the GRASP2018 and AMBIT calculations,
AN moves A4+ points along the solid lines by smaller amounts.
ﬁAA/ o'e H (S21) Calculations for all of the four nuclear DFTs predict

! ! (4> !
5<T.2>AA + %MAA + %5<r4>AA

(see Sec. for the vector notation). One can see
that the nonlinearity arises mainly from the difference
in 0(r2)44" and §(r*)44"”s patterns up to an overall
scale, and it is thus important to use not only 6(7”4)‘4‘4,
from nuclear calculations, but also the IS calculated us-
ing 6(r2)44" from the same nuclear calculation for self-
consistency. We have numerically verified that usin
measured values of 744" to normalize p44” and §(r2)44
results in a significantly different A_/A+ ratio from the
observed nonlinearity. The change in the ratio K, /F,

) AA
and G((f)/Fa can tune the values of 744", §(r)
thus the nonlinearity 4.

and

)

The largest inset in Fig. 2 in the main text shows the
nonlinearity Ay predicted by the nuclear DFT calcula-
tions. The solid lines across the symbols show the change
in AL when Ggf)/Fa ratio changes by +50% of the calcu-
lated value. Changing K, in between -2604.4 GHz-u and

a A_/A; ratio fairly close to the measured ISs, despite
the significant difference in the measured and calculated
§(r?). In particular, the Fy(Ar) functional predicts the
A_ /A ratio consistent with the measured ISs to within
20. It also predicts a reasonable magnitude of AL when
the results are combined with the calculated G‘{f) /Fy (see
Tables[S7]and [S§). Note that the Fy(Ar) is also the only
functional that predicts qualitatively correctly §(r?) ra-
tios out of the four functionals used in this work (see
Fig. 3(a) in the main text), as well as the deformation
parameter 8 (Fig. . The effect of uncertainly in the

calculated G(ﬁ} /Fi, ratio is a mere scaling of the distance
in A+ plane from the origin along the A_ /Ay ratio line.
Interestingly, it is numerically observed that the effects of
change in the K, /F, or Ggl)/Fa ratios are similar to the
change in Gf(;g /F,, ratio [i.e., the change of nonlinearity
in (A4, A_) plane is almost purely radial from the ori-
gin]. This suggests that the calculated A_/\; ratios are
robust with respect to the uncertainty in the calculated
electronic factors.
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FIG. S14. Single-transition factors D, vs new-boson mass
mg for five transitions x coded with different colors (see
legend) derived from atomic structure calculations using CI
method. Solid, dashed, and dash-dotted lines are for AMBIT,
GRASP2018, and Ref. [3], respectively.
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TABLE S7. Calculated and experimental values of single-
transition electronic factors Z, (Z € {F, K,G",G®, D}) for
X = Q: 251/2 — 2D5/2 (411nm), /83 251/2 — 2D3/2 (436 nm),
and ~: 251/2 — 2F7/2 (4671nm) transitions in Yb™ ions; and
5 1Sy — 3P, (578 nm), and e: 1Sy — 1D, (361 nm) transi-
tions in neutral Yb atoms. wy /(27) are transition frequencies.
Other quantities are defined in the main text. Calculated
values for each transition are obtained from CI method using
GRASP2018 or AMBIT (see Sec.[[V]). The units of wy /(27), Fy,
Ky, G, G, and D, are THz, GHz/fm?, GHz-u, MHz/fm*,
MHz/fm*, and 10® THz, respectively.

GRASP AMBIT Ref. [3] Exp.
wa /(27) 808.11 707.00 729.47|°
ws/(2) 770.13 679.86 688.367|[°
w/(2m) 580.12 1051.44 642.14a d
ws/(2) 458.36 522.78 518.30°%°
we/(2m) 819.47 829.76°|"
F, -15.852 -14.715 -17.604
Fp -16.094 -14.968 -18.003

41.892 36.218

-9.1508 -9.719

-13.528 -14.437

-1678.2 -752

-1638.5 -661

3127.6 12001

14.934 13.08

15.159 13.37

-39.422

8.951
10.42

42.565 81.908 28.53

43.204 83.247 28.53

-112.33 -201.12

54.277
75.322 23.34

44.145 43.158 41.235

48.419 48.634 48.795

-730.4 -352.38

-55.729 -42.855

5.6683 4.6238

@ The exact value varies by the few-GHz isotope shifts.

b Ref. |4, [50]

¢ Ref. [51] 2]

d Ref. [5, 12} 53]

¢ Ref. [54]

f Ref. [I8]

& At mg = 1 eV. Values over different my’s are shown in Fig.
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TABLE S8: Calculated and experimental values of two-transition electronic factors f.y and Z., (Z € {K,GY,G® D}) for
X,k € {a,8,7,d,e}. The values are calculated from the single-transition values in Table fxw 1s dimensionless. The units
of Ky, G%g, fo)g, and D, are GHz-u, kHz/fm*, kHz/fm*  and 10®° THz, respectively. The last two columns (“Fit”) are
for data from linear fit of corresponding 2D King plots 74" = frx + Ky 4 with (“X corr.”) and without (“No X corr.”)
uncertainties in and correlations between independent variables (see Sec. . Xix and s, are x? and the significance of linear
fit, respectively.

GRASP AMBIT Ref. [3] Fit
X corr. No X corr.

foa 1.0152 1.0172 1.0227 1.01141025(86) 1.01141025(86)
Fra -2.6427 -2.4613 -2.2213082(14) -2.2213084(13)
fsa 0.57727 0.66048 0.61172988(34) 0.61172995(35)
fea 0.91933 0.8201 0.81761175(80) 0.81761175(80)
frs -2.603 -2.4197 -2.1962536(14) -2.1962537(13)
fss 0.5686 0.64932 0.60482313(37) 0.60482322(37)
fes 0.90379 0.80192 0.80838924(76) 0.80838924(76)
for -0.21844 -0.26835 -0.275391225(69) -0.275391430(78)
fery -0.37352 -0.36807660(27) -0.36807657(28)
fes 1.3919 1.33656619(92) 1.33656619(92)
Ko 65.306 103.92 120.208(23) 120.208(23)
Koo -1307.6 10150 5737.593(39) 5737.595(35)
Ksa 363.1350(94) 363.1332(97)
Kea 1.811(21) 1.811(21)
Kys -1137.6 10402 6001.679(38) 6001.683(35)
Kss 290.5263(97) 290.5242(99)
K -95.402(20) -95.402(20)
Ks, 1943.2126(37) 1943.2019(43)
Koy 2113.679(14) 2113.681(14)
K. -483.666(15) -483.666(15)
GS) -3.5056 -6.4622
el 45.789
el 329.81
G -306.88
Gt 36.664
GSy) 331.8
G4 -301.7
G 339.81
G
ay

Continued on the next page




TABLE S8 (continued)

GRASP AMBIT Ref. [3] Fit
X Corr. No X corr.

G$) -10.442 -68.645 -646.64
G 162.69 471.33
G 181.24
G2 22.9 -57.388
G®) 135.51 305.24
G§) 225.81
Gce 84.94 461.17
G 307.72
G 198.95
el -229.38
Dgo? 3.6016 4.7337 6.6257
Doo® -613.74 -246.15
Dso® -81.212 -71.359
Deo® -34.008 -29.464
D.5* -604.37 -234.7
Dss® -83.26 -74.433
Des® -38.286 -34.82
Dsy® -215.28 -137.41
Dey® -125.95
Des® 65.321
X 11.792 11.738
o 1755.2 2057
X3 10504 10010
X 74.581 74.575
g 2220.6 2546
Xis 16555 15916
Xis 137.48 137.91
Xir 57854 43986
X2, 2040.2 1920.7
X2 4511.9 4512
560 2.990 2.990
Sva 41.80 45.30
Ssa 1020 1000
Sea 8.360 8.360
S8 470 50.40
Ss8 1290 1260
Sep 11.50 11.50
S5+ 2410 2100
Seny 4510 43.70
Ses 67.10 67.10

& At mg = 1 eV. Values over different my’s are shown in Fig.
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FIG. S15. Two-transition factors D,y vs new-boson mass mg for variable transition pairs (x,x) coded with different colors (see
legend) calculated using D, and D in Fig. Solid, dashed, and dash-dotted lines are for AMBiT, GRASP2018, and Ref. [3],
respectively (some of dashed and dash-dotted lines are missing as the corresponding D, are not available; see Table.



22

TABLE S9: Calculated and experimental values of three-transition electronic factors fy.y and Z,., (Z € {K,G®, D}) for
X, k,n € {a,B,7,d,e}. The quantities are defined in Sec. The values are calculated from the two-transition values in
Table fnrx is dimensionless. The units of Ky, G5,2,.;)X7 Doy, and vne Dy are GHz-u, kHz/fm*, kHz/fm*, 10* THz, and

—AA’

kHz, respectively. The last three columns (“Fit”) are for data from fit of corresponding 3D King plots f;m = Kprx+forxVy  +

—Aa ———AA Y
fy,x,{U:A (“Linear®), and G;Q,{)X[(S(rZ)Q] (“QFS”) or vneDWXEAA

and s,y are x* and the significance of fit, respectively.

(“New boson”) terms in addition to the relation. X7,

GRASP AMBIT Ref. [3] Fit

Cal. Exp. ‘ Cal. Exp. ‘ Cal. Exp. Linear QFS New boson
fova 0.81292 0.978(26)  0.998(27)  1.052(36)
f50 1.0214 1.023(13)  1.018(13)  0.993(16)
faea 1.0054 1.14(10) 1.058(99) 0.86(12)
Fsver 19.612 1.867(41)  1.877(41)  1.965(51)
feve 1.049(30)  1.046(33)  1.040(45)
fesa 0.701(13)  0.707(14)  0.717(19)
fsvp 24.126 1.885(35)  1.880(37)  1.868(49)
fens 1.090(28)  1.047(31)  0.989(43)
fess 0.673(11)  0.695(13)  0.722(19)
Jesy -0.2082(32) -0.2146(38) -0.2223(54)
faay -0.076559 -0.015(12)  -0.006(12)  0.018(16)
foas -0.010629 -0.019(21)  -0.010(21)  0.030(26)
i 0.021058 -0.15(12)  -0.06(12) 0.18(15)
Tsary 7.2027 0.565(18)  0.570(19)  0.609(23)
fear 0.104(14)  0.103(15)  0.100(20)
feas 0.191(21)  0.180(23)  0.165(31)
fs5 9.0498 0.583(16)  0.580(17)  0.575(22)
fesy 0.128(13)  0.109(14)  0.082(20)
feps 0.223(19)  0.187(22)  0.143(32)
Sevs 0.580(12)  0.557(14)  0.529(20)
Kpra -34.804 89(21) -80(160) 206(66) 154(69) 17(91)
Kgsa 126.9(7.7)  124.2(7.8)  111.1(9.0)
Kpea 120.48(23)  120.53(21)  121.79(43)
Ksva -2880(110)  -2900(110)  -3130(130)
Keya -596(79) -587(85)  -570(120)
Kesa -67.6(7.6)  -63.8(8.3) -59(11)
Ksvs -3207(97)  -3190(100)  -3160(130)
Keys -865(77) -749(86)  -590(120)
Kesp -160.3(5.5) -150.1(6.4) -138.8(8.8)
Kesy 986(23) 1031(27) 1083(38)

Continued on the next page




TABLE S9 (continued)
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GRASP

Cal.

Exp. ‘ Cal.

Ref. [3]

Cal.

Exp.

Linear

QFS New boson

2
Gesy

2.0139

-13.4(2.6)

-645.43

-636.1(8.6)

Dﬁvaa
Dgso™
Dgea®
Dsyo®
Deya®
Desa™
DMBa
Déwﬁa
Desp®
Desy®

-43.386
2.7384

4339.4

5386.1

14.8(9.8)
6.0(2.1)

203(14)

264(13)

9.2(3.9)
6.9(1.8)
11.0(5.1)
78.7(5.6)
-9.3(5.0)
-22.3(2.2)
60.6(5.2)
-19.0(4.6)
-27.7(2.4)
-53.2(2.7)

7.2462

12.0(4.4)

UneDB'ya
’UneDﬁéa
UneDﬁea
UneD&ya
UneDe'ya
UneDesa
UneDé-yB
UneDe-yB
Une De&B

'UneDeé-y

XBra
X%Ja
Xea
X3ra
Xva
X?éa
ngﬁ
X?’Yﬂ
X?a@

2
Xeﬁ'y

10.532
10.9
8.724
15.221
0.065554
1.4067
0.23876
8.3928
10.248
10.481

Continued on the next page




TABLE S9 (continued)

24

GRASP AMBIT Ref. [3] Fit
Cal. Exp. Cal. Exp. ‘ Cal. Exp. Linear QFS New boson

S8y 3.24540
SBoa 3.30150
SBea 2.95360
Ssya 3.9014¢0
Seva 0.256040
Sesa 1.1861c
Sé 8 0.488630
SenB 2.8970

Sesp 3.20120
Sesny 3.23750

& At mg = 1 eV. Values over different my’s are shown in Fig.
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FIG. S16. Calculated Dyxy vs new-boson mass mg for all different choices of three transitions (x, x,n) out of five available
transitions a, 8, 7, ¢, and €, each corresponding to one of the subfigures (a — j). Solid lines correspond to the Dy, obtained
from Dy, and D, in Fig. and foye = G5 /GS) ratio from the linear fit in 3D King plot (see Table. Shaded regions
for Dy indicate 95% confidence intervals that arise from fitted fyy.’s uncertainty. (Figures and caption continue on the next
page.)
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FIG. S16. (Continued) Dashed lines show D, calculated purely from ASCs (i.e., using calculated fyy«). Blue, red, and green
colors correspond to ASCs performed using GRASP2018, AMBIT, and in Ref. [3], respectively. (Figures continued on the next

page.)
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