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RAMAN LASER

We drive transitions between our qubit states using
a 795 nm Raman laser which is 2π × 100 GHz red-
detuned from the 5S1/2 to 5P1/2 transition. We cou-
ple the laser into a fiber-based Mach-Zehnder intensity
modulator (Jenoptik AM785) which is DC biased around
minimum transmission. The modulator is driven at half
the qubit frequency (ω01 = 2π × 6.83 GHz), resulting in
sidebands at ±2π×3.42 GHz, while the carrier and higher
order sidebands are strongly suppressed. This approach
is passively stable on the timescale of one day without
any active feedback, in contrast with other approaches to
generate sidebands through phase modulation and then
separate suppression of the carrier mode with free space
optical cavities or interferometers.

The Raman laser is aligned along the array of atoms
(co-aligned with the 8.5 G bias magnetic field) and is σ+

polarized, such that the two sidebands coherently drive
π transitions between the F = 1 and F = 2 ground state
manifolds with a Rabi frequency of Ω = 2π × 250 kHz
(Fig. S1a). The Raman drive light induces a differential
light shift of 2π × 20 kHz on the qubit transition; we
adjust the drive frequency of the intensity modulator to
correct for this light shift when we apply a Raman pulse.

OPTICAL PUMPING INTO |0〉

We optically pump atoms into |0〉 = |5S1/2, F =
1,mF = 0〉 using a Raman-assisted pumping scheme with
an 8.5 G magnetic field. As illustrated in Fig. S1b, we be-
gin by coarse pumping of atoms into all mF states within
the |5S1/2, F = 1〉 manifold by shining resonant light on
the |5S1/2, F = 2〉 to |5P3/2, F = 2〉 transition. We then
apply a Raman π pulse at a detuning that drives popu-
lation from |F = 1,mF = −1〉 to |F = 2,mF = −1〉. A
second pulse drives population from |F = 1,mF = +1〉
to |F = 2,mF = +1〉. The process then repeats by again
coarse pumping any population that was transferred to
F = 2 back into the F = 1 manifold. The net effect
of one cycle is to transfer a portion of the population in
|F = 1,mF = ±1〉 into |F = 1,mF = 0〉. We repeat this
cycle 70 times over a duration of 300 µs to achieve a |0〉

preparation fidelity of 99.3(1)%.

RYDBERG LASER SYSTEM

We couple atoms from |1〉 = |5S1/2, F = 2,mF = 0〉
to |r〉 = |70S1/2,mJ = −1/2〉 through a two-color laser
system at 420 nm and 1013 nm, described in [1]. The
lasers are polarized to drive σ− and σ+ transitions, re-
spectively, through the intermediate state |6P3/2〉. In
previous experiments using |5S1/2, F = 2,mF = −2〉 as
the ground state level, selection rules ensured that only
a single intermediate sublevel within |6P3/2〉 and only a
single Rydberg state could be coupled. Additionally, the
combined two-photon transition was magnetically insen-
sitive.

Coupling from |1〉 = |5S1/2, F = 2,mF = 0〉 to Ry-
dberg states, as in these experiments, adds a few com-
plications. Firstly, multiple intermediate states are cou-
pled and both |70S1/2,mJ = ±1/2〉 sublevels within the
Rydberg manifold can be reached. This requires work-
ing at a higher magnetic field to spectrally separate the
mJ = ±1/2 Rydberg levels. In these experiments, we
work at a magnetic field of 8.5 G such that the splitting
between mJ = ±1/2 is 2π × 23.8 MHz. The matrix ele-
ment is also reduced in the coupling from |1〉 to |r〉 while
the laser scattering rate stays the same; additionally,
the transition is now magnetically sensitive. Nonethe-
less, this scheme benefits from high-quality qubit states
|0〉 and |1〉 within the ground state manifold which can
be easily coupled with a Raman laser system and which
preserve coherence in optical tweezers. We note that the
sensitivity to electric fields is unchanged in this scheme,
but we can bound drifting or fluctuating electric fields in
that the Ryberg resonance varies by < 50 kHz [2].

CONSTRUCTING QUANTUM CIRCUITS FROM
NATIVE SINGLE-QUBIT GATES

All pulse sequences shown in the main text are decom-
posed into pre-calibrated single-qubit gates (and, where
indicated, global multi-qubit gates). The two single-
qubit gates are X(π/4), implemented globally on all
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FIG. S1. Raman laser and optical pumping. a) Level diagram. The Raman laser is bichromatic and contains two
frequency components separated by 2π×6.8 GHz. These frequencies are red-detuned by 2π×100 GHz to the |5P1/2〉 manifold.
b) Raman-assisted optical pumping. (i) We begin by coarse pumping into all three sublevels of F = 1, and apply a Raman
π-pulse to excite from |F = 1,mF = −1〉 to |F = 2,mF = −1〉 and from |F = 1,mF = +1〉 to |F = 2,mF = +1〉. (ii) We
then coarse pump back from F = 2 to F = 1. (iii) The net effect is to transfer some population from |F = 1,mF = ±1〉 to
|F = 1,mF = 0〉. We repeat this cycle N = 70 times and achieve a net population of 99.3(1)% in |0〉 = |F = 1,mF = 0〉.

qubits simultaneously, and Z(π), implemented by a light
shift from a laser focused onto a single atom. In prac-
tice, the local Z(π) gates are applied to one atom from
each cluster at the same time (i.e., the left atom of each
cluster or the middle of each cluster).

Initializing computational basis states

For two qubits, we initialize all four computational ba-
sis states using global X(π/2) pulses (consisting of two
sequential X(π/4) gates) and local Z(π) gates on the left
atom only (top qubit in each circuit). The |00〉 state re-
quires no pulses to prepare, and the |11〉 state requires
only a global X(π) gate. We prepare |01〉 as follows:

|0〉 X(π/2) Z(π) X(π/2) |0〉

|0〉 X(π/2) X(π/2) |1〉

and |10〉 according to

|0〉 X(π/2) Z(π) X(3π/2) |1〉

|0〉 X(π/2) X(3π/2) |0〉

For three qubits, we initialize the eight computational
basis states again using global X(π/2) pulses and local
Z(π) pulses which can be applied to any of the three
atoms. |000〉 and |111〉 can again be prepared with either
no operation or with a global X(π) gate, respectively.
Other states have one atom in |1〉 and the other two in
|0〉, or vice versa. We illustrate how both configurations
are prepared by showing two examples. First, |100〉:

|0〉 X(π/2) Z(π) X(3π/2) |1〉

|0〉 X(π/2) X(3π/2) |0〉

|0〉 X(π/2) X(3π/2) |0〉

Next, we consider preparation of |110〉, which requires
instead local addressing on the rightmost atom.

|0〉 X(π/2) X(π/2) |1〉

|0〉 X(π/2) X(π/2) |1〉

|0〉 X(π/2) Z(π) X(π/2) |0〉

Local X(π/2) for CNOT gate

To convert the CZ gate to the CNOT gate, we
apply a local X(π/2) before and after the gate to
the target atom. We implement this as follows:

X(π/4) Z(π) X(π/4) = Z(π)

X(π/4) X(π/4) = X(π/2)

This circuit applies a local X(π/2) on the right atom;
while it additionally applies a Z(π) gate on the left atom,
this circuit is only applied in a context in which the left
atom is in a computational basis state |0〉 or |1〉, in which
case the Z(π) gate only introduces a global phase and
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therefore plays no role. In general, applying additional
Z(π) gates could be used to cancel the effect on the left
atom, but this was not necessary for these experiments.

Local Hadamard for Toffoli implementation

To convert the CCZ gate to a Toffoli gate, we apply
a local rotation on the target (middle) qubit before and
after the CCZ pulse. The simplest method to accomplish
this given our native gate set is to apply a global X(π/4),
followed by a local Z(π) on the middle qubit, and then a
global X(3π/4).

X(π/4) X(3π/4) X(π)

X(π/4) Z(π) X(3π/4) = H

X(π/4) X(3π/4) X(π)

On each edge qubit, the net effect is simply a X(π)
gate. On the middle qubit, this sequence constitutes a
Hadamard gate (defined along a different axis than the
typical definition), where

H =
1√
2

(
1 i
−i −1

)
(1)

DESIGN OF TWO-QUBIT CZ GATE

In this section we provide a detailed theoretical dis-
cussion of the two-qubit gate realized in the experiment.
The desired unitary operation maps the computational
basis states as follows:

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 → |11〉eiπ (2)

Up to a global gauge choice (i.e. global rotation of the
qubits), this is equivalent to the following gate

|00〉 → |00〉
|01〉 → |01〉eiφ1

|10〉 → |10〉eiφ1

|11〉 → |11〉ei(2φ1+π) (3)

where φ1 is arbitrary.

To realize such a gate we drive both atoms globally
and homogeneously with a laser that couples state |1〉 to
the Rydberg state |r〉. This can be achieved via a single

laser field or by a two-photon process. The Hamiltonian
governing the dynamics of a pair of atoms is given by

H =

2∑
i=1

1

2
(Ω|1〉i〈r|+Ω∗|r〉i〈1|)−∆|r〉i〈r|+V |r〉1〈r|⊗|r〉2〈r|

where ∆ is the detuning of the excitation laser from
the transition frequency between states |1〉 and |r〉, and
Ω is the corresponding Rabi frequency. The interac-
tion strength between two atoms in Rydberg states is
given by V . In the following analysis we first assume
that V � |Ω|, |∆|, which can be realized by trapping
the atoms sufficiently close to each other. This so-called
Rydberg-blockade regime simplifies the following discus-
sion, but is not crucial for the realization of the gate.

The dynamics of the system decouples into a few sim-
ple sectors:
(i) The state |00〉 doesn’t evolve.
(ii) If one of the atoms is in |0〉, only the other system
evolves. The dynamics is thus equivalent to that of a two
level system (TLS) with states |1〉 = |a1〉 and |r〉 = |b1〉
and Hamiltonian

H1 =
1

2
(Ω|a1〉〈b1|+Ω∗|b1〉〈a1|)−∆|b1〉〈b1|.

(iii) If both atoms are initially in state |1〉, then the dy-
namics is again equivalent to that of an effective single
TLS, formed by the states |11〉 = |a2〉 and 1√

2
(|r, 1〉 +

|1, r〉) = |b2〉, with Hamiltontian

H2 =

√
2

2
(Ω|a2〉〈b2|+Ω∗|b2〉〈a2|)−∆|b2〉〈b2|.

This assumes a perfect Rydberg blockade, equivalent to
V →∞. We stress again that this assumption simplifies
the analysis but is not necessary to realize our proposed
gate.

The controlled-phase gate can be constructed from two
identical global pulses of the Rydberg laser field, with
equal duration τ and detuning ∆, along with a phase
jump by ξ in between. Each pulse changes the state of
the atoms according to the unitary U = exp(−iHτ). The
change of the laser phase between pulses, Ω → Ωeiξ,
effectively corresponds to driving the system around a
different axis on the Bloch sphere.

Let us examine how the four computational basis states
evolve under the action of U , which describes the effect of
both laser pulses combined. First we note that U|00〉 =
|00〉. Thus the unitary U maps the state |00〉 as expected
for the CZ gate.

Next, let us consider the evolution of state |11〉. We
choose the length of each pulse τ such that a system pre-
pared in state |11〉 undergoes a complete, detuned Rabi
oscillation and returns to the state |11〉 already after the
first single pulse; that is, U |11〉 = eiφ2/2|11〉. This is
guaranteed by the choice

τ = 2π/
√
∆2 + 2Ω2. (4)
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The second pulse also leads to a complete, detuned Rabi
cycle about a different axis, but results in the same accu-
mulated phase. In total, we find U|11〉 = eiφ2 |11〉. The
dynamical phase accumulated by this process is given by
φ2 = 2π × 2∆/

√
∆2 + 2Ω2.

Finally, let us consider the evolution of the states |01〉
and |10〉. In each case, this is also described by a detuned
Rabi oscillation. However, due to the mismatch between
the effective Rabi frequencies in H1 and H2, the state
|10〉 (|01〉) does not return to itself after the time τ but
a superposition state is created: U |10〉 = cos(α)|10〉 +
sin(β)eiγ |r0〉, and U |01〉 = cos(α)|01〉 + sin(β)eiγ |0r〉.
The real coefficients α, β and γ are determined by the
choice of Ω, ∆ and τ , and can easily be calculated (we
omit explicit expressions here for compactness). Cru-
cially, by a proper choice of the phase jump between the
two pulses, ξ, one can always guarantee that the system
returns to the state |10〉 (|01〉) after the second pulse.
This can be calculated to be

e−iξ =
−
√
y2 + 1 cos

(
1
2s
√
y2 + 1

)
+ iy sin

(
1
2s
√
y2 + 1

)
√
y2 + 1 cos

(
1
2s
√
y2 + 1

)
+ iy sin

(
1
2s
√
y2 + 1

)
(5)

where we use the short hand notation y = ∆/Ω and
s = Ωτ . With this choice of the phase we thus have
U|10〉 = e−iφ1 |10〉 and U|01〉 = e−iφ1 |01〉. The acquired
dynamical phase can be calculated using straightforward
algebra, and is a function of ∆/Ω, τΩ and ξ. Since
we fixed τ in equation (4), and ξ in (5), φ1 is actually
solely determined by the dimensionless quantity ∆/Ω.
Note that also φ2 is only a function of ∆/Ω. However,
the functional dependence is different, and we can find
a choice for ∆/Ω such that eiφ2 = ei(2φ1+π) (see Fig. 2
of main text). With this choice, we obtain exactly the
gate given in (3) which is equivalent to the controlled-
phase gate (2) (up to trivial single qubit rotations). For
completeness we give the corresponding numerical values
of the relevant parameters:

∆/Ω = 0.377371 (6)

ξ = 3.90242 (7)

Ωτ = 4.29268 (8)

Finally, we note that this construction can be general-
ized to multi-qubit controlled phase gates in fully block-
aded systems with more than two atoms.

Accounting for imperfect blockade

The above analysis is based on the perfect blockade
mechanism. Finite blockade interactions (and other ex-
perimental imperfections, such as coupling to other Ry-
dberg states) can be accounted for, and lead only to an
effective renormalization of the parameters given in (6).
To see this, note that a finite value of V only affects the

dynamics if the system is initially in the state |11〉. In-
stead of being restricted to the two states |a2〉 = |11〉
and |b2〉 = |1r〉+ |r1〉, a third state |c2〉 = |rr〉 has to be
considered, and H2 is replaced by

H2 =

√
2

2
(Ω|a2〉〈b2|+Ω|b2〉〈c2|+Ω∗|c2〉〈b2|+Ω∗|b2〉〈a2|)

−∆|b2〉〈b2|+ (V − 2∆)|c2〉〈c2|. (9)

For V � |∆|, |Ω|, the effect for finite blockade simply
reduces to the two-level system {|a2〉, |b2〉} where ∆ is
renormalized by an amount Ω2/(2V ). Even for small
V > 0 and a given ∆, we can always choose Ω and τ such
that the system initialized in the state |a2〉 returns after
the first pulse. Thus finite blockade simply replaces the
complete Rabi oscillation in the fully blockaded regime,
by a slightly more complicated, but still closed path in a
two-dimensional Hilbert space. The analysis of the dy-
namics of the other computational basis states is unaf-
fected by the finite value of V . It is thus straightforward
to ensure that a system initially in the state |10〉 returns
to |10〉 for each choice of V and ∆. This allows one to
use ∆ as a control knob for the relative dynamical phases
acquired by |11〉 and |10〉, and thus realize a CZ gate.

EXPERIMENTAL CALIBRATION OF CZ GATE

The CZ gate requires two laser pulses with a rela-
tive phase shift between them. The detuning of the
two pulses ∆ is determined relative to the experimen-
tally calibrated Rydberg resonance by numerical calcu-
lations. The pulse time and the phase jump between
pulses both require experimental calibration due to per-
turbations in timing and phase asssociated with an AOM-
based control system. The pulse time τ is calibrated first
by preparing both atoms in the qubit pair in |1〉 and
driving at detuning ∆ to the Rydberg state. We observe
detuned Rabi oscillations to the symmetrically excited
state |W 〉 = 1√

2
(|1r〉 + |r1〉) and extract the pulse time

at which the population returns fully to |11〉.
After fixing τ , we prepare only single isolated atoms in
|1〉 and we drive two pulses of length τ with a variable
relative phase. By identifying the phase for which the
single atom returns fully to |1〉 by the end of the sequence,
we fix the relative phase ξ.

Finally, we calibrate the global phase shift necessary to
convert the CZ gate (with single-particle phase φ) into
the canonical form:

CZ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (10)

We implement this phase correction by applying the
global 420 nm laser for a fixed time in the absence of the
1013 nm Rydberg light; this avoids any resonant Ryd-
berg excitation and instead only adds a phase shift. To
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calibrate the phase correction, we apply the Bell state
sequence in which we attempt to prepare the Bell state
|Φ+〉 and then we apply an additional X(π/2) rotation
to both qubits. If our phase correction is optimal, we
should prepare the state |Ψ+〉, which we can measure
in populations. We vary the global phase correction to
maximize the measured populations in |Ψ+〉 at the end
of this sequence.

PREPARATION OF BELL STATE USING CZ
GATE AND π/4 PULSE

Our global implementation of the CZ gate enables the
preparation of Bell states with no local addressing. The
protocol is most naturally understood by describing the
two-qubit system in the Bell basis:

|Ψ±〉 =
1√
2

(|01〉 ± |10〉) (11)

|Φ±〉 =
1√
2

(|00〉 ± |11〉) (12)

We prepare the system in |00〉, and after a global X(π/2)
pulse, we prepare the state

|ψ1〉 =
1

2
(|00〉 − i|01〉 − i|10〉 − |11〉) (13)

The controlled-phase gate creates the state

|ψ2〉 = CZ|ψ1〉 =
1

2
(|00〉+ i|01〉+ i|10〉+ |11〉) (14)

=
1√
2

(|Φ+〉+ i|Ψ+〉) (15)

The states |Φ+〉 and |Ψ+〉 are both within the triplet
manifold of the two qubits and are coupled resonantly
by a global drive field to form an effective two level sys-
tem with twice the single-particle Rabi frequency. A π/2
pulse within this effective two-level system corresponds
to a π/4 pulse at the single-particle Rabi frequency, and
maps:

|ψ2〉 =
1√
2

(|Φ+〉+ i|Ψ+〉)→ |ψ3〉 = |Φ+〉 (16)

IMPLEMENTATION OF CCZ GATE

We implement the controlled-controlled-phase (CCZ)
gate in the regime in which nearest neighbors are con-
strained by the Rydberg blockade, but next-nearest
neighbors have only weak interactions. In light of this,
the CCZ gate that we aim to implement is motivated by
the fact that both edge atoms can simultaneously block-
ade the middle (target) atom. In particular, we consider
the following scheme to implement CCZ that involves lo-
cal excitation to Rydberg states:

1. Apply a π pulse on both edge atoms, transferring
all of their population in |1〉 to |r〉.

2. Apply a 2π pulse on the center atom, exciting from
|1〉 to |r〉 and back to |1〉, accumulating a π phase
shift only if neither edge atom is blockading this
central atom and the atom is in |1〉.

3. Apply another π pulse on the edge atoms to return
any population from |r〉 to |1〉.

Such a protocol realizes the following unitary:

CCZ =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


(17)

This unitary is equivalent to the canonical controlled-
controlled-phase gate, denoted CCZ = 1 − 2|111〉〈111|
up to local rotations:

CCZ

X(π)

CCZ

Z(π) X(π)

=

X(π) Z(π) X(π)

In the absence of local excitation to Rydberg states, we
find that global Rydberg coupling can still approximately
realize this unitary. Since different input configurations
evolve according to dynamics of few-level systems with
different coupling frequencies, it is challenging to design
a single analytic global pulse to control all input configu-
rations properly. For example, the |001〉 state couples to
|00r〉 as a two-level system with Rabi frequency Ω. The
|011〉 state couples to 1√

2
(|01r〉 + |0r1〉) with Rabi fre-

quency
√

2Ω. The |111〉 state couples both to |1r1〉 with
Rabi frequency Ω, and also couples to 1√

2
(|r11〉 + |11r〉

with Rabi frequency
√

2Ω (which then couples to |r1r〉).
The systems are further complicated by the finite next-
nearest neighbor interaction between edge atoms.

To find a global pulse that works on all input configu-
rations, we use the RedCRAB optimal control algorithm
[3, 4] to optimize an amplitude and frequency profile for
the coupling field. The optimized pulse, shown in Fig. S3,
has duration of 1.2 µs and achieves a numerically simu-
lated gate fidelity of 97.6%.

Future experimental implementations with colder
atoms could achieve higher gate fidelities by designing
gate timings to intentionally cancel the effect of the un-
wanted phase accumulation between next-nearest neigh-
bors. Alternatively, few-qubit gates could be imple-
mented with all atoms in the fully blockaded regime by
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FIG. S2. Detailed pulse sequences. a) The implementation of the controlled-phase gate in the enclosed region (left hand
side, as in main text Fig. 3), is shown in more explicit detail on the right hand side. The direct implementation of the CZ gate
(region I) includes an extra phase shift on both qubits. This is corrected by a hyperfine qubit X(π) echo pulse (II), followed
by the appropriate phase shifts (III and IV). b) The full pulse sequence for preparing Bell states begins with both atoms in |0〉
and a global X(π/2) pulse (produced by two π/4 Raman pulses) to put both atoms in |−〉y. Then, while the 1013 nm laser is
on, the 420 nm laser is applied in two pulses (with a relative phase between the pulses) to enact the CZ gate, along with global
phase shifts coming from the light shift of the 420 nm laser. A global X(π) pulse flips the qubit states, at which point the same
420 nm pulses are applied but now in the absence of 1013 nm light. This negates the effect of light shifts in the first portion of
the CZ gate implementation. Then, an additional short pulse of the 420 nm laser adds an additional phase correction to turn
the CZ gate into the canonical CZ gate. A subsequent global X(π/4) pulse prepares the two atoms in the Bell state |Φ+〉. A
final 420 nm laser pulse can be used to add dynamical phase to this Bell state, which can be detected by a subsequent global
X(π/2) for measuring parity oscillations. Finally, we push out atoms in |1〉 to detect populations.
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FIG. S3. Optimal control pulse for CCZ implementa-
tion. Time variation of Rydberg Rabi frequency and detun-
ing to approximately implement the CCZ gate with numeri-
cally simulated fidelity 97.6%.

bringing atoms closer together or by exciting to higher
Rydberg states.

ECHO PROCEDURE FOR CZ AND CCZ

The Rydberg pulse which implements the CZ or the
CCZ gate includes both a 1013 nm laser field and a
420 nm laser field, the latter of which adds a differen-
tial light shift to the qubit levels of ∼ 2π × 3 MHz. To
correct for the phase accumulated due to this light shift,
after the CZ gate we apply a qubit X(π) rotation on all
atoms and then apply the same 420 nm pulse used for the
CZ gate, but this time in the absence of 1013 nm light.
The single particle phase φ (main text, eq. (1)) inherent
in the design of the CZ protocol is separately corrected
by an additional short pulse of the 420 nm laser. The full
detailed pulse sequence is shown in Fig. S2.

STATE READOUT THROUGH ATOM LOSS

Our primary technique for state readout is to apply a
resonant laser pulse that heats atoms in |1〉 (in F = 2,
more generally) out of the tweezers, after which we take
a fluorescence image of remaining atoms in |0〉. This
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method correctly identifies atoms in |0〉, but can mistake
atoms that were lost through background loss processes
or by residual Rydberg excitation for atoms in |1〉, lead-
ing to an overestimation of the population in |1〉. For any
measurements involving Rydberg excitation, we therefore
collect measurement statistics both with and without the
pushout pulse, which provides an upper bound on how
much leakage out of the qubit subspace occurred, and
therefore also gives a lower bound on the true popula-
tion in |1〉.

We illustrate this procedure in the context of two-qubit
experiments. Let us denote the two types of measure-
ments as A (in which we apply the pushout of |1〉 atoms)
and B (in which we disable the pushout). For each mea-
surement procedure, we obtain statistics of observing the
four two-qubit states, consisting of ‘lost’ or ‘present’ for
each qubit. The A vector associates these as |0〉 and |1〉,
so Aij (for i, j ∈ {0, 1}) denotes the probability of iden-
tifying the left and right atom in 0, 1 through the simple
loss/presence analysis. However, the atoms can be not
only in the qubit states 0, 1 but they can also be lost from
the trap or in the Rydberg state, which in both cases will
be detected as ‘lost’. Let us denote C as the computa-
tional subspace containing |0〉 and |1〉, and denote C as
anything outside this subspace (including Rydberg popu-
lation or loss). The B vector measures whether the atoms
are in C (either |0〉 or |1〉), or not (C), so is denoted Bij
where i, j ∈ {C,C}.

Both Aij and Bij can be explicitly expressed in terms
of the underlying atomic populations pαβ , where α, β ∈
{0, 1, C}, as follows;

A00 = p00 (18)

A01 = p01 + p0C (19)

A10 = p10 + pC0 (20)

A11 = p11 + p1C + pC1 + pCC (21)

BCC = p00 + p01 + p10 + p11 (22)

BCC = p0C + p1C (23)

BCC = pC0 + pC1 (24)

BCC = pCC (25)

Measuring Aij and Bij , we can now solve for the
atomic populations of interest: p00, p01, p10, p11.

p00 = A00 (26)

p01 = A01 −BCC + p1C (27)

p10 = A10 −BCC + pC1 (28)

p11 = A11 −BCC −BCC −BCC + (p0C + pC0) (29)

Since all probabilities are non-negative and BCC +
BCC + BCC = 1 − BCC , we have our lower bounds for

the true populations:

p00 = A00 (30)

p01 ≥ A01 −BCC (31)

p10 ≥ A10 −BCC (32)

p11 ≥ A11 − (1−BCC) (33)

This is the analysis carried out for the Bell state pop-
ulations, the CNOT truth table, and the Toffoli truth
table (extended to three qubits). For the truth tables,
the analysis is carried out for each measurement configu-
ration (corresponding to a different input computational
basis state) separately, shown as the rows in the matrices
of Fig. S4.

CORRECTING FOR STATE PREPARATION
AND MEASUREMENT ERRORS

We consider the problem of correcting a measured fi-
delity for state preparation and measurement (SPAM)
errors. We denote P as the probability to correctly ini-
tialize and measure all qubits; generally, P = (1 − ε)N
for single-particle SPAM error rate of ε. The measured
fidelity is related to the ‘corrected fidelity’ according to:

F = P ×Fc + (1− P )×F false (34)

Here F false denotes the false contribution to the measured
fidelity signal in cases in which SPAM errors occur. The
main subtlety in performing this correction is properly
evaluating the potential false contribution F false.

Experimentally, the SPAM error is ε = 1.2(1)% per
qubit, consisting of two effects: first, the optical pumping
into |0〉 has an error probability of 0.7(1)%, constituting
a state preparation error. Second, there is a small chance
that an atom can be lost due to a background collision
either before or after the Bell state circuit is performed.
Loss before the circuit contributes as a state preparation
error; loss after the circuit but prior to the readout fluo-
rescence image contributes as a measurement error. The
total background loss contribution is 0.5(1)% error per
atom.

Bell state fidelity

The total probability that no errors occur on either of
two qubits is P = 97.6(2)%. Equation (34) holds for both
the population measurement and the parity oscillation
measurement separately. The population measurement
explicitly only counts lower bounds on the population
of atoms within the qubit subspace (see section: “State
readout through atom loss”). Therefore, in cases where
an atom is lost there is no false contribution to the mea-
sured fidelity. However, our measured fidelity does not
distinguish between atoms pumped into magnetic sub-
levels outside of the qubit subspace. We estimate that
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FIG. S4. Here we show full measurement statistics for the CNOT and Toffoli truth tables. In both situations, for each
input computational basis state, we measure the probability distribution (shown in percentage points) of different output
configurations both with and without the pushout pulse which removes |1〉 population, corresponding to the A matrix and B
matrix, respectively. The output distribution of the A matrix is mainly associated with qubit levels |0〉 and |1〉 according to
whether the atom is present or absent. However, this approach overestimates population in |1〉 since leftover population in
the Rydberg state and losses due to other processes lead to the same measurement outcome as |1〉. To distinguish this effect,
we measure without the pushout pulse (bottom row) to assess how much population is left in the computational subspace
(C), rather than lost into the Rydberg state and therefore out of the computational subspace (C). Comparing these two
measurements provides a lower bound on the true atomic populations in the |0〉 and |1〉 qubit states.

in cases when one of the two atoms are prepared in an
incorrect magnetic sublevel (1.4(2)% probability), there
can be a false contribution of F false = 1 − cos2(7π/8) ≈
15% (calculated by evaluating the quantum circuit in
the main text Fig. 3a with one atom not participat-
ing). The lower bound on the measured probablilities
p00 + p11 ≥ 95.8(3)% therefore set a lower bound on the
corrected populations: pc

00 + pc
11 ≥ 97.9(4)%.

On the other hand, the parity oscillation amplitude
receives no false contribution from cases when an atom
is prepared in the wrong sublevel or is lost, because
this error is independent of the accumulated phase and
therefore does not oscillate as a function of the phase
accumulation time. The false contribution is therefore
F false = 0. In this case, the coherence C (given by the
amplitude of the parity oscillation) is related to the cor-
rected coherence by C = P × Cc. Since C = 94.2(4)%,
we obtain a corrected coherence of Cc = 96.5(4)%.
The total SPAM-corrected Bell state fidelity, then, is
Fc = 1

2 (pc
00 + pc

11 + Cc) ≥ 97.2(3)%.

CNOT Truth Table

We measure the truth table by performing the CNOT
gate on each computational basis state. The basis states
are prepared with finite fidelity, as measured and shown
in the main text Fig. 3e. For each basis state, we wish
to assess how the finite output fidelity in the target state
compares to the finite initialization fidelity to determine
how well the gate performs on this input state. We es-
tablish a probability Pij of no SPAM error occurring for
each measurement setting (where ij denotes the setting
in which we initialize the computational basis state |ij〉).
Additionally, we measure a lower bound on the output
probability in the target state, Fij .

We now consider false contributions to the measured
fidelity. When an error involving atom loss occurs,
there is no false contribution to fidelity since fidelity
only measures atom population within the qubit sub-
space. Alternatively, in cases when the wrong compu-
tational basis state is prepared, then F false is bounded
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Raw outcomes Lower bound Corrected

Bell state populations 97.6% 95.8% 97.9%
Bell state coherences 94.2% 94.2% 96.5%
Bell state fidelity 95.9% 95.0% 97.2%

CNOT: Input 00 97.3% 95.0% 96.5%
01 96.4% 94.9% 97.9%
10 93.3% 93.3% 96.3%
11 94.4% 93.1% 95.4%

CNOT Truth table 95.4% 94.1% 96.5%

Toffoli: Input 000 90.3% 73.1% 75.1%
001 88.9% 82.6% 86.2%
010 87.4% 73.0% 76.0%
011 90.3% 86.7% 90.0%
100 90.4% 84.3% 87.4%
101 91.6% 91.6% 95.7%
110 90.3% 87.0% 90.5%
111 93.3% 91.0% 95.0%

Toffoli Truth table 90.3% 83.7% 87.0%

TABLE S1. Summary of measurement results. Raw out-
comes correspond to simple assignment of atom presence to
qubit state 0 or 1. The lower bound comes from subtracting
a conservative upper bound estimate on how much leakage
out of the qubit subspace there may be, as determined by a
separate measurement in which we do not push out |1〉 atoms.
The corrected column shows the fidelities corrected for SPAM
errors.

above by the largest unwanted element of the truth ta-
ble, or < 4%. The total false contribution therefore is
(1 − P ) × F false < (3%) × (4%) . 0.1%. This contri-
bution is below our measurement resolution and we do
not account for it. The corrected fidelity is therefore just
given by Fc

ij = Fmeas
ij /Pij . The average corrected truth

table fidelity, given by the average of Fc
ij , is therefore

Fc
CNOT ≥ 96.5% (see Table S1).

Toffoli Truth Table

We perform the same analysis to evaluate the corrected
Toffoli truth table fidelity as for the CNOT truth ta-
ble. The average corrected truth table fidelity is Fc

Toff ≥
87.0% (see Table S1).

LIMITED TOMOGRAPHY OF TOFFOLI GATE

The truth table of the Toffoli gate provides a repre-
sentation of the magnitude of the matrix elements of
the gate expressed in the logical basis. However, the
measured populations carry no information about the
relative phases between the different entries. Perform-
ing a similar procedure as the truth table but rotating
the Toffoli gate to act on the X-basis instead of the
Z-basis makes it possible to recover some information
about these phases. A restricted version of such a pro-
cedure has been used before as a way to characterize
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FIG. S5. Limited tomography of Toffoli gate. The raw
target probabilities average to 88.0(3)%. Since four of the
measurement configurations are precisely global X(π) gates
applied to the other four input states, we can compare these
output distributions to properly account for leftover Rydberg
population, similar to the procedure discussed in State read-
out through atom loss. We establish the limited tomography
fidelity is therefore F ≥ 81.5(5)%. Corrected for SPAM er-
rors, the fidelity is ≥ 86.2(6)%.

the fidelity of the Toffoli gate [5], and has been dubbed
“Limited Tomography”. The procedure consists of ini-
tializing all the computational basis states in the Z-basis,
and then applying an X(±π/2) rotation to all qubits
before and after a Toffoli gate. The sign is chosen to
be X(+π/2) when the target qubit is initialized in |0〉
and X(−π/2) when the target qubit is initialized in |1〉.

|q0〉 X(±π/2) • X(±π/2)

|q1〉 X(±π/2) X(±π/2)

|q2〉 X(±π/2) • X(±π/2)

Conditioning the sign of the rotation on the state of the
target qubit enforces that the target qubit is always in
the same state |+〉y prior to the action of the Toffoli gate
itself.

The Toffoli gate implemented in our system, which in-
cludes an echo pulse that acts as a global X(π) gate (see
main text, Fig. 4), is described ideally by the unitary
matrix:
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TIdeal =



0 0 0 0 0 i 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −i
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0


, (35)

Performing the limited tomography procedure on this
unitary should result in the following output truth table:

Lim[TIdeal] =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


, (36)

where each row shows the target output probabilities for
a given input state. However, if the Toffoli gate is allowed
to deviate from the ideal unitary by arbitrary phases φj
according to

Tφ =



0 0 0 0 0 ieiφ1 0 0
0 0 0 0 0 0 eiφ2 0
0 0 0 0 0 0 0 −ieiφ3

0 0 0 0 eiφ4 0 0 0
0 0 0 eiφ5 0 0 0 0
0 0 −eiφ6 0 0 0 0 0
0 eiφ7 0 0 0 0 0 0
−eiφ8 0 0 0 0 0 0 0


,

(37)
then the limited tomography truth table reflects this
phase deviation. In particular, each truth table matrix
element in which the limited tomography should pro-
duce unity will instead result in a peak probability of
| 18
∑
j e
iφj |2. The average fidelity of the limited tomog-

raphy truth table therefore reflects how close the phases
on the Toffoli unitary are to their ideal values, and can
only reach unity if each phase is correct. Our measured
limited tomograpy truth table is shown in Fig. S5.

It is worth noting that the limited tomography pro-
tocol only makes use of four of the eight X-basis input
states, as seen by the fact that the target qubit is al-
ways initialized in |+〉. This makes four out of the eight
measurements equivalent to the other four up to a global
X(π) rotation at the end. Comparing these two sets of
measurements gives a constraint on the probability of
leakage out of the qubit subspace, similarly to the ap-
proach described in the section “State readout through
atom loss.”

a) b)

FIG. S6. Parallel gate implementation in a contiguous chain
of atoms. (a) Local addressing lasers can shift the frequency of
the Rydberg transition from |1〉 to |r〉 by δ without changing
the |0〉 ↔ |1〉 frequency. (b) The local addressing lasers are
focused onto a subset of qubits on which we aim to perform
parallel multi-qubit gates. The global Rydberg coupling laser
is tuned to the light-shifted resonance, so that only the locally
addressed atoms are coupled to the Rydberg state for gate
implementation.

PARALLEL GATE IMPLEMENTATION IN A
CONTIGUOUS ARRAY

The experiments performed here involve parallel multi-
qubit gate implementation on separated pairs of atoms,
where the inter-pair interaction is negligible. However,
one can extend this protocol to parallel gate implemen-
tation in a contiguous chain of atoms, as illustrated in
Fig. S6. We consider an additional local addressing laser
system which can address an arbitrary subset of atoms,
using for example an acousto-optic deflector. Specifically,
one can select a wavelength for this laser such that the
imparted light shift affects the |0〉 and |1〉 states equally,
but differently from the Rydberg state |r〉. In such a
case, the light shift from this new local addressing laser
does not apply any qubit manipulations, but instead sim-
ply shifts the effective Rydberg resonance. Near-infrared
wavelengths tuned far from any ground state optical tran-
sition (λ & 820 nm) are suitable for Rubidium.

With such a system, we could illuminate all pairs of
adjacent atoms on which we intend to perform two-qubit
gates, and then by tuning the Rydberg laser to the light-
shifted resonance we would perform the multi-qubit gate
on all pairs in parallel. The only constraint is that there
must be sufficient space between addressed pairs such
that the interaction (cross-talk) between them is negligi-
ble in a particular layer of gate implementation.
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