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Optical precision spectroscopy of isotope shifts can be used to test for new forces beyond the standard
model, and to determine basic properties of atomic nuclei. We measure isotope shifts on the highly
forbidden 2S1=2 → 2F7=2 octupole transition of trapped 168;170;172;174;176Yb ions. When combined with
previous measurements in Ybþ and very recent measurements in Yb, the data reveal a King plot
nonlinearity of up to 240σ. The trends exhibited by experimental data are explained by nuclear density
functional theory calculations with the Fayans functional. We also find, with 4.3σ confidence, that there is a
second distinct source of nonlinearity, and discuss its possible origin.
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Despite ample evidence for the existence of dark
matter [1–4] and concerted experimental searches for
candidate particles [5–8], its origin and composition remain
unknown. Isotope-shift (IS) spectroscopy has been recently
proposed as a tabletop method to search for dark-matter
candidates in the intermediate mass range ≲100 MeV=c2

[9,10]. In particular, IS spectroscopy can be used to search
for a hypothetical new boson, ϕ, that mediates interactions
between quarks and leptons. An observable consequence is
an additional isotope shift that arises from the effective
interaction between neutrons and electrons. Such a shift
could be detected as a deviation from linearity in a King
plot [11] that compares the normalized isotope shifts for
two different transitions. If at least three isotope shifts in
each transition are measured, a deviation from linearity can
be detected. The nonlinearity can also be caused by higher-
order nuclear effects [12–18].
In our previous work, we reported evidence, at the 3σ

level, for a nonlinearity in a King plot that compared two
optical quadrupole transitions (2S1=2 → 2D3=2, 2D5=2) in a
trapped Ybþ ion [19]. The measurement was performed for
five even isotopes, one more than required, and we also
proposed a new method to assign the nonlinearity to
different possible physical origins based on the observed
nonlinearity pattern. At the reported measurement accuracy
of ∼300 Hz on two relatively similar electronic excited

states, the source of the nonlinearity could not be discrimi-
nated, and was consistent both with a new boson and with
standard-model (SM) nuclear shifts. IS spectroscopy in
Caþ, which has lighter nuclei and therefore lower sensi-
tivity to both new physics and nuclear effects than Ybþ

[10], showed no King nonlinearity at the 20 Hz level [20].
At the time of completion of the present work, large King
nonlinearities were also reported when comparing transi-
tions in neutral Yb [21,22] with the quadrupole transitions
in Ybþ.
In this Letter, we report IS laser spectroscopy for the

highly forbidden octupole transition 2S1=2 → 2F7=2 in Ybþ.
The electron configuration in the F state is very different
from the previously measured D states [19], which
increased the size of the observed King nonlinearity
20-fold (see Fig. 1). At a measurement resolution of
∼500 Hz, we observe a King-plot nonlinearity with 41
standard deviations σ. Including the recent data for
neutral Yb [21,22] into our analysis, the significance of
the nonlinearity rises to 240σ, and analyzing the patterns
[19] we show that the measurements can be consistently
explained by microscopic calculations carried out within
nuclear density functional theory (DFT), which provides
agreement with ground-state properties of complex
deformed Yb isotopes [16,23]. Combining all measured
transitions in Ybþ and Yb, we further find evidence, at the
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4.3σ level, of a second, smaller source of nonlinearity, and
discuss implications for limits on a new boson. Finally, we
also extract nuclear data that can be used to further fine-
tune nuclear energy density functionals.
Our IS measurements are performed on individual cold

trapped AYbþ ions with zero nuclear spin (A ∈ f168; 170;
172; 174; 176g). To make an IS measurement on the
octupole transition 2S1=2 → 2F7=2 near 467 nm that we
label γ, we first load a single ion of one isotope A into the
trap, Doppler cool it to ∼500 μK, and measure the
excitation probability when scanning the frequency of
our probe laser, a frequency-doubled Ti:sapphire laser that
is locked to an ultralow-thermal-expansion (ULE) cavity
with linewidth κc=ð2πÞ ¼ 30 kHz. We measure two tran-
sitions between Zeeman sublevels that are symmetrically
detuned from the zero-field transition νγ , and determine
the center frequency νAγ as the mean (see Supplemental

Material [24]). A second isotope A0 is then loaded into the
trap and its center frequency νA

0
γ is measured. We alternate

several times between the two isotopes, achieving an
accuracy of ∼500 Hz in our measurement of the IS
νAA

0
γ ≡ νAγ − νA

0
γ , limited mainly by the long-term stability

of the ULE cavity. Our measured ISs νAA
0

γ are given in
Table I. Table II lists the absolute transition frequencies
derived from our measured IS in combination with the
absolute transition frequency for 172Ybþ [56].
To a very good approximation, the IS can be factored

into an electronic component, which is transition dependent
(labeled by a greek letter subscript) but does not depend on
the isotope, and a nuclear contribution, which depends on
the isotopes (labeled by AA0) but not on the electronic
transition [9,11,14,19]:

νAA
0

γ ¼ Fγδhr2iAA0 þ Kγμ
AA0 þGð4Þ

γ δhr4iAA0

þ Gð2Þ
γ ½δhr2i2�AA0 þ υneDγaAA

0 þ � � � ð1Þ

Here δhrniAA0 ≡ hrniA − hrniA0
is the difference in the

nth nuclear charge moment between isotopes A and A0,
μAA

0 ≡ 1=mA − 1=mA0
is the inverse-mass difference, and

½δhr2i2�AA0 ≡ ðδhr2iAA00 Þ2 − ðδhr2iA0A00 Þ2, with A00 denoting
a reference isotope (we use A00 ¼ 172). The quantity υne ¼
ð−1Þsþ1ynye=ð4πℏcÞ is the product of the coupling con-
stants of the new boson to the neutron yn and electron ye,
resulting in a Yukawa-like potential given by VneðrÞ ¼
ℏcυne expð−r=ƛcÞ=r for a boson with spin s, mass mϕ, and
reduced Compton wavelength ƛc ¼ ℏ=ðmϕcÞ [9,14,19].
aAA

0 ¼ A − A0 is the neutron-number difference between
the two isotopes. The coefficients F, K, Gð4Þ, Gð2Þ, and D
are transition-dependent quantities that quantify the field
shift, the mass shift, the fourth-moment shift, the quadratic
field shift (QFS), and the sensitivity to the new boson,
respectively.
To eliminate the large field shift F (associated with the

size change of the nucleus δhr2i, of order ∼4 GHz), and
mass shift K (of order ∼0.2 GHz) contributions, one can
use a second set of isotope shifts measured on a different
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FIG. 1. Frequency-normalized King plot (top) and residuals
(bottom, blue) for the γ (2S1=2 → 2F7=2) transition and reference
transition α (2S1=2 → 2D5=2) for even-neighbor pairs (A0 ¼ Aþ 2)
of Ybþ isotopes. A deviation from linearity (red line) by 41
standard deviations σ is observed. For reference, residuals for the
β (2S1=2 → 2D3=2) transition [19], magnified 20-fold, are also
plotted in gray. The error bars indicate 2σ uncertainties; for
correlations between the errors, see Supplemental Material [24].

TABLE I. Isotope shifts νAA
0

γ;α ¼ νAγ;α − νA
0

γ;α measured for the γ∶2S1=2 → 2F7=2 (this work) and α∶2S1=2 → 2D5=2 [19]
transitions for pairs ðA; A0Þ of stable Ybþ even isotopes. Inverse-mass differences μAA

0 ¼ 1=mA − 1=mA0
calculated

from [57–60] with the Yb ionization energy set to 6.254 eV are also listed. Numbers in parentheses indicate 1σ
statistical uncertainties.

ðA; A0Þ νAA
0

γ [MHz] νAA
0

α [MHz] μAA
0 ½10−6 u−1�

(168,170) −4 438.160 30(50) 2 179.098 93(21) 70.113 619 5(36)
(170,172) −4 149.190 38(45) 2 044.854 78(34) 68.506 890 49(63)
(172,174) −3 132.321 60(50) 1 583.068 42(36) 66.958 651 95(64)
(174,176) −2 976.391 60(48) 1 509.055 29(28) 65.474 078 21(65)
(168,172) −8 587.352 00(47)
(170,174) −7 281.511 88(45) 3 627.922 95(50)
(172,176) −6 108.712 93(44)
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reference transition τ to generate a King plot [11]. In its
frequency-normalized version [19], the relationship studied
can be written as

ν̄AA
0

γ ¼ fγτ þ Kγτμ̄
AA0 þGð4Þ

γτ δhr4iAA
0 þGð2Þ

γτ ½δhr2i2�AA
0

þ υneDγτāAA
0
; ð2Þ

where the notation x̄AA
0 ≡ xAA

0
=νAA

0
τ indicates frequency-

normalized terms. We define zγτ ≡ Zγ=Zτ as the ratio
of coefficients for transitions γ and τ, and Zγτ ≡
Zγð1 − fγτ=zγτÞ for Z ∈ fF;K;Gð2Þ; Gð4Þ; Dg. The first
two terms in Eq. (2) represent the linear relation between
ν̄γ and μ̄ in the King plot, while the remaining terms
possibly violate the linearity.
Figure 1 shows a frequency-normalized King plot using

the previously measured transition α∶2S1=2 → 2D5=2 near
411 nm [19] as the reference transition τ. The residuals
from the linear fit reveal a nonlinearity at the 10−5 level,
corresponding to 41σ. The nonlinearity is 20 times larger
than the nonlinearity we observed previously [19] compar-
ing the two quadrupole transitions, α and β∶2S1=2 → 2D3=2,
that have a more similar electronic structure. The recent
measurements in neutral Yb [21,22], when combined with
our α or β transition data, confirm a nonlinearity of a similar
size (see also Fig. 2).
Having unambiguously established a King nonlinearity,

we can gain information about the sources of nonlinearity
by analyzing the deviation patterns [19]. With four isotope-
shift data points, we can rewrite Eq. (2) in terms of four-
dimensional vectors as follows:

ν̄γ ¼ fγτ1þ Kγτμ̄þ ðλþΛþ þ λ−Λ−Þ; ð3Þ

where the vector space inhabited by the vectors z≡
ðz1; z2; z3; z4Þ with zk ≡ zA;Aþ2 (A ¼ 166þ 2k for k ¼ 1,
2, 3, 4, z ∈ fμ̄; ν̄γg) is spanned by the basis ð1; μ̄;Λþ;Λ−Þ.
The first two vectors, 1≡ ð1; 1; 1; 1Þ and μ̄, define a

plane of King linearity (i.e., the component of ν̄γ in this
plane does not give rise to King nonlinearities), while the
unit vectors Λþ and Λ−, defined as Λþ∝ðμ̄3−μ̄2;μ̄1−μ̄4;
μ̄4−μ̄1;μ̄2−μ̄3Þ and Λ−∝ðμ̄4−μ̄2;μ̄1−μ̄3;μ̄2−μ̄4;μ̄3−μ̄1Þ,
span the out-of-plane space of vectors that produce a

King nonlinearity (see Supplemental Material [24]).
Any vector with nonzero residuals from the linear King
plot fit hence has components in the space spanned by
ðΛþ;Λ−Þ, and can be expressed in terms of its scalar
components λþ and λ− along Λþ and Λ−, respectively. (Λþ
and Λ− correspond approximately to the zigzag þ −þ−
and curved þ − −þ patterns of residuals introduced
in Ref. [19].) Both SM and new-boson effects produce
nonlinearities with a defined λþ=λ− ratio, given by the
associated nuclear factors xAA

0
, and are characterized by

lines along definite directions in the λ� plane (see Fig. 2).
Figure 2 displays the measured nonlinearity in the λ�

plane for the γ transition, as well as for the previously
measured α and β transitions in Ybþ [19], and the recently
measured ϵ∶1S0 → 1D2 transition in Yb [22]. For the
reference transition τ in Eq. (2), we choose in Fig. 2 the

TABLE II. Absolute frequencies of the γ∶2S1=2 → 2F7=2 tran-
sition extracted from our IS measurements and the absolute
frequency measurement in Refs. [56].

Isotope Absolute frequency [THz] Ref.

168 642.108 197 799 37(37) [This work]
170 642.112 635 960 22(32) [This work]
172 642.116 785 150 887 6(24) [56]
174 642.119 917 472 26(33) [This work]
176 642.122 893 863 84(36) [This work]
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FIG. 2. Decomposition of the measured nonlinearity (solid
ellipses, 95% confidence interval) onto the (λþ, λ−) basis for the
transitions α∶2S1=2 → 2D5=2 in Ybþ (blue) [19], β∶2S1=2 → 2D3=2

in Ybþ (green) [19], ϵ∶1S0 → 1D2 (dark gray) in Yb [22], and
γ∶2S1=2 → 2F7=2 in Ybþ (red, this work). The corresponding
frequency-normalized King plot is generated with the reference

transition δ∶1S0 → 3P0 in Yb [21] (λðδÞ� ) that has been measured
with the highest frequency accuracy. The red dotted ellipse
indicates a previous preliminary measurement for the γ transition
[61]. The dashed lines indicate the ratio λþ=λ− that would arise
solely from a new boson (light blue dashed line) or the QFS
(pink dash-dotted line). The brown solid line is a single-source fit
to all four transitions α, β, γ, ϵ, yielding evidence for a
second nonlinearity source with 4.3σ significance (χ2 ¼ 25.4).
The largest inset shows the nonlinearity in a King plot with α as

the reference transition (λðαÞ� ). Open symbols indicate the non-
linearity due to δhr4iAA0

from nuclear DFT calculations with
SV-min (square), RD-min (diamond), UNEDF1 (circle), and
Fy(Δr) (star) energy density functionals. Short bold lines indicate
the uncertainty in electronic-structure calculations (see Supple-
mental Material [24]).
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transition δ∶1S0 → 3P0 in Yb that has been very recently
measured with the highest frequency accuracy [21]. All
measured transitions α, β, γ, ϵ, δ are consistent with each
other in that they lie nearly along the same direction in
the λ� plane, indicating that the nonlinearity originates
from a common dominant source for all transitions. This
direction corresponds neither to a new boson aAA

0
nor to the

QFS ½δhr2i2�AA0
.

To interpret the IS measurements, we performed quanti-
fied nuclear calculations of hr2i and hr4i using nuclear
density functional theory (DFT) with realistic energy
density functionals (EDFs). The nuclear charge radial
moments were obtained directly from calculated charge
densities as discussed in Refs. [16,23]. To explore a
possible span of predictions, we consider four different
EDFs: Skyrme functionals SV-min and UNEDF1, extended
Skyrme functional RD-min, and the Fayans functional

Fy(Δr). The calculated δhr4i are multiplied by Gð4Þ
γα from

atomic structure calculations to predict the nonlinearity for

Gð4Þ
γα δhr4i. For details on the calculations, see Refs. [62,63]

and Supplemental Material [24].
The predicted values of hr2i and hr4i are impacted

by several effects [16,23,64,65], including the surface
thickness of nuclear density that shows a pronounced
particle-number dependence due to shell effects; the
relativistic corrections that contain contributions from
the intrinsic nucleon form factors; and nuclear deforma-
tion and pairing effects, which also give rise to the
fragmentation [23] of the single-particle spin-orbit
strength that affects spin-orbit contributions to charge
moments. Our DFT calculations take all these effects into
account. In this respect, a King plot nonlinearity may be
rooted in several nuclear structure effects impacting hr2i
and hr4i, not just one as discussed in Ref. [13]. As shown
in the large inset to Fig. 2, our DFT results agree well
with the observed direction in the λ� plane (see
Supplemental Material [24] for details).
We can also directly compare the calculated changes in

the nuclear size δhr2i to the measured values. In order to be
insensitive to the electronic factor F in Eq. (1), which can
currently only be calculated with a typical uncertainty of
≲30%, we plot in Fig. 3(a) the ratios δhr2iA;Aþ2=δhr2iA−2;A
that can be determined from the experimental data with
much higher accuracy. The nuclear calculations agree with
the IS data to within 20%. The ratios obtained from nuclear
theory show monotonically increasing trends for the three
EDFs SV-min, RD-min, and UNEDF1. Only Fy(Δr)
produces a trend that is consistent with data. This is yet
another demonstration that the Fayans functional is better
adapted to local nonmonotonic trends in charge radius data,
see also Refs. [66–68]. We note that Fy(Δr) also provides a
better description of nuclear quadrupole deformations as
compared to other EDFs, see Supplemental Material [24]
for details. This demonstrates that high-precision data on

nuclear radii deliver important information for discrimina-
tion and further development of nuclear models.
Our data also provide strong tests for electronic-structure

calculations, as shown in Figs. 3(c) and 3(d): The field
(mass) shift coefficient Fτ (Kτ) on one transition τ
determines the coefficients on all other transitions κ via
the experimentally determined value of Fκτ (Kκτ) (see
Supplemental Material [24] for details).
While all transitions α, β, γ, ϵ lie near a line through

the origin in Fig. 2, there is a deviation from that line
for all four transitions (plus the reference transition δ) with
4.3σ significance. (In contrast, the generalized King plot
proposed in previous studies [14,76] provides a test
only for three transitions, giving significance less than
4σ for any choices of three transitions; see Supplemental
Material [24]). This second nonlinearity is too large to be
explained by the QFS, which is expected to be the next
largest source of nonlinearity within the SM (see

(a) (c)

(b) (d)

FIG. 3. (a) Comparison plot of derived values for the ratio of the
mean-square nuclear radius differences between ðA; Aþ 2Þ iso-
tope pairs. Open symbols mark the values derived from nuclear
calculations using SV-min, RD-min, UNEDF1, and Fy(Δr)
energy density functionals (see Fig. 2 for symbol assignments).
The red filled square symbols are values derived from measured
ISs on the 411 nm transition in combination with mass shifts from
configuration interaction (CI) [69–72] calculations. (b) Plot of
derived values for the ratio of the mean square nuclear radius
between sequential isotope pairs as a function of Kα, showing
very weak dependence on Kα. (c),(d) Derived values of Fβ, Fγ ,
Fδ, Fϵ (Kβ, Kγ , Kδ, Kϵ) as a function of Fα (Kα), using the
experimentally determined ratios Fκα (Kκα) for κ ¼ β; γ; δ; ϵ. In
(b), (c), and (d), dashed (dotted) vertical lines and round (square)
markers indicate values from CI calculations using GRASP2018
[73] (AMBiT [74]). Dash-dotted lines and open triangle
markers correspond to CI and many-body perturbation theory
(CIþMBPT) [75] calculations using AMBiT.
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Supplemental Material [24]). In Fig. 4, we show the
strength of the coupling constant yeyn for a new boson
vs boson mass under the assumption that the new boson is
the sole source of the second nonlinearity. Different
combinations of measured transitions give similar values
or bounds for the coupling strength yeyn that is near or
slightly exceeds the best other laboratory bounds given by
the combination of g − 2measurements on the electron and
neutron scattering experiments [10,77–84].
In the future, it should be possible to reduce the

experimental uncertainties by up to 4 orders of magnitude
to sub-Hz levels, as has been demonstrated with simulta-
neously trapped Srþ ions [85]. In combination with
improved electronic and nuclear calculations, it should
then be possible to determine unambiguously if some part
of the observed nonlinearity cannot be explained by
physics within the SM. Besides better measurements on
(more) transitions, it may also become possible to perform

further measurements on unstable isotopes, which would
allow the direct extraction (and elimination) of additional
nuclear effects.
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