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1Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Dipartimento di Fisica e Astronomia and LENS - Università di Firenze,
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I. TECHNICAL AND EXPERIMENTAL DETAILS

Cold 171Yb atoms are prepared in a two-color magneto-optical trap (MOT) [1] and then cooled further in a single-
color MOT on the triplet transition 1S0→3P1 with wavelength λ=556 nm and linewidth Γ/(2π)=184 kHz. The atoms
are transported into an asymmetric high-finesse optical cavity [2] by adjusting the magnetic field of the MOT, and
loaded into a one-dimensional optical lattice with wavelength λt=759 nm and trap depth U0=kB×120 µK. In order
to remove hot atoms with weaker coupling to the cavity mode, the trap depth is lowered to U0/3 and restored to U0

over 85 ms. The temperature of the remaining Ntot≈1500 atoms is T=(20±5) µK.
The asymmetric cavity consists of a large spherical mirror with radius of curvature R1=25 mm, and a slightly

elliptical micromirror with an average radius R2=344 µm [2]. The cavity finesse is F=1.2×104 at the probe wavelength
λ, corresponding to a cavity linewidth κ/(2π)=520 kHz. The single-atom cooperativity at an antinode is given by
η0=24F/(πk2w2) [3]. At a distance of 0.42 mm from the micromirror, the probe mode waist is w = 15.1 µm, giving
η0=2.4, which means that the system is in the strong-coupling regime [4–6] (see also Ref. [2] for details). Since
λ 6= λt, the atoms are inhomogeneously coupled to the probe. As in Refs. [7, 8], we define an effective atom number
N=Ntot〈η〉2/〈η2〉= 2

3Ntot and effective single-atom cooperativity η=〈η2〉/〈η〉= 3
4η0, so that the spin projection noise,

measured via the cavity, satisfies the usual relation (∆N)
2

=N/4 for a CSS. The experiments described below are
performed with N≈1000, η=1.8(1), and a collective cooperativity Nη≈1800. The effective cooperativity η is confirmed
in an independent measurement (see III).

We perform squeezing between the nuclear sublevels |↑〉 ≡
∣∣mI=

1
2

〉
and |↓〉 ≡

∣∣mI=− 1
2

〉
of the electronic 1S0 ground

state of 171Yb. The collective spin state can be represented on a Bloch sphere with radius S=N/2 [8]. The cavity
frequency ωc is tuned to be nearly resonant (ωc−ωa=2π×−340 kHz) with the |↑〉 →

∣∣3P1,mF = 3
2

〉
atomic transition

with frequency ωa in the presence of a magnetic field Bz=13.6 G along the cavity axis. N↑ atoms in the state |↑〉
induce a vacuum Rabi splitting 2g=

√
N↑ηκΓ of the cavity resonance (Fig. S2). Near the equator of the Bloch sphere,

where N↓ ≈ N↑, there is also a small dispersive effect from the N↓ atoms in the state |↓〉, suppressed by the Zeeman
splitting ∆z=2π × 18.5 MHz between magnetic sublevels in the excited 3P1 state, with ∆z�Γ, κ. To accurately
analyze the experiments described below, we need to consider both the near-resonant transition |↑〉 →

∣∣3P1,mF = 3
2

〉

and the detuned transition |↓〉 →
∣∣3P1,mF = 1

2

〉
.

Sz is determined by detecting N↑ via a measurement of the Rabi splitting 2g, swapping the populations of |↑〉 and
|↓〉 with a radiofrequency π pulse, and remeasuring the Rabi splitting to give N↓. From N↑ and N↓, we determine
Sz = (N↑ − N↓)/2, and S = (N↑ + N↓)/2 using the two-transition atomic model and the separately measured

cavity parameters (III). The primary quantity of interest, denoted by σ2 ≡ 2 (∆Sz)
2
/S, is the spin variance (∆Sz)

2

normalized to the CSS noise (∆Sz)
2
CSS = S/2. The SQL corresponds to σ2=1. Our experimental cavity is frequency-

stabilized to the trap laser λt=759 nm, whose frequency is stabilized to a stable external reference cavity. The bridging
frequency between this cavity and the experimental cavity is set through a sideband generated by an electro-optic
modulator (EOM). We use the Pound-Drever-Hall technique to lock the cavity to the trap light. In order to actively
suppress slow drifts of the experimental cavity resonance frequency with respect to the atomic transition we scan the
probe light (λ=556 nm), which is locked to an ultra-stable cavity, and monitor the transmission of the probe light
through the cavity. With this we can precisely determine the resonance frequency of the experimental cavity relative
to the ultra-stable cavity. We keep this frequency stable from run to run by feeding back through an FPGA circuit
on the bridging frequency with an error of less than 15 kHz.
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II. MEASUREMENT OF THE ATOMIC STATE

The collective atomic state projection Sz is obtained from the difference Sz=(N↑ − N↓)/2 between the two pop-
ulations N↑ and N↓ of the states |↑〉 =

∣∣6s2 1S0, mI = 1
2

〉
and |↓〉 =

∣∣6s2 1S0, mI = − 1
2

〉
. We first measure the

population N↑ of the |↑〉 state through the vacuum Rabi splitting of the cavity mode 2g≈
√
N↑ηκΓ occurring when

the empty cavity mode frequency ωc is resonant with the atomic transition |↑〉 →
∣∣3P1,mF = 3

2

〉
with frequency

ωa. After that, we apply a radiofrequency (RF) π-pulse that switches the populations of |↑〉 and |↓〉, and remeasure
the Rabi splitting which is now proportional to

√
N↓. We implement the following state measurement sequence

(N
(1a)
↑ –N

(1a)
↓ –N

(1b)
↓ –N

(1b)
↑ –N

(2a)
↑ –N

(2a)
↓ –N

(2b)
↓ –N

(2b)
↑ ). The inferred Sz values for the two measurements (i = 1, 2) are

S
(i)
z =(N

(ia)
↑ + N

(ib)
↑ − N (ia)

↓ − N (ib)
↓ )/4. We define the quality of a single measurement as the normalized variance

σ2
d ≡ var

(
S
(2)
z − S(1)

z

)
/S.

In principle, to determine the state Sz it is sufficient to measure N↑, apply a π−pulse, and measure N↓. However,
in this way the two populations are not measured simultaneously, resulting in additional noise due to atom number
decay. By measuring N↓ and N↑ twice, as described in the previous paragraph, we can eliminate the noise due to
atom decay to first order.
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FIG. S1: Variance of the difference between two repeated measurements on the same spin state, normalized to the SQL, vs.
total detected photon number p per measurement. For small photon number, the measurement quality increases proportionately
to p. However, at large photon number the variance increases again due to Raman scattering. The dashed line is a fit of form
σ2
d = a/p+ bp with a=26(9) and b=9.2(8)×10−5. The parameters for these measurements are N∼1000, η=2.0(3).

Note that because of the existence of the second (detuned) transition |↓〉 →
∣∣3P1,mF = 1

2

〉
, the vacuum Rabi peaks

are not exactly symmetric, and we detune the cavity by a small amount ωc − ωa = −2π × 340 kHz from the atomic
frequency to cancel the asymmetry to lowest order. We use the exact relation 2g(N↑, N↓) when determining the
populations from the measured Rabi splittings.

In Fig. S2 it is shown the Rabi splitting measurement performed by simultaneously sending two laser sidebands, at
ωc±ωm, into the atom-cavity system. In this way, we can detect both vacuum Rabi peaks simultaneously, while being
robust against laser and cavity noise. We perform a linear chirp of the modulation frequency ωm from 0 to 7 MHz
in 10 ms, and detect the transmitted light that contains a beat note at 2ωm. Information about the atomic state is
contained in both the intensity and the phase of the signal at 2ωm. We record the arrival times of the transmitted
photons and fit both the intensity and phase; using the phase information in addition to the intensity improves the
detection by up to a factor of 4.

As shown in Fig. S1, detection of more photons improves the Sz detection until Raman scattering increases the
Sz noise [9–13]. In our system, Raman scattering is suppressed to 5% of Rayleigh scattering due to the small atomic
linewidth Γ = 2π×184 kHz and Rabi splitting g ≈ 2π×4 MHz compared to the Zeeman splitting ∆z = 2π×18.5 MHz.
This enables reasonably good detection at our relatively small atom number N≈103 compared to N = 5× 105 atoms
as used in Refs. [10, 11] which have demonstrated record squeezing. However, our detection is 4 dB worse than the
optimum expected for our photon detection efficiency of 15%. This is likely caused by the imperfect contrast in the
chirp measurement, which hinders the possibility of using the entire phase information acquired in the heterodyne
detection.
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FIG. S2: Sketch of the implemented heterodyne measurement. Two laser sidebands (green solid vertical lines) are simultaneously
chirped from the frequency of the empty cavity mode (blue dashed vertical light) through the blue and red detuned Rabi peaks,
respectively. We use the beating between these two sidebands (beat note at 2ωm) to measure the Rabi splitting 2g.

III. MEASUREMENT OF SINGLE-ATOM COOPERATIVITY η AND DETERMINATION OF
STANDARD QUANTUM LIMIT (SQL)

The single-atom cooperativity η can be calculated from the cavity parameters and the measured position of the
atoms along the cavity mode. It can also be experimentally verified from the spin noise, measured via the cavity, as
a function of collective cooperativity Nη [9]. For a state prepared at the equator of the Bloch sphere, the variance of
the difference Szη=(N↑ −N↓)η/2 at the projection noise limit (standard quantum limit (SQL)) is given by

var

(
N↑η −N↓η

2

)
= (N↑+N↓)

η2

4
=(Nη)

η

4
, (S1)

where N = N↑ + N↓=Ntot〈η〉2/〈η2〉 is the effective atom number, and η = 〈η2〉/〈η〉 the effective cooperativity. For
atoms uniformly (or randomly) distributed along the length of the cavity, we have N = 2

3Ntot and η = 3
4η0 [8]. Here,

Ntot is the actual number of atoms coupled to the cavity, while η0 is the cooperativity at a cavity antinode, given by

η0 =
24F
πk2w2

(S2)

for a Gaussian cavity mode. In (S2), F is the cavity finesse, k = 2π/λ is the wavevector of light resonant with the
atomic transition, and w is the 1/e2 intensity radius of the cavity mode at the position of the atoms. The asymmetric
structure of our optical cavity makes the mode waist w position-dependent [2], and equal to w = 15.1 µm at the
distance of 0.42 mm from the micromirror where we trap the atoms for all experiments described here.

Plotting the measured variance of 1
2 (N↑η−N↓η) as a function of the measured total cooperativity Nη yields η/4 as

the slope of the line, as shown in Fig. S3. The result, η=1.8(1), agrees with the expected value η = 1.8(2) calculated
from the cavity parameters and first principles [3]. The SQL in the population difference quadrature is then given

by (∆Sz)
2

=S/2=N/4. The linear dependence in Fig. S3 demonstrates that our system is dominated by quantum
noise. We fitted the data also to a quadratic model (see Fig. S3) obtaining η=1.6(2), which equally agrees with the
expected cooperativity. However, the p−value of the estimated quadratic coefficient is 0.28, which means that such a
coefficient is consistent with 0. We thus use the simple linear fit as the best estimator of η.

IV. GENERATION OF RF PULSES

To drive the transition between the two magnetic sublevels mI= ± 1
2 of the ground state

∣∣1S0, I = 1
2

〉
of 171Ybwe

use radiofrequency (RF) pulses. The nuclear g factor of 171Ybis equal to gI = −0.4919(3), resulting in a Zeeman
shift of ∆z,I(mI) = gIµNmI = 2π × −375 Hz/G ×mI . Thus, the transition frequency

∣∣mI=
1
2

〉
→
∣∣mI=− 1

2

〉
has a

Zeeman shift of ∆z,I(
1
2 )−∆z,I(− 1

2 )=2π×−750 Hz/G. At a typical applied field of Bz=13.6 G, the resulting splitting
(Larmor frequency) is 2π× 10.2 kHz. The RF-pluses necessary to drive nuclear spin flips are generated using a single
coil which is composed of two independent conductors, generating an oscillating magnetic field in the x̂ direction.
Each conductor carries the same AC current, but opposite DC currents, to avoid altering the DC magnetic field
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FIG. S3: Determination of the effective cooperativity from measured spin noise, see Eq. (S1). The solid line represents the
data fitted to a linear model, while for the dashed line the model is quadratic.

experienced by the atoms. With an amplitude of 63 A for the alternating current, a Rabi frequency of 208(2) Hz is
obtained. More details about the configuration and control of the magnetic field for Rabi pulses can be found in [14].

In order to be insensitive to the environmental magnetic field variations, we use a CORPSE composite π-pulse
[15, 16] in the spin echo sequence. We perform the spin-echo pulse around the Sx axis, i.e., the direction of the
average spin vector. The CORPSE pulse consists of the following three pulses [15, 16]:

[
θ1
]
[φ1]

[
θ2
]
[φ2]

[
θ3
]
[φ3]

(S3)

In this equation, θi is the pulse area and φi is the relative phase. We choose θ1=2π + θ/2 − k, θ2 = 2π − 2k, and
θ3=θ/2−k, with k = arcsin[sin(θ/2)/2], and θ is the target rotation pulse area, which in our case is θ=π. The phases
of the three pulses are given by φ1 = φ2 − π=φ3=φ, where φ is the phase of the composite pulse. The lengths of the
pulses are 5.25 ms, 3.75 ms, and 0.75 ms, respectively. The pulse areas are calibrated by Rabi spectroscopy between
the nuclear sublevels mI = ± 1

2 . The simple π Rabi pulse has an efficiency of 98%. For calibration of the Larmor
frequency, we perform Ramsey spectroscopy in the space of the nuclear spin states, with Ramsey times ranging from
1 ms to 50 ms.

V. EXPERIMENTAL SEQUENCE FOR TWO-COLOR SQUEEZING

Figure S4 shows the detailed experimental sequence, a condensed version of which is shown in Fig. 1(d) of the
main text. Optical pumping puts all atoms into the |↑〉 state. A π/2 pulse (see Sec. IV) prepares a coherent
spin state (CSS) along the +x̂ direction. Two squeezing pulses are sequentially sent into the cavity, with frequencies
ωl1 = ωa+2π×7.33 MHz and ωl2 = ωa−2π×2.00 MHz respectively, and a relative incident power ratio of P2/P1=0.53.
The shearing induced by a photon at ωl2 is greater than for a photon at ωl1 due to a smaller detuning from atomic
resonance.

At this point, a SSS is already produced, but an N -dependent first-order phase shift has displaced the state away
from pointing in the +x̂ direction. To compensate for this shift, we perform a spin echo sequence, by applying a
CORPSE π pulse around the +ŷ direction, and sending two more squeezing pulses through the cavity, now in reverse
order: ωl2 followed by ωl1, with the same power ratio as before. The spin echo sequence also cancels spin dephasing
due to inhomogeneous magnetic fields. The final step in the sequence is a rotation of the state around the +x̂ direction
by a variable angle α, followed by the state detection sequence described in Section II.

VI. COMPENSATION FOR FLUCTUATIONS IN THE TOTAL ATOM NUMBER

For an initial CSS near the Bloch sphere equator (fixed Sz ≈ 0), fluctuations in the total atom number N change
the vacuum Rabi splitting and the shearing strength Q per incident photon. If the atom number N is greater,
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time

FIG. S4: Full experimental sequence for spin squeezing. The subscript in the RF pulses indicates the axis of the rotation. The
spheres below the sequence indicate the collective spin state at the corresponding time.

probing pulses detuned from the atomic frequency by more than the Rabi splitting (|ωl−ωa| > g ≈ 2π× 4 MHz) will
introduce a larger shearing per incident photon; conversely, pulses with |ωl − ωa| < g will induce less shearing. Thus,
by sending two separate probing pulses with appropriately chosen frequencies and relative intensities, it is possible to
avoid broadening of the generated squeezed state due to fluctuations in N .

To achieve first-order insensitivity to atom number fluctuations around Nη = 1800 with η = 1.8, we choose the
parameters ((ωl1 −ωa)/(2π)=7.33 MHz, (ωl2 −ωa)/(2π)=− 2 MHz, and incoming power ratio P2/P1 = 0.53. For the
conditions in which we obtained the results reported in the main text, the model predicts, a maximum variation of
Q equal to 8% in the range 1600 < Nη < 2000. Fig. S5 shows a measurement of the compensation together with a
prediction from the theoretical model (see Sec. VII) with no free parameters.

1200 1400 1600 1800 2000 2200 2400 2600
0
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FIG. S5: Compensation for total atom number fluctuations measured for ωl1 = 7.334 MHz and ωl2 = −2.5 MHz, η=3. Note
that these measurements were taken at slightly different conditions than the other results in the main text. The two squeezing
pulses have power ratio P2/P1 = 0.53. Blue dotted, red dashed and black solid lines stand for theoretical calculation for shearing
strength Q due to the ωl1 pulse, the ωl2 pulse and both together, respectively, while the red circles indicate experimental results.
Around Nη ≈ 1800, Q depends only weakly on the total atom number.
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VII. THEORETICAL MODEL FOR SQUEEZING AND MEASUREMENT STRENGTH

The squeezing is caused by light circulating in the cavity that is influenced by the quantum noise of the atomic
spin Sz [7, 17]. For ωl, ωc, ωa being the angular frequencies of the incident light, the empty cavity, and the atomic
transition, respectively, we define normalized cavity and atomic detuning x = 2(ωl − ωc)/κ, y = 2(ωl − ωa)/Γ, and

La(y) =
1

1 + y2
(S4)

Ld(y) = − y

1 + y2
(S5)

as the absorptive and dispersive Lorentzian lineshapes, respectively. Then in the two-level approximation, where only
the state |↑〉 is coupled to an excited state, the Hamiltonian of the system can be written as [14, 18]

H = Szη
|Ec|2
ωl

π

F Ld(y) (S6)

Here, Ec is the amplitude of the circulating intracavity electric field. This Hamiltonian causes a precession of the spin
that is canceled by the spin echo π pulse (see Sec. V and Fig. S4). Furthermore, due to the dependence of the cavity
field Ec on Sz, different Sz components experience different phase shifts (one-axis twisting [19]). The shearing strength
Q is defined as the second derivative of the phase shift with respect to Sz. Expressing Q by the transmitted photon
number ptr for a (nearly) one-sided cavity driven through the low-transmission mirror, we obtain for the shearing

strength Q̂ per transmitted photon the following expression:

Q̂tr ≡
Q

ptr
= − y

2 (1 + y2)
2

N↑η2 (1 +N↑η − xy)

(1 +N↑ηLa(y))2 + (x+N↑ηLd(y))2
. (S7)

Since at fixed parameters the photon number scattered by the atoms into free space is proportional to the transmitted
photon number psc, we can easily find the shearing strength Q̂sc = Q/psc per scattered photon. For our parameters

we calculate Q̂
(1)
sc = 0.014, Q̂

(2)
sc = 0.097 for the blue and red detuned probing pulses, respectively. Taking the input

intensity ratio P2/P1 = 0.53 and the cavity transmission ratio T2/T1 = 0.27 into account, the average shearing

strength per scattered photon is Q̂sc = 0.024.
The excess state broadening F over unitary squeezing arises from the fact that the transmitted and scattered light

carries some residual information about the atomic spin Sz, and tracing over the light degrees of freedom causes excess
antisqueezing of the atomic spin. We define 1 + F as the factor by which the minimum spin quadrature variance is
increased due to excess antisqueezing. It can be shown that F is proportional to the transmitted or scattered photon
number. The value F̂ per transmitted photon is calculated as [14, 18, 20]:

F̂tr ≡
F

ptr
=

2

(1 + y2)
2

N↑η2
(
1 +N↑η + y2

)

(1 +N↑ηLa(y))2 + (x+N↑ηLd(y))2
. (S8)

This gives for the excess broadening per scattered photon F̂ 1
sc = 0.0018 and F̂ 2

sc = 0.016. Taking the intensity ratio

into account, we have F̂sc = 0.0036 per scattered photon.

VIII. EFFECT OF BLOCH SPHERE CURVATURE

To lowest order in Q, the one-axis twisting Hamiltonian simply induces unitary squeezing with quadrature variances
given by Eq. (2). However, due to the curvature of the Bloch sphere, the minimum spin quadrature increases [19],
with the next-lowest order term being an increase of the minimum spin quadrature variance by Q4/(24S2) for a
homogeneously coupled system [21]. In our inhomogeneously coupled system, this curvature-induced broadening is
twice as large: Q4/(12S2). This term reproduces the observed broadening at Q & 10 in Fig. 3 in the main text. The
Bloch sphere curvature limits the maximum squeezing to ξ2− ≥ −15.8 dB.
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IX. CAVITY QED PARAMETERS USED IN THIS EXPERIMENT

The cavity and atomic parameters are summarized in Table I. For more details regarding the cavity see Ref. [2].
Some parameters have changed their values due to aging of the experimental setup and are slightly different from those
summarized in Table I of Ref. [2]. Note that the cavity linewidth κ includes broadening from the relative frequency
stability of the cavity and 556 nm probe laser, while the cavity finesse F is obtained via a ringdown measurement
which is sensitive to the properties of the cavity alone. The total detection efficiency ε for a photon initially inside
the cavity includes mirror losses, detection path loss, and finite photodetector quantum efficiency.

Atomic wavelength λ = 555.799 nm

Atomic linewidth of 3P1 state Γ/(2π) = 184(1) kHz

Cavity linewidth κ/(2π) = 520(15) kHz

Cavity finesse F = 12.2(4)× 103

Transmission of R1 = 25 mm mirror 30(1) ppm

Transmission of R2 = 344 µm mirror 196(5) ppm

Cavity detuning (ωc − ωa)/(2π) = −340(10) kHz

Effective cooperativity η = 1.8(1)

Atomic temperature T = 20(5) µK

Lattice depth U0/h = 2.5(6) MHz

Axial trapping frequency ωax/(2π) = 140(4) kHz

Radial trapping frequency ωr/(2π) = 1.4(1) kHz

Total photon detection efficiency ε = 15(1)%

TABLE I: Summary of most relevant parameters used in this experiment.

X. STATISTICAL AND SYSTEMATIC ERRORS

A. Statistical errors

The statistical error in the variance estimation with n measurements is given by

∆σ2 = σ2

√
2

n− 1
. (S9)

Each σ2
α in the tomography (see Fig. 2 in the main text) is obtained by collecting more than 100 measurements,

resulting in fractional uncertainties smaller than 12%. For each state tomography curve we performed more than 1000
experiments; we used the whole set of data to estimate the state readout σ2

d, resulting thus in a fractional uncertainty
smaller than 5%.

B. Systematic errors

From day to day we observe fluctuations in the estimated state readout σ2
d. We attribute this to systematic variations

of the 556 nm laser frequency on the order of ±40 kHz. This induces changes in the contrast of the beat note produced
in the heterodyne measurement of Sz (see Section II), resulting in fluctuating efficiency of the information derived
from the phase of the beatnote at 2ωm (see Fig. S2).

Thus, the σ2
d=9.4(4) dB as specified in the main text is dominated by this systematic error.

C. Extra considerations on errorbars

The experiment for each shearing strength Q was performed on a different day. To infer the spin projection noise
and the potential metrological gain, we use the measurement resolution σ2

d obtained on that particular day. In this case
the σ2

d is not affected by daily variations and its uncertainty is only statistical. Each day the measurement resolution
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is obtained from ≥1000 data, resulting in a fractional uncertainty ≤4.5%. Each ξ2st and ξ2W without readout noise are
derived by subtracting the daily value of σ2

d from the measured spin projection noise reduction ξ2−. The errorbars of the
inferred spin projection noise ξ2st (see Fig. 4(a) in main text) are obtained by combining this uncertainty with those of
Q and F obtained from the tomography measurements (see Fig. 2 in main text). Finally, the maximal spin projection
noise and potential metrological gain are obtained from the minimum of the ξ2st measured curve. The resulting values
of ξ2st=15.9(6) dB and ξ2W=12.9(6) dB have uncertainties smaller than the single-measurement uncertainty.
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