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I. EXPERIMENTAL DETAILS

We trap a single Yb+ ion 135µm above the surface of
a lithographic microchip, described in detail in Ref. [1].
The ion is Doppler-cooled on the 6s 2S1/2 → 6p 2P1/2

transition by a 369-nm laser beam aligned parallel to
the chip surface, and at a diagonal to to the trap axis.
This beam has a component along all motional modes
of the trapped ion, and hence cools all motional degrees
of freedom simultaneously. The ion occasionally decays
to the 5d 2D3/2 state from 2P1/2 during the cooling cycle
(branching ratio = 0.5% [2]; occurs once every ∼150 µs in
our system), and is subsequently returned to the cooling
cycle via a repumper at 935 nm. Once every few minutes,
the ion can also decay to the 4f136s2 2F7/2 state, and
must be repumped at 638 nm. The cooling laser and
both repumpers have isotope shifts of a few GHz [3–5].

To drive the probe transitions at 411 nm (6s 2S1/2 →
5d 2D5/2; Γ/(2π) = 22 Hz [6]) and 436 nm (6s 2S1/2 →
5d 2D3/2; Γ/(2π) = 3 Hz [7]), we employ a Ti:Sapphire
probe laser, tuned to 822 nm and 871 nm, respectively.
This laser is frequency-stabilized via the Pound-Drever-
Hall (PDH) protocol to an ultra-low-expansion-spaced
(ULE-spaced) cavity that has finesse F ∼ 50000 and
linewidth κ/(2π) = 30 kHz. By frequency-stabilizing a
sideband produced by an electro-optic modulator (EOM)
to the cavity, a coarse spectroscopic frequency scan can
be engineered via tuning the sideband frequency. The
infrared light is fiber-coupled to one of two potassium ti-
tanyl phosphate (KTP) waveguide doublers, which out-
put 411 nm and 436 nm light, respectively. The blue
light, of linewidth ∼1 kHz, is then passed through an
acousto-optic modulator (AOM), which can be used for
finer frequency tuning, and focused down through an
achromatic lens to a beam waist of radius w0 = 15 µm at
the trapped ion. In order to align the probe beam to the
ion, 369-nm light is overlapped with the probe. The 369-
nm and the probe beams are focused through the same
achromatic lens, and alignment is verified by the result-
ing fluorescence re-radiated off the ion. The powers of
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FIG. S1. Partial Yb+ level diagram.

the 411 and 436 nm beams at the location of the ion are
1.1 mW and 0.2 mW, respectively. The relevant levels,
lasers (cooling, probe, and repumper lasers), and decays
are illustrated in Fig. S1.

The readout of the state is carried out via an electron-
shelving scheme [6]. In order to probe the ion in the
dark and avoid AC Stark shifts, the 369 nm cooling light
and the probe light (411 nm or 436 nm) are alternatively
applied. Ions in the ground state S1/2 are detected via
fluorescence during the cooling with 369 nm light. If the
ion is fluorescing before a probe pulse and no longer flu-
orescing afterwards, the ion is said to have completed a
quantum jump. Otherwise, the ion failed to quantum
jump (or, if there was no fluorescence before the probe
pulse, the ion failed to be initialized). By dividing the
number of quantum jumps by the total number of suc-
cessful initialization, we can measure a probability of ex-
citation as a function of frequency. The details of the
pulse sequences used to implement this protocol for the
411 nm and the 436 nm transitions are described in sec-
tions I A and I B, respectively.

The precise frequency of either clock transition is de-
termined via Ramsey spectroscopy, with π

2 times of ∼
5 µs and interrogation times of 10 µs. A small magnetic
field is applied to the ion to compensate for Earth’s mag-
netic field, and an additional magnetic field of ∼ 1.1 G is
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FIG. S2. The Zeeman transition pair measured to determine
the 411 nm transition center is labelled R and B. Estimated
Stark shifts due to off-resonant driving of transitions R′ and
B′ are listed in table S2.
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FIG. S3. The Zeeman transition pair measured to determine
the 436 nm transition center is labelled R and B. Estimated
Stark shifts due to off-resonant driving of transitions R′ and
B′ are listed in table S2.

applied along the probe beam to separate different Zee-
man components of the transition. The probe laser fre-
quency is scanned (in steps of 2−4 kHz) over the central
Ramsey fringe of a pair of transitions, symmetrically de-
tuned from the center frequency, between Zeeman com-
ponents of the ground and excited states. This pair of
transitions, labelled B and R as indicated in Figs. S2 and
Fig. S3, is identified via a wide scan with a single pulse of
the probe beam applied in each measurement cycle (see
Fig. S4, for instance). Fig. S5 shows an example Ram-
sey spectrum of one Zeeman component of the 436 nm
transition. Fig. S6 shows a probe-pulse-length scan per-
formed on the transition (Rabi flopping), which is used
to determine the π/2 time to be used in the Ramsey se-
quence.

Five scans over each of the red-detuned and blue-
detuned symmetric Zeeman transitions (transitions R
and B respectively in Figs. S2, S3) are interleaved. Each
set of scans is repeated two to three times for each iso-
tope. We establish a center frequency for the probed
transition by averaging the frequencies of R and B. For
each measurement of B’s frequency, a pair of measure-

ments of R’s frequency taken before and after the mea-
surement of B are used to interpolate the frequency of R
at the time when B was measured. The same is done for
each measurement of R (using pairs of measurements of
B taken before and after the measurement of R). Mea-
surements of transition center are then determined by
averaging the frequency of the B (R) and the interpo-
lated frequency of R (B).

To measure the isotope shift between two isotopes i
and j, a single ion of isotope i is first selected and loaded
by tuning the frequency of a photo-ionizing beam aligned
to a stream of neutral Yb atoms emitted from an oven.
Cooling and repumping beams are also tuned as required.
Once isotope i is loaded, the Ramsey measurement de-
scribed in the previous paragraph is repeated multiple
times. The lasers are then re-tuned to load isotope j.
The probe beam is tuned (but is kept locked to the same
cavity free spectral range (FSR)), and the Ramsey mea-
surements are again carried out. The measurements on
i and j are then repeated, with each isotope measured
between two and three times. While the absolute fre-
quencies of the clock transitions for different isotopes are
not measured independently, this method allows the mea-
surement of a relative isotope shift with precision on the
order of ∼300 Hz (see Fig. 2 and Table I in the main
text). The isotope shifts of four nearest pairs of stable
even Yb isotopes (i.e., j = 168, 170, 172, 174 and i = j+2)
were measured for each transition. By comparing this
precision shift measurement with a previously measured
absolute frequency for the 172Yb+ isotope [8], absolute
frequencies for the 411 nm transition can also be deter-
mined (Table II in the main text).

A. Measurements on the 2S1/2 → 2D5/2 transition at
α = 411 nm

The pulse sequence applied at each point of the fre-
quency scans used to probe the 411 nm transition is de-
picted schematically in Fig. S7. The sequence is com-
prised of three sections: initialization, probe and read-
out. Its total duration is 200 ms. During initialization,
the ion is Doppler-cooled on the 369 nm transition. After
cooling, a 40 µs optical pumping pulse is used to initialize
the ion in the mj = − 1

2 or mj = + 1
2 level of the 2S1/2

ground state with σ− or σ+-polarized 369 nm light, re-
spectively. This is followed by the probe period, where a
Ramsey sequence is applied using 411 nm light (the Ram-
sey interval used was 10 µs, and the π

2 -pulse length was
∼ 5 µs). During the Ramsey sequence, the 369 nm is ex-
tinguished by an AOM. The probe sequence is followed
by a readout pulse of 369 nm light, during which the
ion’s time-resolved florescence is measured and recorded
by a photomultiplier tube (PMT) synchronized to a field-
programmable gate array-based (FPGA-based) data ac-
quisition system. The sum of the fluorescence counts
recorded over the first three 2 ms bins in the readout part
of the sequence is then compared to the sum of the fluo-
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FIG. S4. A broad spectrum taken across four Zeeman compo-
nents of the 411 nm transition, probed via a single pulse. The
Zeeman shift agrees with calculated g-factors for the 411 nm
transition and the magnetic field magnitude of 1.1 G. Note
that optical pumping suppresses two of the Zeeman compo-
nents and enhances their respective opposites. The compo-
nents shown are:
(A)

∣∣S1/2,mJ = 1/2
〉
→

∣∣D5/2,mJ = −1/2
〉
,

(B)
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→
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〉
,
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FIG. S5. Ramsey spectrum on a single Zeeman component of
the 436-nm transition with fit (green solid curve). The x-axis
is the frequency of the probe beam with an arbitrary offset.
The quantum jump probability is obtained by taking the frac-
tional difference between the integrated readout fluorescence
and the integrated calibration fluorescence; see section I B.

FIG. S6. Rabi oscillations for a Zeeman component of the
436-nm transition. The measured quantum jump probability
is plotted against the scanned probe pulse length. The Rabi
oscillation is fitted to determine the π

2
time, which is used in

the Ramsey sequence that we apply to probe the transition.
The quantum jump probability is obtained by taking the frac-
tional difference between the integrated readout fluorescence
and the integrated calibration fluorescence; see section I B.

rescence counts recorded over the last three 2 ms bins in
the initialization part of the sequence. The fluorescence
counts are then compared to a previously-established
threshold. If above the threshold, the ion is taken to
be in the ground state and is labelled as “bright”. If the
initialization counts do not indicate a “bright” ion, this
implies initialization has failed and there was no oppor-
tunity for a quantum jump to occur, since the ion was
not in the ground state before the probe sequence. In this
case, the sequence is not counted towards the total num-
ber of shots. A quantum jump is taken to have occurred
if the ion is dark at readout (i.e. readout counts are equal
to or below threshold) and bright at initialization. The
sequence is repeated 35 times and a quantum-jump prob-
ability is established by taking the ratio of the number of
quantum jumps that occurred to the number of attempts
with successful initialization.

It should also be noted that the 638-nm repumper
light is kept on during the initialization stage in order
to repump any population that may have decayed from
2D5/2 to 2F7/2 (branching ratio = 83% [6]). The main
cause of initialization failure is unsuccessful repumping
of this population to the 2S1/2 ground state by the 638-
nm repumper, which has a repumping time constant of
& 200 ms.
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FIG. S7. Pulse sequence used to probe the 411-nm transition.

B. Measurements on the 2S1/2 → 2D3/2 transition at
β = 436 nm

The pulse sequence with single-shot readout of quan-
tum jumps that is used for probing the 411-nm transition
cannot be used when probing the 436-nm transition. This
is because the upper state of the 436-nm transition can
be populated not only by a probe-induced quantum jump
from the 2S1/2 ground state, but also by spontaneous de-

cay from the 2P1/2 excited state. Single-shot readout of
the fluorescence on the 369 nm transition would not dis-
tinguish between these two scenarios.

Instead, we employ the pulse sequence depicted in
Fig. S8 to probe this transition. The first half of the se-
quence is comprised of an initialization pulse with both
the 369-nm and the 935-nm lasers applied, as before, fol-
lowed by a time-resolved fluorescence readout with only
the 369-nm beam. This readout serves to calibrate the
effect of population decay from 2P1/2 to the 2D3/2 – with-
out the 935-nm repumper, population will eventually be
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pumped to the 2D3/2 dark state. The same initialization
and readout sequence is then repeated after the Ramsey
probe sequence has been applied. When averaged over
several applications of the sequence (we perform 2000
shots of the sequence, which corresponds to a 1s inte-
gration time for a 500-µs-long sequence; 8-10 repeats of
this 1 s integration time are then performed), this second
readout will show a smaller peak height in fluorescence if
the 436 nm transition is being driven. A quantum jump
probability is hence obtained by taking the fractional
difference between the averaged fluorescence counts in-
tegrated over all time bins of the second readout and the
counts integrated over all time bins of the first calibration
readout.
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FIG. S8. Pulse sequence used to probe 436 nm transition.
The solid curve indicates the time-resolved fluorescence by
the ion.

II. DATA ANALYSIS

A set of measured center frequencies of a transition for
a pair of isotopes over the course of ∼ 10 hours are fitted
with the linear model:

yk = a+ btk + czk (S1)

where k indexes each data point; yk is the measured tran-
sition frequency; tk is the time at which point k was mea-
sured; zk = 1 if the point k is for isotope j and zk = 0
for reference isotope i; and a, b, and c are fitting param-
eters. The first two terms account for the linear drift of
the length of the reference cavity. The last term describes
the isotope shift; with zk set to 0 or 1, c represents the
fitted isotope shift.

To determine the uncertainty in the measured isotope
shifts, bootstrapping statistics are employed [9]. A new
set of data points is formed by re-sampling points from
the set of measured data points, allowing for multiple in-
stances of the each point, until the number of elements in
the re-sampled set is the same as that of the original set.
The fitting described in the previous paragraph is ap-
plied to the re-sampled set to find a value for the isotope
shift. Repeating the procedure N times (with sufficiently
large N) gives the histogram of isotope shifts from each
re-sampled set. The mean and standard deviation of the
distribution are taken as the measured isotope shift and
its uncertainty, respectively. Fig. S9 shows examples of
the measured transition frequencies over time, the fitted
linear drift of the reference FSR, and the bootstrapping
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FIG. S9. Frequencies of (a) 411 nm transition in 168Yb+

(blue; left y-axis) and 170Yb+ (orange; right y-axis), and (b)
436 nm transition in 174Yb+ (blue; left y-axis) and 176Yb+

(orange; right y-axis). Transition frequencies of both isotopes
over time were fitted with linear model (red line, see Eq. S1).
The insets show the distribution of fitted isotope shifts from
bootstrapping with N = 104 re-sampling.

statistics (see insets). Drifts in the probe laser frequency
with time are visible in Fig. S9. We discuss estimates of
systematic shifts in section IV.

The isotope shifts between nearest even isotopes are
measured for each transition. Additionally, the isotope
shift between 170Yb and 174Yb is measured as a cross-
check. The results are listed in table I in the main text.
Using the additional (j, i) = (170, 174) measurement,
the precision of the isotope shifts ναji’s for (170, 172),
(172, 174), and (170, 174) can be improved in the stan-
dard way by adding and averaging measured values:
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1
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(S2)
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TABLE S1. Isotope shifts ν′ji’s between (j, i = j + 2) =
(170, 172), (172,174), and (170,174) isotope pairs after the
precision is improved. The values are correlated to each other
for each transition.

Isotope pair ν′αji [kHz] ν′βji [kHz]
(j, i) α : 2S1/2 → 2D5/2 β : 2S1/2 → 2D3/2

(170, 172) 2 044 854.73(30) 2 076 421.04(28)
(172, 174) 1 583 068.35(31) 1 609 181.29(20)
(170, 174) 3 627 923.08(35) 3 685 602.34(27)

where νq and σq refer to the measured shift ναji and its
uncertainty, respectively, for q = 1: (170, 172), q = 2:
(172, 174), and q = 3: (170, 174) pairs, and ν′q and σ′q
represent the values with the (170, 174) measurement in-
cluded. The results are shown in table S1. Through
this procedure, however, the isotope shifts ν′1, ν′2, and
ν′3 become correlated to each other. To take the corre-
lation into account, the generalized-least-squares (GLS)
method is used to fit the points in King plot (Fig. 2 in the
main text). We extract the p-value of the χ2

k distribution,
with k = 2 being the degree of freedom of the fitting (for
four data points and two fitting parameters). We find
χ2 = 11.7 with a p-value of 0.0029, corresponding to a
significance of 3 σ.

There are different ways of choosing the reference
isotope, and the choice determines the correlation be-
tween errors. When the latter are included carefully
in the analysis, the same significance of nonlinearity,
within ±0.001 σ, is obtained for all reference choices.
The confidence intervals of the nonlinearity measures,
parametrized by υneDβα and Gβα (Fig. 3b in the main
text), from different reference choices also agree.

To obtain the nonlinearity pattern from the known pos-
sible sources (e.g., Gα[δ〈r2〉2]ji or υneDαaji), the four
points (ναji, zji) are fitted in the same way the King
plot is fitted, where zji is the nuclear factor of the source
term (e.g. [δ〈r2〉2]ji or aji). The residuals of the fit-
ting show the nonlinearity pattern of the source, and the
corresponding nonlinearity measure ζz± is obtained via
Eq. 4. The direction of the nonlinearity lines is given as
the ratio ζz−/ζ

z
+, as in Fig. 3a. Note that the pattern is

determined by nuclear factors while the electronic factors
only scale the overall size of residuals.

III. SUPPRESSED EFFECT OF MASS
UNCERTAINTY

The uncertainties in ναji and νβji due to the uncer-
tainties in µji from the measured masses are correlated
as the change in µji modifies both ναji and νβji. If the
ratio of the change

∂νβji/∂µji
∂ναji/∂µji

=
νβji
ναji

(S3)

is parallel to the slope of the King plot Fβα, the effect
of mass uncertainty will be suppressed. The suppres-
sion factor is given as the difference between the ratio
νβji/ναji and the slope Fβα

νβji
ναji

− Fβα =
Fβδ〈r2〉ji +Kβµji
Fαδ〈r2〉ji +Kαµji

− Fβ
Fα

= Fβα

[
Kβµji

Fβδ〈r2〉ji
− Kαµji
Fαδ〈r2〉ji

]
+O

[(
Kαµji

Fαδ〈r2〉ji

)2
] (S4)

It is known that mass shifts are smaller than field shifts
for heavy elements in general. For the α = 411 nm and
β = 436 nm transitions in Yb+, the ratio of mass shift
and field shift (FS) is ∼ 5% (see table S5). There is
even further suppression due to the similar ratio for the
transitions α and β, giving a suppression factor ∼ 0.1%.
The uncertainty in the measured mass of 168Yb, 1.3 µu,
corresponds to the uncertainty O(1 kHz) in να or νβ , and
O(1 Hz) after the effect on the linear fit is suppressed.
The mass uncertainties of the other isotopes O(0.01 µu)
have an effect O(10 mHz) on the linear fit. When this
level of frequency precision is reached in future precision
spectroscopy, it will be necessary to improve the mass
measurements.

IV. ESTIMATION OF SYSTEMATIC EFFECTS
AND ERRORS

The uncertainties in our measurement are determined
directly from the variation of our data points, as de-
scribed in section II. In the following subsections, we es-
timate the magnitude of the physical effects we expect
to have contributed to this uncertainty, and of any addi-
tional systematic shifts. Table S3 summarizes these es-
timates. Most of the effects discussed here are largely
common-mode for the isotope pairs we measure, and
produce either zero or very small differential systematic
shifts in our measurement (we estimate a total system-
atic differential shift of < 10 Hz - see column 3 in ta-
ble S3 - which corresponds to < 10% of our statistical
uncertainty). However, we discuss here how drifts over
time in experimental parameters lead to uncertainties in
these differential shifts (listed in column 3 of table S3);
these uncertainties account for most of our measurement
error and are seen in the scatter of the data points. For
reference, we also list in column 2 of table S3, for each
systematic effect, an estimate for the absolute value of
the shift it produces on the transition frequency of a sin-
gle isotope.

A. Second-order Doppler Shift

The fractional Doppler shift to the atomic transition,
∆νD/ν0, caused by the motion of the ion in the trap is



6

given by:

∆νD
ν0

= − cos(θ)
v

c
− v2

2c2
+O

((v
c

)3
)

(S5)

where v is the absolute instantaneous velocity of the ion
relative to the lab frame, θ is the angle of observation
and ν0 is the frequency of the atomic transition in the
rest frame of the ion.

Since we are in the Lamb-Dicke regime, we can ignore
the first term of this equation, the linear Doppler shift,
v
c , because this term will simply add sidebands to the
transition but will not shift the carrier [10].

The second term shifts the atomic transition frequency
due to relativistic time dilation. We calculate this term
for both micromotion and secular motion of the ion in the
trap. Because we are sampling the instantaneous velocity
over a time much larger than one oscillation period of
the secular or micromotion, we can replace instantaneous
velocity by mean square velocity. So the overall fractional
second-order Doppler shift is

∆νD
ν0

= −〈v
2
s〉

2c2
+

(
∆ν

ν0

)µmotion

(S6)

where ν0 is the unshifted transition frequency, 〈v2
s〉

is the mean-square velocity for the secular motion,

and
(

∆ν
ν0

)µmotion

is the micromotion-induced fractional

Doppler shift. The secular-motion term can be estimated
from the ion’s temperature, which we take to be of or-
der the Doppler limit on the 369 nm cooling transition

(≈ 500µK), giving
〈v2s〉
2c2 ≈ 1 × 10−20. The micromotion

term can be calculated for our trap parameters using
Eq. 30 in [11]. We conservatively estimate that the ion
experiences a DC field in the trap E of order 50 V/m
which gives a micromotion-induced fractional shift of
−8 × 10−17. This dominates over the secular motion
shift. From this, we estimate that a small systematic
differential second-order Doppler shift of 2 mHz will arise
from the mass difference between isotopes. The main
source of uncertainty on this differential shift is expected
to be temporal drifts in micromotion compensation. If we
assume that E can change by around 50 V/m, between
measurements of isotope transition frequencies, we ar-
rive at an uncertainty on this differential second-order
Doppler shift of ≈ 100mHz.

B. Black-body Shift

The black-body radiation (BBR) shifts on the transi-
tions probed here are well approximated by [12]:

∆νBBR = −1

2
∆α0(831.9 V/m)2

(
T

300 K

)4

(S7)

where ∆α0 is the difference in scalar polarizability be-
tween the atomic states associated with the transition of
interest.

Calculations of the fractional BBR shift for the 436 nm
transition in 171Yb have estimated ∆νBBR ≈ −0.4 Hz
[12, 13]. We assume similar results for the 411 nm tran-
sition since the similar orbital wavefunctions of the 2D3/2

and 2D5/2 states imply that ∆α0 should be similar for
both transitions (the small difference in the wavefunc-
tions arises from the relativistic effect). The main source
of a differential BBR shift in our experiment will be tem-
perature drifts. Conservatively, we estimate that the
temperature can change by up to 3 K over the course of
our shift measurement, which yields a change in ∆νBBR

of ≈ 20 mHz.

C. Electric quadrupole shift

A frequency shift results from the interaction of the
quadrupole moment of the electronic state with electric
field gradients from the trap. The shift is of order

∆νquad ∼
Θ · ∇E
h

(S8)

The quadrupole moments for the 2D3/2 and 2D5/2 states

of Yb+ have been calculated to be 2.068(12)ea2
0 and

3.116(15)ea2
0 respectively [14]. Time-varying electric field

gradients due to patch potentials on the chip trap can
lead to a differential shift between isotopes. We ob-
serve a typical day-to-day variation the DC micromotion
compensation voltages applied to our trap electrodes of
20 mV. Conservatively, we consider a maximum varia-
tion of 200 mV during the course of a shift measurement
data-taking run. From this, we infer that differential
patch-potential gradients of order . 1 V/mm2 could oc-
cur, which would lead to a differential quadrupole shift
of . 2 Hz.

D. Gravitational red shift

Differential gravitational shifts in the measured isotope
transition frequencies could arise from changes in height
of the apparatus due to vibrations or thermal expansion
over the course of our measurements. Considering the
thermal expansion of the building our lab is housed in and
typical amplitudes of vibrations of optical table surfaces,
we estimate that such height changes should be of order
1 mm, which would lead to a differential shift uncertainty
of ∼ 0.1 mHz.

E. Laser-induced AC Stark shifts

1. Off-resonant probe light couplings

Most AC stark shifts in this experiment are common-
mode between isotopes, with differential shifts arising
only due to laser-intensity drifts and small fractional
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frequency differences between the isotopes. The tran-
sitions we probe in Yb+ share the 2S1/2 ground state
both with far-off-resonant transitions in the atom (e.g.
369 nm transition 2S1/2 ←→ 2P1/2) and the closer-
detuned Zeeman components of probed transition (see
Figs. S2, S3). The latter cause significant light shifts, but
these are equal and opposite for the each pair of Zeeman-
component transitions we measure (i.e. the shift on R is
equal and opposite to that on B), and will hence largely
cancel out after averaging. Calculated estimates of the
light shifts caused by off-resonant coupling of the probe
laser are listed in table S2.

We estimate that probe-light intensity fluctuations of
order 3% between measurements of each Zeeman tran-
sition will lead to uncertainties on the center of order
30 Hz.

We also consider that the probe light intensity can sys-
tematically vary by up to 20% when tuned to different
isotope transition frequencies. This can lead to a sys-
tematic change in the probe-induced AC stark shift for
different isotopes. However, this effect is again largely
cancelled out since the shift on the two Zeeman transi-
tions we measure are equal and opposite. The remaining
systematic shift will hence arise only from any poten-
tial deviation from linear polarization of the probe laser
beam, which could cause one of the Zeeman transitions
to be preferentially driven. This deviation is limited to 1
part in 104 by a Glan-Taylor polarizer placed in the probe
laser beam path in combination with the effect of the vac-
uum chamber window. Hence, we estimate a systematic
differential light shift of . 20 mHz between isotopes.

2. Non-probe light leakage

AOM leakage of 369-nm light during the probe time
of the experiment can shift the 2S1/2 ground state of
the probed transitions. We estimate the leakage to be
≈ 5 nW (from a 100 µW, 20 MHz red-detuned beam
focused to a beam waist of 75 µm), which leads to a shift
of −1.3× 103 Hz. Similarly, we estimate that leakage of
the 935 nm beam will shift the excited 2D3/2 state of the
436 nm probed transition by +440 Hz. Both these shifts
are common-mode between isotopes, but intensity drifts
of the leaked laser light, estimated to be of order 3%, will
contribute an uncertainty of order 30 Hz.

A less significant light shift will also arise from the
935 nm light left on during the 411 nm pulse sequence
probe time. The 935 nm beam can also shift the 1070 nm
transition connecting the 2D5/2 state (excited state of the

411 nm transtion) to the 3D[3/2]1/2 state (excited state
of the 935 nm transition). We estimate this shift to be
of order −4 × 10−2 Hz, contributing an uncertainty of
≈ 1 mHz to our measurements.

Finally, a 402 nm laser beam was also used during our
experiments to transfer-lock an optical cavity used for
increasing the ionization power during ion loading [15].
We estimate that the uncertainty from the AC Stark shift

caused by this laser is < 10 Hz, assuming a maximum
intensity drift of 30%.

F. Shift of center of Ramsey fringe by off-resonant
Zeeman transitions

The measured Ramsey fringe of a Zeeman transition
of interest is perturbed by other Zeeman transitions that
are being driven off-resonantly at the same time. The
observed signal can be either a sum of different Ramsey
fringes, or there may be quantum interference if the off-
resonant transition shares a state with the transition of
interest. We can estimate the magnitude of the frequency
pulling by fitting a sum of different Ramsey fringes.

The maximum size of the pulling is ∼ 20 Hz for a de-
tuning ∼ 1 MHz. The frequency pulling has opposite
sign for symmetric Zeeman transitions R and B and the
effect will be cancels out after the frequencies of transi-
tion R and B are averaged. The differential shift from
intensity fluctuation and asymmetric σ± polarizations is
suppressed due to the fact that Ramsey fringes are insen-
sitive to the change in ωR to the first order. The size of
the pulling due to B-field fluctuation can be significant
and O(10) Hz is taken as the upper bound of the effect.

G. Micromotional Stark shift

If the ion is shifted off the RF null of the Paul trap
by stray DC fields, the RF field it experiences will Stark
shift the transitions we probe. This shift is given by [16]

∆ν = − 〈E
2〉

2h

(
∆α0 + 1

2α2(3 cos2 β − 1)
[

3m2
j−J(J+1)

J(2J−1)

])
(S9)

where 〈E2〉 is the mean-squared value of the electric field
experienced by the ion, β is the angle between the electric
field and the quantization axis, ∆α0 is the difference in
the scalar polarizabilities between the ground and excited
states of the transition, α2 is the tensor polarizability of
the excited level (the tensor polarizability for the 2S1/2

ground state is zero) and J,mj are the angular momen-
tum quantum numbers for the excited state.

Based on doubling the typical day-to-day variation we
observe in micromotion compensation voltages for our
trap, we estimate that the stray DC field experienced
by the ion to be ≈ 20 V/m. This gives a micromo-
tion amplitude of Aµm = 50 nm for our trap, which
can be translated into an RF electric field amplitude

of E0 =
mΩ2

RFAµm
e ≈ 24 V/m (where Ω2

RF is the RF
drive frequency in for our trap and m is the mass of the
Yb+ isotope). Conservatively, we use here E0 = 50 V/m.
From this, and using values for ∆α0 and α2 for the 2D3/2

level from reference [13], we estimate a micromotional
Stark shift of order 1 mHz.

The differential shift between isotopes is expected to
be dominated by changes in the stray field landscape in
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TABLE S2. Estimated laser-induced AC Stark shifts due to off-resonant couplings of the probe laser.

Off-resonantly driven
transition

Estimated Stark shift on 411 nm transition [Hz] Estimated Stark shift on 436 nm transition [Hz]

369 −1.2× 102 −2.4× 102

467 +5.1× 10−20 +2.8× 10−19

411 ——— −1.1× 10−3

436 +5.5× 10−5 ———
B′ R:−800 R:−1160
R′ B:+800 B:+1160

the trap during the isotope-shift measurement, and hence
we include the full 1mHz in our uncertainty budget for
this shift. Note that, even in the absence of stray-field
fluctuations, there is a systematic ≈ 2% change in the
value of this shift between isotopes since the micromo-
tional Stark shift is proportional to the square of the ion
mass.

H. AOM switching-induced phase chirp

Phase shifts in π
2 -pulses induced when an AOM

switches the light are known to cause systematic errors in
transition frequencies measured via Ramsey spectroscopy
[17, 18]. Ref. [17] reported the shift in transition fre-
quency by 1.6 Hz when the pulse time τ = 1.5 µs and
the interrogation time T = 21.6 µs are used for 657-nm
transition in Ca. As the pulse time in our experiment is
longer (which makes the effect smaller), the interrogation
time is of the same order of magnitude, and the frequency
of the probe light is similar, the effect is expected to be
less than O(1 Hz).

I. Zeeman shifts and absolute frequency stability of
the probe light

Both magnetic field drifts and fluctuations in the abso-
lute frequency stability of the probe laser, which we lock
to an ultra-low expansion cavity, will lead to frequency
shifts of the transitions we probe. Changes in magnetic
field that do not occur much faster than the time it takes
us to scan over a given Zeeman-component (on the order
of a few minutes) should lead to oppositely-signed linear
shifts on the measured frequency of Zeeman components
symmetrically detuned from the transition center. We
focus this discussion on linear Zeeman shifts since, at
our magnetic field of 1.1 G, for ions with no hyperfine
structure like the even Yb+ isotopes we measure here,
the quadratic Zeeman shift is expected to be of order
100 mHz [19], significantly smaller than the linear shift
(based on the measured current noise in our magnetic-
field coils, we estimate that our magnetic-field noise is
. 0.1%, giving an uncertainty on the quadratic Zeeman
shift of 0.2 mHz.).

To ascertain whether B-field drifts contributed signifi-
cantly to the spread in our measured transition centers,
we performed measurements of the center using Zeeman
components of the excited state with larger B-field sen-
sitivity. We found no significant change in the spread
of the data when more B-field sensitive Zeeman states
were used. Hence, we conclude that linear Zeeman shifts
do not contribute significantly to the point-to-point fre-
quency shifts we observe in our experiment; we estimate
here a contribution of the order of 300 Hz (before aver-
aging over repeated measurements).

The main contribution to our observed point-to-point
frequency drifts derives from fluctuations in the abso-
lute stability of the probe laser locked to the ULE cavity.
Residual Amplitude Modulation (RAM) effects from the
EOM used for this laser’s PDH lock produce a common-
mode shift on the measured frequency opposing Zeeman
components of the probed transition. As well as RAM,
thermal drifts of the cavity due to intracavity light also
contribute to fluctuations in the probe laser’s absolute
frequency stability. We estimate that these effects lead
to point-to-point frequency shifts of ∼ 1 kHz in our ex-
periment. This is our largest source of uncertainty, but
it is reduced by repeated averaging to a level consistent
with the ∼ 300 Hz-spread we observe in our final data
that is included in the quoted statistical error.

V. CALCULATION OF PARAMETERS
ASSOCIATED WITH ATOMIC

WAVEFUNCTIONS

To evaluate quantities like Kα, Fα, Gα, and Dα ap-
pearing in Eq. 1 in the main text, the change in the dis-
tribution of electrons in Yb+ over space during the tran-
sitions of interest needs to be known. In particular, it is
crucial to obtain Dβα to translate the measured nonlin-
earity into a new-boson-mediated neutron-electron cou-
pling constant yeyn. Atomic structure calculations have
been developed to numerically study electronic structures
of atoms, and have been carried out here using some of
the methods in the field as described in section V A.
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TABLE S3. Estimated contributions to measurement error. Since we measure differences between transition frequencies of
pairs of isotopes, only differential shifts affect our measurement, but absolute shifts are also listed here for reference (column
2). The main contributions to our measurement error come from uncertainties on the differential shifts (column 3), which arise
mainly from temporal drifts in experimental parameters between measurements of different isotopes (the systematic differential
shifts listed here are estimated for next-neighboring isotopes). The uncertainties listed in column 3 are per measured data
point (i.e. if the isotope shift were inferred from a single measurement of the transition center in each isotope). For the
dominant shifts, we also provide an estimate of the uncertainty after averaging over ten measurements of the center (for most
shift measurements, we perform 15 measurements of the transition center but, for measurements involving the 168 isotope, we
perform only 10 repeats due to the long loading times required for this isotope). The estimation of the errors listed in this
table is detailed in the text (section IV).

Estimated Magnitude of Absolute
Shift [Hz]

Estimated Differential Shift [Hz]

Second-order Doppler Shift 5× 10−2 ± 1× 10−1 2× 10−3 ± 1× 10−1

Black-body shift 4× 10−1 ± 2× 10−2 0± 2× 10−2

Electric quadrupole shift 2× 100 ± 2× 100 0± 2× 100

Gravitational redshift 1× 10−2 ± 1× 10−4 0± 1× 10−4

Laser-induced Stark shift 1× 10−1 ± 4× 101 2× 10−2 ± 4× 101

Micromotional Stark shift 2× 10−1 ± 1× 10−3 2× 10−5 ± 1× 10−3

Quadratic Zeeman shift 1× 10−1 ± 2× 10−4 0± 2× 10−4

AOM-induced phase chirp 0±O(1 Hz) 0±O(1 Hz)
Linear Zeeman shift 0± 3× 102 0± 3× 102 (∼ 1× 102 after averaging)
Absolute frequency stability of PDH-
locked probe laser

0± 1× 103 0± 1× 103 (∼ 3× 102 after averaging)

A. Description of methods

Here, the Dirac-Hartree-Fock (DHF) method [20, 21]
followed by the configurational interaction (CI) method
[22–25] has been used to calculate the two transitions in
Yb+. The calculation is relatively reliable because there
is only one valence electron. Nevertheless, the full elec-
tron calculation is required to obtain the perturbed core-
electron wavefunction due to the change in the valence-
electron state; the change in core s orbitals gives the
major contribution to the sensitivity of yeyn in the high-
mφ regime (& 1 MeV). More advanced methods, for in-
stance CI combined with many-body perterbation theory
(CI+MBPT) [26–28] and CI+All-order method [12, 29],
have been developed. The calculation with the MBPT
method (not combined with CI method) has been per-
formed independently, and the results are compared in
section V B, as well as the main text, to provide an esti-
mate of the systematic uncertainty of the calculation.

The DHF and CI calculation were done with
GRASP2018 [30]. The DHF for closed core, from 1s to 5p
subshells, was calculated first to obtain the basis set for
core electrons. Then a valence electron was added and
the basis set for all electrons was calculated. Finally,
the correlation orbitals were added layer by layer to get
better accuracy by taking core-core and core-valence cor-
relation effects into account, and achieve convergence. CI
calculations followed.

Once the wavefunctions were obtained, the change in
radial electron density functions ρα(r) 1 during transition

1 For he radial electron density ρg,eα (r) for ground and excited

α was calculated from the wavefunctions (it is not a part
of GRASP2018), and all wavefunction-dependent quan-
tities were obtained from the electron density ρα(r)’s.

The software package RIS4 [31] was used to calculate
Kα from the outputs of GRASP2018. The details of
the method by which this is achieved can be found in
Ref. [31].

The Seltzer moment expansion relates field shifts and
the expansion of ρα(r) at the origin [32–34]:

ρα(r) = r2
[
ξ(0)
α + ξ(2)

α r2 + · · ·
]

(S10)

νFS
αji =

∞∑
k=0

cα′Z

2π

ξ
(k)
α

(k + 2)(k + 3)︸ ︷︷ ︸
F

(k)
α

δ〈rk+2〉 (S11)

where α′ ≈ 1/137 in Eq. S11 is the fine-structure constant

and Z is the proton number. Fα ≡ F (0)
α and G

(4)
α ≡ F (2)

α

in our notation. ξ
(0)
α and ξ

(2)
α obtained by fitting ρα(r)

with a power series at the origin can be converted into

Fα and G
(4)
α , respectively.

The shift in transition frequency due to a new boson

νφαji = 〈ajiVne(r)〉α /h = υneDαaji (all quantities are

defined in the main text) gives an expression for Dα:

Dα(mφ) =
c

2π

∫ ∞
0

drρα(r)
e−mφrc/~

r
. (S12)

states in transition α,
∫∞
0 drρg,eα (r) = Z − I where I is the

charge number of ion and ρα(r) = ρeα(r)− ρgα(r)
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The numerical calculation of Dα for a given ρα(r) and
mφ is straightforward.

The quadratic FS (QFS) G
(2)
α [δ〈r2〉2] captures the

change in wavefunction itself due to the change in nu-
clear size, which is illustrated in the expression for the
electronic factor:

G(2)
α =

1

2

∂Fα
∂〈r2〉

=
cα′Z

24π

∂ξ
(0)
α

∂〈r2〉
(S13)

G
(2)
α is given as the rate of change in electron density at

the origin as nuclear size changes, and evaluating it re-
quires repeated atomic structure calculations while grad-
ually varying the nuclear size.

The electronic factors were also calculated using an
independent method that combines Brueckner MBPT
and the random phase approximation (RPA) [35] imple-
mented in ambit [36]. The MBPT correction accounting
for core-valence correlations was calculated to second or-
der in the residual Coulomb interaction. This was writ-
ten in terms of a non-local potential Σ̂, which was then
added to the Dirac-Fock potential and solved self con-
sistently to give “Brueckner” valence orbitals and ener-
gies. The Yukawa matrix elements for individual levels
were calculated directly using the overlap of the orbitals
and the Yukawa operator. The Yukawa potential also
polarises the core, and this effect is included using the
random-phase approximation. The Dα (or Dβ) is ob-
tained by subtracting the Yukawa matrix elements of the
corresponding levels in the transition α (or β). To obtain

G
(4)
α(β) = ∂να(β)/∂〈r4〉, the calculation for transition α(β)

is repeated while changing the nuclear charge distribu-
tion in such a way that 〈r4〉 changes but 〈r2〉 is constant.

Similarly, to obtain G
(2)
α(β) = 1

2∂
2να(β)/(∂〈r2〉)2, the cal-

culation is repeated while changing 〈r2〉 but keeping 〈r4〉
constant.

B. Comparison of calculations with experimental
results

The accuracy of the calculated wavefunction using CI
and MBPT methods is checked against our experimental
data and literature values. The results are summarized
in table I, table S4, table S5, and Fig. S10.

1. Difference in the second nuclear charge moment δ〈r2〉

The nuclear parameters λαji [32, 33, 40, 41], which are
essentially δ〈r2〉ji, can be obtained by dividing the mea-
sured FS, Fαλαji, by the calculated Fα. The FS Fαλαji
can be obtained by subtracting Kαµji from the measured
isotope shifts ναji (Kα is derived from the wavefunction
calculation and µji from mass spectroscopy [8, 42, 43]).

TABLE S4. Quantities calculated using CI and MBPT meth-
ods, and estimated from the experiment for α: 411 nm and
β: 436 nm transitions. fα,β = ωα,β/(2π) are the transition
frequencies. Other quantities are defined in the main text.

CI MBPT Exp.

fα [THz] 808.11 764.86 729.47a b

fβ [THz] 770.13 717.94 688.36a c

Fα [GHz/fm2] -15.852 -16.570
Fβ [GHz/fm2] -16.094 -16.771
Fβα 1.0153 1.0121 1.01141024(86)
Kα [GHz·u] -1678.3
Kβ [GHz·u] -1638.5
Kβα [GHz·u] 65 120.208(23)

G
(2)
α [MHz/fm4] 40.23 43.47

G
(2)
β [MHz/fm4] 41.44 44.22

G
(2)
βα [kHz/fm4] 232 -36 59(17)d

G
(4)
α [MHz/fm4] 14.9291 10.338(3)e

G
(4)
β [MHz/fm4] 15.1532 10.564(3)e

G
(4)
βα [kHz/fm4] -3.5 -5(5)e

Dα
f [THz] 44145 40189

Dβ
f [THz] 48419 47962

Dβα
f [THz] 3602 6909

a The exact value varies by the few-GHz isotope shifts.
b Ref. [6, 37]
c Ref. [38, 39]
d If the observed nonlinearity comes purely from Gβα[δ〈r2〉2].
e Numerical noise estimates
f At mφ = 1 eV. Values over different mφ’s are shown in Fig. S10.
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FIG. S10. Electronic factors associated with new-boson
coupling Dα, Dβ , and Dβα vs. boson mass mφ (bottom)
and reduced Compton wavelength (top) for α = 411 nm
and β = 436 nm transitions. The solid lines are for the CI
calculation, and the dashed lines for the MBPT calculation.
Dα, Dβ , and Dβα are positive at mφ = 1 eV and change their
signs at the peaks.
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In short,

λαji =
νFS
αji

Fα
=
ναji −Kαµji

Fα
. (S14)

Plugging Eq. S11 into Eq. S14 gives

λαji = δ〈r2〉ji

[
1 +

G
(4)
α

Fα

δ〈r4〉ji
δ〈r2〉ji

+ · · ·

]
(S15)

To obtain δ〈r2〉, the contribution of higher-order mo-
ments should be subtracted from λαji. Plugging Eq. S23
into Eq. S15 gives

λαji = δ〈r2〉ji

[
1 + 2b

G
(4)
α 〈r2〉l
Fα

(
1 +

δ〈r2〉jl + δ〈r2〉il
2〈r2〉l

)]
(S16)

+O
(
δ〈r6〉

)
≈ δ〈r2〉ji

[
1 + 2b

G
(4)
α 〈r2〉l
Fα

]
(S17)

where l refers to some fixed isotope (here l = 172). Us-

ing the values of Fα and G
(4)
α in table S4, the value of

b for Yb in table S6, and 〈r2〉l = 28.02(1) fm2 from
Ref. [40], the correction is calculated to be -6.97%. The
values from the CI calculation are used as they give the

ratios G
(4)
α /Fα = −9.418 × 10−4 fm−2 and G

(4)
β /Fβ =

−9.416× 10−4 fm−2, which are closer to the value given
in a seminal paper about the Seltzer moment expan-
sion: −9.29 × 10−4 fm−2 [32, 40] (this is approximately
the universal across the levels and the transitions in a
species of atom; see Ref. [32].). The value of b is as-
sumed to vary less than about 1% between the Yb iso-
topes (see table S6). The contribution of the term in-
volving δ〈r2〉jl + δ〈r2〉il . 0.4 fm2 in Eq. S16 is . 0.8%
of the -6.97% correction from δ〈r2〉. Therefore, the con-
version from λαji to δ〈r2〉 via Eq. S17 is precise to 0.1%,
unless the contribution of higher-order moments δ〈rk>4〉
is larger than 0.1%.

The calculated mass shift, field shift, and δ〈r2〉 values
are shown in Table S5. The calculated δ〈r2〉’s are in good
agreement with the values in Ref. [41], with differences
of less than 10%. δ〈r2〉 values obtained by using Fα and
Fβ from the CI and MBPT calculations are compared in
the table. For the analyses that use δ〈r2〉 (e.g., the QFS
line in Fig. 3), the values of δ〈r2〉 that involve MBPT
calculation are used, since the MBPT method is expected
to better capture valence-core electron correlation. Note
that, however, any difference in Fα or Fβ will change only
the overall scale of δ〈r2〉 values of different isotopes (see
Eqs. S14 and S17). Such differences would not change
the pattern of nonlinearity originating from δ〈r2〉ji, or
the direction of the QFS line in Fig. 3a.

2. Slope and y-intercept in King plot

The slope and y-intercept Fβα and Kβα in the (stan-
dard) King plot can be obtained from the calculated Fα,
Fβ , Kα, and Kβ , as defined in the main text. The calcu-
lated slopes FCI

βα and FMBPT
βα show excellent agreement

with the experimental value of F exp
βα , while the y-intercept

KCI
βα is of the same order as the experimental value Kexp

βα

(see the main text or table S4). Note, however, that
the calculation of the mass shift coefficient is known to
be a challenging task [44, 45]. We note that Kβα is the
marginal remainder after Kβ and Kα for the two D states
with very similar wavefunctions are mostly cancelled out
(at the level of 96%). Therefore, the disagreement of the
calculated Kβα to the experimental value does not nec-
essarily imply the departure of the mass shift coefficients
of each transition Kα or Kβ from their true values by the
same factor.
Fα is determined by the value of the wavefunctions at

the origin (Eq. S11). Therefore, the good agreement of
δ〈r2〉 and Fβα with the experimental values implies that
the calculated wavefunctions are reliable near the origin,
the region which provides the dominant contribution to
the sensitivity to yeyn in the high-mφ regime.

C. Estimation of nonlinearities within the SM

The dominant SM contributions to the nonlinearity are
expected to originate from higher-order FS terms,

δν(2)
α = G(2)

α [δ〈r2〉2] +G(4)
α δ〈r4〉 (S18)

= Gα[δ〈r2〉2] (S19)

where Gα = G
(2)
α + bG

(4)
α is the effective QFS electronic

factor (see Eq. S21 for b), as the higher-order terms in
mass shift, α2(m/M)2, are negligibly small [46]. The
first term in Eq. S18 (QFS) is from the second-order per-
turbation of the FS (Eq. S13), while the second term is
the second leading-order moment in the Seltzer expan-
sion for the first-order perturbation of the FS (Eq. S11).
The correlation between 〈r4〉 and 〈r2〉2 in Eq. S21 gives
the next relation Eq. S19 (see below in this section), and
the two effects are combined with the same nuclear fac-
tor [δ〈r2〉2]. The contribution of this effective QFS to the
nonlinearity is given as

Gβα[δ〈r2〉2] = [Gβ − FβαGα] [δ〈r2〉2]

= G
(2)
βα[δ〈r2〉2] + bG

(4)
βα[δ〈r2〉2]

(S20)

and the contributions from the QFS and the fourth-order
Seltzer moment can be estimated separately.

For the QFS, We calculate G
(2)
α = 40.23 MHz/fm4 and

G
(2)
β = 41.44 MHz/fm4 for the α = 411 nm and β =

436 nm transitions, respectively, using the CI calcula-
tion as in table S4. For the fourth-order Seltzer moment,

G
(4)
α and G

(4)
β were calculated to be 14.9291 MHz/fm4
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TABLE S5. Mass shifts, field shifts and nuclear charge radius difference δ〈r2〉 from measured isotope shifts and coefficients K,
F from atomic-structure calculation in table S4 for transitions α: 411 nm and β: 436 nm.

Isotope pairs Kµji [MHz] Fλji [MHz]
δ〈r2〉 [fm2]

CI MBPT
(j,i) α β α β α β α β Ref. [41]a

(168,170) -117.7 -114.9 2297 2327 -0.156 -0.155 -0.149 -0.149 -0.1561(3)
(170,172) -115.0 -112.2 2160 2189 -0.146 -0.146 -0.140 -0.140 -0.1479(1)
(172,174) -112.4 -109.7 1695 1719 -0.115 -0.115 -0.110 -0.110 -0.1207(1)
(174,176) -109.9 -107.3 1619 1641 -0.110 -0.110 -0.105 -0.105 -0.1159(1)

a Only statistical errors are presented in the parentheses. The large systematic errors in the electronic factors are not taken into account.

and 15.1532 MHz/fm4. The Fα and G
(4)
α are highly cor-

related (i.e., Fβ/Fα ≈ G(4)
β /G

(4)
α ), which suppresses G

(4)
βα

by a factor of ∼ 2 × 104, giving G
(4)
βα = −3.5 kHz/fm4,

while the suppression for the QFS is ∼ 200, yielding

G
(2)
βα = 232 kHz/fm4. The different suppression makes

the contribution of QFS to the nonlinearity much bigger
(by a factor of ∼ 66) than that of fourth-order Seltzer

moment although G
(4)
α is smaller than G

(2)
α only by a

factor ∼ 2.7.
The nuclear factor [δ〈r2〉2] . 0.07 fm4 gives

Gβα[δ〈r2〉2] . 15 kHz. The out-of-plane components of
[δ〈r2〉2] are . 0.025 fm4 and thus the nonlinearity is the
order of . 5 kHz.

To justify Eq. S19 that absorbs the shape FS term
δ〈r4〉 into an effective QFS (δ〈r2〉)2, we note that we
expect the correlation

〈r4〉i = b〈r2〉2i (S21)

to hold to a good approximation, where b ≈ 1 is iden-
tical over different isotopes. This equation implies that
the shape of the charge distribution is preserved while
the size varies between different isotopes: ρn,j(r) =
ρn,i(r/εji)/εji. Eq. S21 is expected to hold for heavy
ions in the absence of shell effects to order 1/A or better,
where A is the atomic mass. From Eq. S21, one obtains
the relation between δ〈r4〉 and δ〈r2〉 as follows:

δ〈r4〉il = 〈r4〉i − 〈r4〉l
= b

[
〈r2〉2i − 〈r2〉2l

]
= b

[(
〈r2〉l + δ〈r2〉il

)2 − 〈r2〉2l
]

= b
[
2〈r2〉lδ〈r2〉il + (δ〈r2〉il)2

]
(S22)

where 〈rn〉l is for a fixed reference isotope l. Conse-
quently,

δ〈r4〉ji = δ〈r4〉jl − δ〈r4〉il

= b
[
2〈r2〉lδ〈r2〉ji +

[
δ〈r2〉2

]
ji

]
= 2b〈r2〉lδ〈r2〉ji

[
1 +

δ〈r2〉jl + δ〈r2〉il
2〈r2〉l

] (S23)

where [δ〈r2〉2]ji ≡ (δ〈r2〉jl)2 − (δ〈r2〉il)2. The last two
rows show that δ〈r4〉 is nearly linear in δ〈r2〉 for small

TABLE S6. 〈r4〉-to-〈r2〉2 ratio b (in Eq. S21) for the isotopes
of Pd, Sm, and Pb calculated using electron scattering data
[47]. The fractional variation ∆b/b, the standard deviation
of the b coefficients divided by their mean, is shown in the
last column for each element. b of 174Yb from the electron
scattering data in [48] is shown for comparison.

Element Isotope b ∆b/b

Pd

104 1.3173

0.0026
106 1.3225
108 1.3247
110 1.3246

Sm

144 1.2861

0.0129
148 1.2979
150 1.3175
152 1.3212
154 1.3254

Pb

204 1.2755

0.0011
206 1.2735
207 1.2770
208 1.2758

Yb 174 1.3211

change in size (δ〈r2〉jl, δ〈r2〉il � 〈r2〉l), and the nonlin-
earity is due to [δ〈r2〉2]. The linear term 2b〈r2〉lδ〈r2〉ji
is absorbed into the leading-order FS Fα〈r2〉, while

the nonlinear term is combined with the QFS: (G
(2)
α +

bG
(4)
α )[δ〈r2〉2]ji.
The assumption Eq. S21 can be tested using the nu-

clear charge distribution ρn(r) measured by electron scat-
tering experiments [47, 48]. The Fourier-Bessel coeffi-
cients in Ref. [47] are used to retrieve ρn(r) of each iso-
tope and 〈r2〉, 〈r4〉, and b are calculated using the ρn(r).
The results for Pd, Sm, and Pb are listed in table S6. The
variations of b over different isotopes are indeed small: 0.1
to 1%. The difference may be merely due to the experi-
mental uncertainly of the data in Ref. [47].

Finally, note that the choice of l in the definition of
[δ〈r2〉2]ji does not change the associated nonlinearity, as
shown below:

[δ〈r2〉2]lji ≡ (δ〈r2〉jl)2 − (δ〈r2〉il)2

= (δ〈r2〉jm + δ〈r2〉ml)2 − (δ〈r2〉im + δ〈r2〉ml)2

= [δ〈r2〉2]mji + 2δ〈r2〉mlδ〈r2〉ji (S24)
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where l, m are some fixed isotopes. The last term in
Eq. S24 is proportional to δ〈r2〉ji and is readily absorbed
into the field shift term.

In summary, the QFS G
(2)
βα[δ〈r2〉2] gives the dominant

contribution to the SM nonlinearity unless the shape of
nuclear charge distribution varies strongly between dif-
ferent isotopes. The contributions from other nuclear
effects that are not considered here are smaller, e.g., the
nuclear polarizability that is expected to contribute at
the level < 10 Hz) [49].

VI. GENERALIZATION OF NONLINEARITY
MEASURES TO MORE ISOTOPES AND

TRANSITIONS

The nonlinearity measures ζ± can be generalized for
more than 4 pairs of isotopes or more than two tran-
sitions. For N pairs of isotopes (i.e. N + 1 iso-
topes), N − 2 independent parameters characterizing
the pattern of nonlinearity can be defined, and visu-
alized in an (N − 2)-dimensional plot. This can be

easily understood with a vectorial approach. Let ~x =
(xj1i1 , · · · , xjN iN ) where xjqiq is a term in Eq. 3 (e.g.,

Gβα[δ〈r2〉2]jqiq ) for the q-th isotope pair. After the com-

ponents along the King vectors ~µ = (1, · · · , 1) (mass

shift) and ~να = (ναj1i1 , · · · , ναjN iN ) (field shift) are sub-
tracted from ~x via linear fitting, the remaining vector can
be uniquely determined by the components of (N−2) vec-

tors {~ζ1, · · · , ~ζN−2} which are linearly independent from

each other and from {~µ,~να}.
A generalization for more than two transitions can

be obtained by pairing transitions; M − 1 independent
pairs of transitions can be formed out of M transitions
and the analysis with a two-dimensional King plot de-
scribed throughout the paper can be applied to each
pair. The nonlinearity measures ζ± (or (ζ1, · · · , ζN−2)
for the case of N + 1 isotopes) from each pair of transi-
tions can be displayed in the same two-dimensional (or
(N−2)-dimensional) plot. In particular, if all of the tran-
sition pairs share a certain transition α (i.e., the pairs are

(α, β), (α, γ), (α, δ), · · · ), the King vectors {~µ,~να} are the
same for all pairs of transitions and comparing the non-
linearities becomes straightforward.
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