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Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge
in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial
dimensions, we experimentally investigate quantum algorithms for solving the maximum independent
set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize
closed-loop optimization to test several variational algorithms, and subsequently apply them to
systematically explore a class of graphs with programmable connectivity. We find that the problem
hardness is controlled by the solution degeneracy and number of local minima, and we experimentally
benchmark the quantum algorithm’s performance against classical simulated annealing. On the
hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit
regime and analyze its origins.

C
ombinatorial optimization is ubiquitous
inmany areas of science and technology.
Many such problems have been shown
to be computationally hard and form
the basis for understanding complexity

classes in modern computer science (1). The
use of quantummachines to accelerate solving
such problems has been theoretically explored
for over two decades with a variety of quan-
tum algorithms (2–4). Typically, a relevant cost
function is encoded in a quantumHamiltonian
(5), and its low-energy state is sought starting
from a generic initial state, either through an
adiabatic evolution (2) or a variational ap-
proach (3), via closed optimization loops (6, 7).
The computational performance of such al-
gorithms has been investigated theoretically
(4, 8–13) and experimentally (14–16) in small
quantum systems with shallow quantum cir-
cuits, or in systems lacking the many-body
coherence believed to be central for quantum
advantage (17, 18). However, these studies offer

only limited insights into algorithms’ per-
formances in the most interesting regime
involving large system sizes and high circuit
depths (19, 20).
Here we use a quantum device based on co-

herent, programmable arrays of neutral atoms
trapped in optical tweezers to investigate quan-
tum optimization algorithms for systems rang-
ing from 39 to 289 qubits, and effective depths
sufficient for the quantum correlations to
spread across the entire graph. Specifically,
we focus on maximum independent set, a
paradigmatic NP-hard optimization problem
(21). It involves finding the largest indepen-
dent set of a graph—a subset of vertices such
that no edges connect any pair in the set. An
important class of such maximum indepen-
dent set problems involves unit disk graphs,
which are defined by vertices on a two-
dimensional plane with edges connecting all
pairs of vertices within a unit distance of one
another (Fig. 1, A and B). Such instances arise
naturally in problems associated with geomet-
ric constraints that are important for many
practical applications, such as modeling wire-
less communication networks (22, 23). Al-
though there exist polynomial-time classical
algorithms to find approximate solutions to
the maximum independent set problem on
such graphs (24), solving the problem exactly is
known to be NP-hard in the worst case (23, 25).

Maximum independent set on Rydberg
atom arrays

Our approach uses a two-dimensional atom
array described previously (26). Excitation
from a ground state |0i into a Rydberg state
|1i is utilized for hardware-efficient encod-
ing of the unit disk maximum independent
set problem (27). For a particular graph, we
create a geometric configuration of atoms

using optical tweezers such that each atom
represents a vertex. The edges are drawn
according to the unit disk criterion for a unit
distance given by the Rydberg blockade radius
Rb (Fig. 1C), the distance within which excita-
tion of more than one atom to the Rydberg
state is prohibited because of strong interac-
tions (28). The Rydberg blockade mechanism
thus restricts the evolution primarily to the
subspace spanned by the states that obey the
independent set constraint of the problem
graph. Quantum algorithms for optimization
are implemented via global atomic excitation
using homogeneous laser pulses with a time-
varying Rabi frequency (and a time-varying
phase) W(t)eif(t) and detuning D(t) (Fig. 1D).
The resulting quantum dynamics is governed
by the Hamiltonian H = Hq + Hcost, with the
quantum driverHq and the cost functionHcost

given by

Hq ¼ ℏ
2

X
i

W tð Þeif tð Þ 0j ii 1h j þ h:c:
h i

;

Hcost ¼ �ℏD tð Þ
X
i

ni þ
X
i<j

Vijninj ð1Þ

where ni = |1iih1|, and Vij = V0/(|ri – rj|)
6 is

the interaction potential that sets the block-
ade radius Rb and determines the connectivity
of the graph. For a positive laser detuning D,
the many-body ground state of the cost func-
tion Hamiltonian maximizes the total num-
ber of qubits in the Rydberg state under the
blockade constraint, corresponding to the
largest independent set MIS(G) (hereafter
MIS) of the underlying unit disk graphG (27)
(Fig. 1E). Even with the finite blockade energy
and long-range interaction tails, we empirically
find that the ground states ofHcost still encode
an MIS for the ensemble of graphs studied
here [see (25, 27)].

Variational optimization via a closed
quantum-classical loop

In the experiment, we deterministically pre-
pare graphs with vertices occupying 80% of
an underlying square lattice, with the block-
ade extending across nearest and next-nearest
(diagonal) neighbors (Fig. 1C). This allows us
to explore a class of nonplanar graphs for
which finding the exact solution of MIS is
NP-hard for worst-case instances (25). To
prepare quantum states with a large overlap
with theMIS solution space, we use a family of
variational quantum optimization algorithms
using a quantum-classical optimization loop.
We place atoms at positions defined by the
vertices of the chosen graph, initialize them in
state |0i, and implement a coherent quantum
evolution corresponding to the specific choice
of variational parameters (Fig. 1D). Subse-
quently, we sample the wave function with
a projective measurement and determine the
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size of the output independent set by counting
the number of qubits in |1i, using classical post-
processing to remove blockade violations and
reduce detection errors (25) (Fig. 1E). This pro-
cedure is repeated multiple times to estimate
the mean independent set size hPinii of the
sampled wave function, the approximation
ratio R ≡ hPinii/|MIS|, and the probability
PMIS of observing anMIS (where |MIS| denotes
the size of an MIS of the graph). The classical
optimizer tries to maximize hPinii by updat-
ing the variational parameters in a closed-loop
hybrid quantum-classical optimization protocol
(25) (Fig. 1D).
We test two algorithm classes, defined by

different parametrizations of the quantum
driver and the cost function in Eq. 1. The first
approach consists of resonant (D = 0) laser
pulses of varying durations ti and phases fi
(Fig. 2A). This algorithm closely resembles the
canonical quantum approximate optimization
algorithm (QAOA) (3), but instead of exact
single-qubit rotations, resonant driving gen-
erates an effective many-body evolution within
the subspace of independent sets associated
with the blockade constraint (25). Phase jumps
between consecutive pulses implement a global
phase gate (29), with a phase shift propor-
tional to the cost function of the maximum
independent set problem in the subspace of
independent sets (see eq. S2). Taken together,
these implement the QAOA, where each pulse
duration ti and phase fi are used as a varia-
tional parameters.
The performance of QAOA as a function of

depth p (the number of pulses) is shown in
Fig. 2B for an instance of a 179-vertex graph
embedded in a 15 × 15 lattice. We find that
the approximation ratio grows as a function
of the number of pulses up to p = 4, and
increasing the depth further does not appear
to lead to better performance (Fig. 2B). As

discussed in (25), we attribute these perform-
ance limitations to the difficulty of finding
the optimalQAOAparameters for large depths
within a limited number of queries to the ex-
periment, leakage out of the independent set
subspace during resonant excitation due to
imperfect blockade associated with the finite
interaction energy between next-nearest neigh-
bors, and laser pulse imperfections.
The second approach is a variational quan-

tum adiabatic algorithm (VQAA) (2, 30),
related to methods previously used to prepare
quantummany-body ground states (26, 31, 32).
In this approach, we sweep the detuning D
from an initial negative detuning D0 to a final
large positive value Df at constant Rabi fre-
quency W, along a piecewise-linear schedule
characterized by a total number of segments f,
the duration ti of each, and the end detuning
Di of each segment. Moreover, we turn on the
coupling W in duration tW and smoothen the
detuning sweep using a low-pass filter with a
characteristic filter time tD (Fig. 2C), both of
which minimize nonadiabatic excitations and
serve as additional variational parameters. For
this evolution, we define an effective circuit
depth ~pas the duration of the sweep (T = t1 +
… + tf) in units of the p-pulse time tp, which
is the time required to perform a spin flip
operation.
We find that with only three segments op-

timized for an effective depth of ~p= 10 (Fig. 2D
inset), the optimizer converges to a pulse that
substantially outperforms the QAOA approach
described above. Furthermore, the optimized
pulse shows a better performance compared
to a linear (one-segment) detuning sweep of
the same ~p (Fig. 2D). We find that similar
pulse shapes produce high approximation
ratios for a variety of graphs (see, e.g., fig. S8C),
consistent with theoretical predictions of pulse
shape concentration (20, 25, 33, 34). At large

sweep times (~p> 15), we observe a turn-around
in the performance likely associated with de-
coherence (25). For the remainder of this work,
we focus on the quantum adiabatic algorithm
for solving maximum independent set.

Quantum optimization on different graphs

The experimentally optimized quasi-adiabatic
sweep (depicted in Fig. 2D) was applied to
115 randomly generated graphs of various
sizes (N = 80 to 289 vertices). For graphs of the
same size (N = 180), the approximation error
1 – R decreases and the probability of finding
an MIS solution PMIS increases with the effec-
tive circuit depth at early times,with the former
showing a scaling consistent with a power-law
relation for short effective depths (Fig. 3A and
fig. S15) (25). We find a strong correlation
between the performance of the quantum algo-
rithm on a given graph and its total number
of MIS solutions, which we refer to as the MIS
degeneracy D|MIS|(G) (hereafter D|MIS|). This
quantity is calculated classically using a ten-
sor network algorithm (25, 35) and varies by
nine orders of magnitude across different
180-vertex graphs. We observe a clear loga-
rithmic relation between D|MIS| and the ap-
proximation error 1 – R, accompanied by a
nearly three-orders-of-magnitude variation of
PMIS at a fixed depth ~p= 20 (Fig. 2B). PMIS does
not scale linearly with the MIS degeneracy, as
would be the case for a naive algorithm that
samples solutions at random. Figure 2C shows
the sharp collapse of 1 – R as a function of the
logarithm of the MIS degeneracy normalized
by the graph size, r ≡ log(D|MIS|)/N. This quan-
tity, a measure of MIS degeneracy density,
determines the hardness in approximating
solutions for the quantum algorithm at shal-
low depths.
These observations can be modeled as re-

sulting from a Kibble-Zurek–type mechanism
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Fig. 1. Hardware-efficient encoding of the maximum independent set
using Rydberg atom arrays. (A) An example of a unit disk graph, with any
single vertex (e.g., the blue vertex) being connected to all other vertices
within a disk of unit radius. (B) A corresponding MIS solution (denoted by the
red nodes). (C) The maximum independent set problem is encoded with
atoms placed at the vertices of the target graph and with interatomic spacing
chosen such that the unit disk radius of the graph corresponds to the
Rydberg blockade radius. Shown is an example fluorescence image of atoms,

with gray lines added to indicate edges between connected vertices. (D) The
system undergoes coherent quantum many-body evolution under a pro-
grammable laser drive [W(t), f(t), D(t)] and long-range Rydberg interactions
Vij. (E) A site-resolved projective measurement reads out the final quantum
many-body state, with atoms excited to the Rydberg state (red circles)
corresponding to vertices forming an independent set. A classical optimizer
uses the results to update the parameters of the quantum evolution [W(t),
f(t), D(t)] to maximize a figure of merit for finding an MIS.
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where the quantumalgorithm locally solves the
graph in domains whose sizes are determined
by the evolution time and speed at which
quantum information propagates (36, 37).
We show that the scaling of the approximation
error with depth can originate from the con-
flicts between local solutions at the boundaries
of these independent domains (25). In graphs
with a large degeneracy density r, there may
exist many MIS configurations that are com-
patible with the local ordering in these do-
mains. This provides a possible mechanism
to reduce domain walls at their boundaries
(fig. S14) and decrease the approximation
error. Such a scenario would predict a linear
relation between 1 – R and r at a fixed depth,
which is consistent with our observations
(Fig. 2C and fig. S15).

Benchmarking against simulated annealing
To benchmark the results of the quantum
optimization against a classical algorithm,
we use simulated annealing (SA) (38). It seeks
to minimize the energy of a cost Hamiltonian
by thermally cooling a system of classical spins
while maintaining thermal equilibrium. Al-
though some specifically tailored state-of-
the-art algorithms (24, 39) may have better
performance than SA in solving themaximum
independent set problem, we have chosen
SA for extensive benchmarking because sim-
ilar to the quantum algorithms used, it is a
general-purpose algorithm that only relies on
information from the cost Hamiltonian for
solving the problem. Our highly optimized
variant of SA stochastically updates local clus-
ters of spins using the Metropolis-Hastings

(40) update rule, rejecting energetically un-
favorable updates with a probability depen-
dent on the energy cost and the instantaneous
temperature (25). We use collective updates
under the MIS Hamiltonian cost function (eq.
S15), which applies an optimized uniform inter-
action energy to each edge, penalizing states
that violate the independent set criterion (25).
The annealing depth pSA is defined as the aver-
age number of attempted updates per spin.
We compare the quantumalgorithm and SA

on twometrics: the approximation error 1 – R,
and the probability of sampling an exact solu-
tion PMIS, which determines the inverse of time-
to-solution. As shown in Fig. 4A, for relatively
shallow depths and moderately hard graphs,
optimized SA results in approximation errors
similar to those observed on the quantum de-
vice. In particular, we find that the hardness in
approximating the solution for short SA depths
is also controlled by degeneracy density r (fig.
S18, A and B). However, some graph instances
appear to be considerably harder for SA com-
pared to the quantumalgorithmat higher depths
(see, e.g., gold and purple curves in Fig. 4A).
Detailed analysis of the SA dynamics for

graphswith lowdegeneracy densities r reveals
that for some instances, the approximation ratio
displays a plateau at R = (|MIS| – 1)/|MIS|,
corresponding to independent sets with one
less vertex than an MIS (Fig. 4A, gold and
purple solid lines). Graphs displaying this be-
havior have a large number of local minima
with independent set size |MIS| – 1, in which
SA can be trapped up to large depths. By
analyzing the dynamics of SA at low temper-
atures as a randomwalk among |MIS| – 1 and
|MIS| configurations (Fig. 4D), we show in
(25) that the ability of SA to find a global
optimum is limited by the ratio of the num-
ber of suboptimal independent sets of size
|MIS| – 1 to the number of ways to reach
global minima, resulting in a “hardness pa-
rameter”HP = D|MIS|–1/(|MIS|D|MIS|) (Fig. 4E).
This parameter lower bounds the mixing
time for the Markov chain describing the SA
dynamics at low temperatures (eq. S19), and
it appears to increase exponentially with the
square root of the system size for the hardest
graphs (fig. S11). This suggests that a large
number of local minima cause SA to take an
exponentially long time to find an MIS for the
hardest cases as N grows. If SA performance
saturates this lower bound, consistent with
numerics (fig. S19), its runtime to find an MIS
is polynomially related to the best known
exact classical algorithms (41).

Quantum speedup on the hardest graphs

We now turn to study the algorithms’ ability
to find exact solutions on the hardest graphs
(with up to N = 80), chosen from graphs in
the top two percentile of the hardness pa-
rameterHP (fig. S11). We find that for some
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Fig. 2. Testing variational quantum algorithms. (A) Implementation of the quantum approximate
optimization algorithm (QAOA), consisting of sequential layers of resonant pulses with variable duration
ti and laser phase fi. (B) Variational optimization of QAOA parameters results in a decrease in approximation
error 1 – R, up to depth p = 4 (inset: example performance of quantum-classical closed-loop optimization
at p = 5). Approximation error calculated using the top 50 percentiles of independent set sizes (1 – R0.5) is
used as the figure of merit to reduce effects of experimental imperfections on the optimization procedure
(25). (C) Quantum evolution can also be parametrized as a variational quantum adiabatic algorithm
(VQAA) using a quasi-adiabatic pulse with a piecewise-linear sweep of detuning D(t) at constant Rabi
coupling W(t). W(t) is turned on and off within tW, and a low-pass filter with time scale tD is used to smoothen
the D(t) sweep. (D) Performance of a rescaled piecewise-linear sweep as a function of its effective
depth ~p = (t1 + … + tf)/tp. Variational optimization of a three-segment (orange) piecewise-linear pulse
(optimized for ~p = 10) improves on the performance of a simple one-segment linear (blue) pulse, as
well as the best results from QAOA (inset: detuning sweep profiles for one-segment (blue) and three-segment
(orange) optimized pulses, for a total pulse duration of 2.0 ms). Error bars for approximation ratio R are
the SEM here and throughout the text and are smaller than the points.
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of these graphs (e.g., gold curves in Fig. 4, A to
C), the quantumalgorithmquickly approaches
the correct solutions, reducing the average
Hamming distance (number of spin flips
normalized by N) to the closest MIS and in-
creasing PMIS, while SA remains trapped in
local minima at a large Hamming distance
from anyMIS. For other instances (e.g., purple
curves in Fig. 4, A to C), both the quantum
algorithm and SA have difficulty finding the
correct solution. Moreover, in contrast to our
earlier observations suggesting variational
parameter concentration for generic graphs,
we find that for these hard instances, the
quantum algorithm needs to be optimized for
each graph individually by scanning the slow-
down point of the detuning sweep D(t) to max-
imize PMIS (Fig. 5, A and B, and fig. S9) (25).
Figure 4E shows the resulting highest PMIS

reached within a depth of 32 for each hard
graph instance as a function of the classi-
cal hardness parameterHP. For simulated
annealing, we find the scaling PMIS = 1 –
exp(–CHP–1.03(4)), where C is a positive fitted
constant, which is in good agreement with
theoretical expectations (25). Although formany
instances the quantum algorithm outperforms
SA, there are significant instance-by-instance
variations, and on average, we observe a sim-
ilar scaling PMIS = 1 – exp(–CHP –0.95(15))
(dashed red line).

To understand these observations, we carried
out detailed analyses of both classical and
quantum algorithms’ performance for hard
graph instances. Specifically, in (25) we show
that for a broad class of SA algorithms with
both single-vertex and correlated updates, the
scaling is at best PMIS = 1 – exp(–CHP –1)
(where C generally could have polynomial
dependence on the system size), indicating
that the observed scaling of our version of SA
is close to optimal. To gain insight into the
origin of the quantum scaling, we numeri-
cally compute the minimum energy gap dmin

during the adiabatic evolution using density-
matrix renormalization group (Fig. 5A) (25).
Figure 5C shows that the performance of the
quantum algorithm is mostly well described by
quasi-adiabatic evolution with transition prob-
ability out of the ground state governed by the
minimumenergy gap, according to the Landau-
Zener formula PMIS ¼ 1� exp �Adhmin

� �
for a

constant A, and h = 1.2(2) (42). This obser-
vation suggests that our quantum algorithm
achieves near-maximumefficiency, consistent
with the smallestpossible valueofh=1obtained
for optimized adiabatic following (43).
By focusing only on instances with large

enough spectral gaps such that the evolution
time T obeys the “speed limit” determined by
the uncertainty principle (dmin > 1/T) associated
with Landau-Zener scaling (42), we find an

improved quantum algorithm scaling PMIS =
1 – exp(–CHP–0.63(13)) (Fig. 4E, solid red line).
Because 1/[–log(1 – PMIS)] ≈ 1/PMIS is propor-
tional to the runtime sufficient to find a solu-
tion by repeating the experiment, the smaller
exponent observed in the scaling for quantum
algorithm (~HP 1.03(4) for SA and ~HP0.63(13)

for the quantum algorithm) suggests a super-
linear [with a ratio in scaling of 1.6(3)] speed-
up in the runtime to find an MIS, for graphs
where the deep-circuit-regime (T > 1/dmin)
is reached. Moreover, the observed scaling
is not altered by the postprocessing used on
the experimental data (25). We emphasize
that achieving this speedup requires an effec-
tive depth large enough to probe the lowest-
energy many-body states of the system; by
contrast, no speedup is observed for graph
instances where this depth condition is not
fulfilled.

Discussion and outlook

Several mechanisms for quantum speedup
in combinatorial optimization problems have
been previously proposed. Grover-type algo-
rithms are known to have a quadratic speedup
in comparison to brute-force classical search
over all possible solutions (44, 45). A quadratic
quantum speedup has also been suggested
for quantized SA based on discrete quantum
walks (46, 47). However, these methods use
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Fig. 3. Quantum algorithm
performance across different
graphs. (A) The approximation
error 1 – R for an optimized
quasi-adiabatic sweep plotted as a
function of effective depth ~p on
four graphs of the same size
(N = 180 vertices), showing strong
dependence on the number of
MIS solutions (MIS degeneracy)
D|MIS| (inset: corresponding MIS
probability PMIS versus ~p). (B) At a
fixed depth ~p = 20, 1 – R and
PMIS for various 180-vertex graphs
are strongly correlated with
D|MIS|. (C) At the same effective
depth ~p = 20, 1 – R for 115 graphs
of different sizes (N = 80 to
289) and MIS degeneracies
D|MIS| exhibit universal scaling
with the degeneracy density
r ≡ log(D|MIS|)/N (inset: data
plotted as a function of N). Error
bars for PMIS, here and through-
out the text, denote the 68%
confidence interval.
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specifically constructed circuits and are not
directly applicable to the algorithms imple-
mented here. In addition, the following mech-
anisms can contribute to the speedup observed
in our system. The quantum algorithm’s per-
formance in the observed regime appears to
be mostly governed by the minimum energy
gap dmin (Fig. 5C). We show that under cer-
tain conditions, one can achieve coherent
quantum enhancement for the minimum gap

resulting in a quadratic speedup via dmin ~
HP –1/2 (25). In practice, however, we find
that the minimum energy gap does not always
correlate with the classical hardness parame-
ter HP, as is evident in the spread of the
quantum data in Fig. 4E (see also fig. S21).
Some insights into these effects can be gained
by a more direct comparison of the quantum
algorithm with SA using the same cost func-
tion corresponding to theRydbergHamiltonian

(25) (Fig. 5D). Although the observed power-
law scaling supports the possibility of a nearly
quadratic speedup for instances in the deep
circuit regime (dmin > 1/T), it is an open ques-
tion whether such a speedup can be extended,
with a guarantee, in all instances. Finally, it
is possible that dmin alone does not fully de-
termine the quantum performance, as sug-
gested by the data points that deviate from
the Landau-Zener prediction in Fig. 5C, where
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Fig. 4. Benchmarking the quantum algorithm against classical simulated
annealing. (A) Performance of the quantum algorithm, and the optimized
simulated annealing with the MIS Hamiltonian, shown as a function of depth (~p for
quantum algorithm and pSA for simulated annealing) for four 80-vertex graphs.
Green (HP = 1.8, r = 0.13) and gray (HP = 2.1, r = 0.11) graphs are easy
for the quantum and classical algorithm; however, purple (HP = 69, r = 0.08)
and gold (HP = 68, r = 0.06 are significantly harder and show a plateau at
R = (|MIS| – 1)/|MIS|, i.e., independent sets with one less vertex than an MIS.
(B and C) One of the hard graphs (gold) shows much better quantum scaling
of average normalized Hamming distance to the closest MIS, and MIS probability
(PMIS) compared to the other graph (purple). By contrast, the performance of
SA (lines) remains similar between the two graphs. (D) Configuration graph
of independent sets of size |MIS| and |MIS| – 1 for an example 39-vertex graph

(HP = 5), where the edges connect two configurations if they are separated
by one step of simulated annealing. At low temperatures, simulated annealing
finds an MIS solution by a random walk on this configuration graph.
(E) –log(1 – PMIS) for instance-by-instance optimized quantum algorithm (crimson)
and simulated annealing (teal) reached within a depth of 32, for 36 graphs
selected from the top two percentile of hardness parameter HP for each size.
Power-law fits to the SA (teal, ~HP–1.03(4)) and the quantum data (dashed crimson
line, ~HP–0.95(15)) are used to compare scaling performance with graph hardness
HP. The error in the power-law exponents from the fit is the combination of
statistical errors and the error in the least-squares fit. If only graphs with minimum
energy gaps large enough to be resolved in the duration of the quantum evolution
are considered (dmin > 1/T, excluding hollow data points), the fit (solid crimson line)
shows a superlinear speedup ~HP–0.63(13) over optimized simulated annealing.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at M

assachusetts Institute of T
echnology on O

ctober 25, 2022



enhancement through diabatic effects could
be possible (34, 48).
Although the scaling speedup observed here

suggests a possibility of quantum advantage in
runtime, to achieve practical runtime speed-
ups over specialized state-of-the-art heuristic
algorithms [e.g., (39)], qubit coherence, system
size, and the classical optimizer loop need to
be improved. The useful depth accessible via
quantum evolution is limited by Rydberg-state
lifetime and intermediate-state laser scatter-
ing,which can be suppressed by increasing the
control laser intensity and intermediate-state
detuning.Advanced errormitigation techniques
such as STIRAP (49), as well as error correc-
tionmethods, should also be explored to enable
large-scale implementations. The classical opti-
mization loop can be improved by speeding
up the experimental cycle time and by using
more advanced classical optimizers. Larger
atom arrays can be realized by using improve-
ments in vacuum-limited trap lifetimes and
sorting fidelity.
Our results demonstrate the potential of

quantum systems for the discovery of new
algorithms and highlight a number of new
scientific directions. It would be interesting
to investigate whether instances with large
Hamming distance between the local and glob-
al optima of independent set sizes |MIS| – 1 and
|MIS| canbe related to the overlap gapproperty
of the solution space, which is associated with
classical optimization hardness (50). In par-
ticular, our method can be applied to the

optimization of “planted graphs,” designed
to maximize the Hamming distance between
optimal and suboptimal solutions, which can
provably limit the performance of local classi-
cal algorithms (51). Our approach can also be
extended to beyond unit disk graphs by using
ancillary atoms, hyperfine qubit encoding, and
a reconfigurable architecture based on coher-
ent transport of entangled atoms (52). Fur-
thermore, local qubit addressing during the
evolution can be used to both extend the range
of optimization parameters and the types
of optimization problems (5). Further anal-
ysis could elucidate the origins of classical and
quantumhardness, for example, by using graph
neural network approaches (53). Finally, sim-
ilar approaches can be used to explore realiza-
tions of other classes of quantum algorithm
[see, e.g., (54)], enabling a broader range of
potential applications.
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Fig. 5. Understanding hardness for the quantum algorithm. (A) Energy
gap between the ground (black) and first-excited (blue) states, calculated
using the density matrix renormalization group (DMRG) for a graph of
65 atoms. (B) To maximize PMIS for hard graphs, the frequency at which the
detuning sweep is slowed down is varied (see fig. S9). The largest PMIS
corresponds to a slow-down frequency close to the location of the minimum gap.
(C) Measured PMIS for a fixed effective depth ~p = 32 as a function of the
calculated minimum gap dmin. For many instances, the relation is well described

by the Landau-Zener prediction for quasi-adiabatic ground state preparation. The
shaded region corresponds to when the gap is too small (dmin < 1/T) to be
properly resolved relative to the quantum evolution time, and points in this region
are excluded from the fit both here and in the solid crimson line in Fig. 4E.
(D) Scaling of –log(1 – PMIS) observed in the experiment versus in simulated
annealing under the classical Rydberg cost function, eq. S14, for best PMIS
reached within a depth of 32. These results are consistent with a nearly quadratic
speedup for a subset of graphs where dmin > 1/T.
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Solving hard graph problems
Realizing quantum speedup for solving practical, computationally hard problems is the central challenge in quantum
information science. Ebadi et al. used Rydberg atom arrays composed of up to 289 coupled qubits in two spatial
dimensions to investigate quantum optimization algorithms for solving the maximum independent set, a paradigmatic
nondeterministic polynomial time–hard combinatorial optimization problem (see the Perspective by Schleier-Smith). A
hardware-efficient encoding protocol associated with Rydberg blockade was used to realize a closed-loop optimization
method to test several variational algorithms and subsequently apply them to systematically explore a class of
nonplanar graphs with programmable connectivity. The results demonstrate the potential of quantum machines as a
tool for the discovery of new promising algorithm classes. —ISO
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