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Abstract
Spin squeezing is a formof entanglement that can improve the stability of quantum sensors operating
withmultiple particles, by inducing inter-particle correlations that redistribute the quantum
projection noise. Previous analyses of potentialmetrological gainwhen using spin squeezingwere
performed on theoretically ideal states, without incorporating experimental imperfections or inherent
limitationswhich result in non-unitary quantum state evolution.Here, we show that potential gains in
clock stability are substantially reducedwhen the spin squeezing is non-unitary, and derive analytic
formulas for the clock performance as a function of squeezing, excess spin noise, and interferometer
contrast. Our results highlight the importance of creating and employing nearly pure entangled states
for improving atomic clocks.

1. Introduction

Spin squeezed states (SSSs) [1] offer a path toward entanglement-enhanced quantum sensors by reducing the
variance of one spin quadrature. Typically, this potential improvement is quantified in terms of themetrological

Ramsey squeezing parameter ξR [2], defined as x = D
C

S

SR
2 1

22
min
2

, whereDSmin
2 is the smallest variance of any spin

quadrature of the state, S is themaximumpossible length of the spin vector, andC is the contrast of the complete
Ramsey sequence. In this picture of quantum-enhanced Ramsey spectroscopy, spin squeezing reduces the

measurement noise variance by a factor of
DS

S 2
min
2

compared to the standard quantum limit (SQL) that can be

attained in the absence of entanglement using a coherent spin state (CSS), while the
C

1
2 term accounts for the

reduction in squared signal due to interferometer contrast loss. However, the expression for ξR does not account
for other downsides in using SSSs in Ramsey spectroscopy, such as the increase in quantumnoise
(antisqueezing) in the conjugate spin direction [3].

Single-particle decoherence, i.e. uncorrelated noise between the particles, due to atom loss or spontaneous
emission, typically has amore deleterious effect on SSSs than on uncorrelated collective atomic states. In
particular, if the coherence properties of an atomic clock are limited by single-particle decoherence, squeezing is
found to offer at best a small, and constant with atomnumber, improvement in ultimate clock stability [4, 5].
However, in state-of-the-art optical atomic clocks [6–9], the dominant noise is not single-particle decoherence
but rather phase noise in the local oscillator (LO) laser used to interrogate the narrow atomic transition. Even as
LO laser technology improves [10], there aremany increasingly narrow atomic clock transitions [11–15] that
would still leave LO stability as the primary limit to Ramsey time, and hence precision, in atomic clocks.

In an atomic clock, the atomic phase is used to stabilize the LOphase.While dephasing of the LOdoes not
destroy the quantum correlations between the atoms, it invalidates the assumption that the antisqueezing does
not affect themeasurement precision [3]. Themechanism bywhich this happens is illustrated in figure 1(a). Due
to the curvature of the Bloch sphere, part of the antisqueezed quadrature enters into the final Szmeasurement
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when the phase deviationf between the atoms and the LO is non-zero, as in this case thefinal p
2
rotation of the

Ramsey sequence places the SSS away from the equator of the Bloch sphere. Therefore, to avoid this leakage of
antisqueezing into thefinal Szmeasurement, a squeezed clockmust operate in a reduced range of f∣ ∣, limiting the
Ramsey time τ in the presence of LOdephasing to a smaller value thanwhatwould be necessary tomerely avoid
2π phase errors. On the other hand, the frequency stability of atomic clocks improves with longer Ramsey time
as τ−1 for a singlemeasurement, and as τ−1/2 for repeatedmeasurements over afixed total duration. Therefore, a
conflict exists between obtaining the greatest phase noise suppression by using a short Ramsey time, and
maximizing clock frequency stability with a longRamsey time.Note that this effect does not harm sensors that
operate in afixed bandwidth, such as atomicmagnetometers, accelerometers, and gyroscopes.

In recent years,many experiments have realizedmetrologically relevant entanglement using trapped ions
[16–19], Bose–Einstein condensates [20–24], and room-temperature [25] and ultracold thermal atomic
ensembles [26–30]. Experimental realizations of spin squeezing are imperfect, and always produce states with
more antisqueezing than squeezing (c x> -2 2), especially in low-density experiments suitable for clock
operation [27–30]. Although this excess antisqueezing has been noted experimentally, it has not been taken into
account in previous studies of entanglement-enhanced clock stability [3, 31, 32].

Here, we extend themodel of [3] to derive analytical expressions including non-unitary squeezing, and
determine the impact on potential gains in the stability of atomic clocks.Wefind that for typical states realized so
far in experiments with dilute atomic ensembles amenable to clock applications [26–30], the impact can be
severe, potentially wiping out anymetrological gain from squeezing.We also analyze the effect of contrast loss,
andfind that the system ismore robust to contrast loss during the squeezing than to contrast loss during the
Ramsey time.We conclude that experimental efforts should be in part directed toward reducing excess
antisqueezing, sincemoderate near-unitary squeezing can yield better clock stability than larger non-unitary
squeezing.

Figure 1. (a) Illustration of a Ramsey sequence using a spin squeezed state. A collective spin state pointing along x is preparedwith a

quadrature reduced variance xD =Sy
S2
2

2 and an increased variance cD =Sz
S2
2

2. If the phase deviationf is non-zero, thefinal readout
of Sz becomes sensitive to the antisqueezingχ. (b) and (c) Sz distributions, as a function off for a clockwithN=103 spins, using a
coherent state and a pure spin squeezed statewith x c= = -- 20 dB2 2 , respectively. Note that the Sz distributions are vertically offset
by the average clock signal fS sin . The Sz distribution is narrowed by squeezing onlywhen f∣ ∣ is small.
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2. Antisqueezing andmeasurement precision

Weconsider an atomic clock based on a SSS consisting of =N S2 spin-1/2 atoms, with phase variance squeezed
by a factor of x 12 and population variance increased by a factor c x-2 2. In terms of spin operator variances

as shown infigure 1, this is equivalent to an initial phase squeezed state pointing along Sx, with xD =( )Sy
S2
2

2

and cD =( )Sz
S2
2

2.We quantify the imperfection of the squeezing process through the excess antisqueezing

factor x c=A 12 2 2 , with equality corresponding to unitary squeezing (at contrastC= 1). After the Ramsey
time τ, the atomic state is displaced in phase relative to the LOby the phase deviation anglef due to LOnoise.
Contrast loss during state preparation or theRamsey sequence arising from single-particle decoherence is
neglected for the time being (but is discussed infigure 5 and appendix C). Thefinalπ/2 rotation infigure 1(a)
results in a distribution for Sz that depends on the accumulated phasef, as shown infigures 1(b) and (c). In a
clock, thefinalmeasurement of Sz is used to estimatef, and thereby apply feedback to stabilize the LOphase. For
squeezed states, we note that for f ¹ 0, the banana-like shape of the state wrapping around the Bloch sphere

causes a leakage of the antisqueezed variance cS

2
2 into thefinalmeasurement of Sz, and therefore a deterioration

in the ability to extract the true value off [3]. To determine the clock stability, wefirst calculate the variance
(Δf)2 of the phasemeasurement as a function of the squeezing ξ, antisqueezingχ, and phase deviationf.We
then use the derived analytical relation to determine the optimumRamsey time τ and best attainable clock
frequency stability.

The process bywhichf is estimated is as follows. Given our knowledge of the initial quantum state, we
calculate the conditional probability distribution f( ∣ )P Sz for each value of the true phase deviationf.With no
prior knowledge aboutf, the Bayesian estimate off, given a particularmeasured value Sz f, of the Sz operator at
the conclusion of the Ramsey sequence, will be given by the conditional distribution f( ∣ )P Sz f, . In the limit
where P is Gaussianwith respect to Sz andf, the two distributions f( ∣ )P Sz and f( ∣ )P Sz are directly related to

one another through the signal slope
f

¶á ñ

¶( )
Sz f, , found from themean signal produced by the clock sequence,

f fá ñ =( ) ( )S S sinz f, . Note that this last expression is only approximate for squeezed states, but remains
sufficiently accurate for allf of interest, as can be seen by comparing figures 1(b) and (c).

For the initial state in the Ramsey sequence, we already defined xD =( )Sy
S2
2

2 and cD =( )Sz
S2
2

2. The only

remaining variance to compute is D( )Sx
2. Using theHolstein–Primakoff approximation (see appendix A), we

find

c c
D =

- -
( ) ( ) ( )S

8
. 1x

2
2 2 2

The variance of the final Sz projection after the Ramsey sequence has two components: the initial Sy variance,
withweight f( )cos2 , and the leaking in of D( )Sx

2 into Sz, withweight f( )sin2 . Putting these together gives

x f
c c

fD = +
- -

( ) ( ) ( ) ( ) ( )S
N

4
cos

8
sin . 2z f,

2 2 2
2 2 2

2

The expected variance (Δf)2 of the estimate forf at the end of the Ramsey sequence is simply the variance of the
final Szmeasurement given by (2), normalized by the slope off as a function of Sz,f:

fD = ´ D
f

¶á ñ
¶

-( )( ) ( )S
S

z f
2

2

,
2z . Substituting (2) gives

f x
c c

fD = +
- -

( ) ( ) ( ) ( )
N N

1

2
tan . 32 2

2 2 2

2
2

Note that (3) is only validwhen f p<∣ ∣ 2, since that is the phase range inwhich the clock signal fá ñ( )Sz f, is
invertible.Moreover, (3) predicts a divergence of the phase errorwhen f p=∣ ∣ 2, which is an unphysical
artifact of using a locally linearizedmodel.

To estimate themaximumpossible phase errorfmax near f p=∣ ∣ 2, we note that if wemeasure a value of Sz
near the top (or bottom) of the Ramsey fringe, there is a finite range offwhich could have produced this value of

Sz. The variance of Sz at f p=∣ ∣ 2 is given by f pD = = c c- -

( ) ( ) ( )S 2z f,
2

8

2 2 2

. Therefore, the largest possible

phase errorΔfmaxmust satisfy f f p- D = D =( ( )) ( )S1 cos 2N
z f2 max , , which gives, forD S N 2z f, ,

f
c c

D =
- -⎡

⎣⎢
⎤
⎦⎥

( ) ( )
N

2 . 4max

2 2 2

2

1 4

To complete the picture, we need to estimate the phase error for f p>∣ ∣ 2. In this case, the inversion
function f ( )Sz f, will give a result in the range f p<∣ ∣ 2, with an error approximately equal to f p-(∣ ∣ )4 2 2.
Tomake the result continuouswith the error in the vicinity of f p=∣ ∣ 2, we approximate the phase error as

3
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f f p f p fD > = - + D( ) (∣ ∣ ) (∣ ∣ ) ( ) ( )2 4 2 . 52 2
max

2

The complete dependence of the phase estimation error (Δf)2 onf can be obtained by stitching together
(3)–(5) for different values off. To validate this approximate analytical formula, we perform a complete
numerical simulation of the process of estimating a phase in a Ramsey sequence using states with different levels
of squeezing, described in appendix B.We find excellent agreement between these analytical approximations
and the results of the full numerical simulation, especially aroundf≈0where the phase estimation error is low,
the crucial region for predicting optimal clock performance.

3. Impact on clock stability

Armedwith an analyticalmodel for the dependence of the phase estimation errorΔf on the phase differencef
between the LO and atomic ensemble given by (3), we can now tackle themain question: howmuch can the
frequency stability of a clock be improved by spin squeezing, in the limit where LOdephasing is the dominant
noise source?

To quantify the precision of our clock, we need to evaluate the RMSdifference between the true LOphase
and the estimate of the LOphase we obtain using Ramsey spectroscopy of the atomic ensemble.We divide the
totalmeasurement timeT intoT/τ intervals of duration τ, corresponding to the individual Ramsey sequences of
the experiment. The overall variance of the LOphase estimate after a timeT isT/τmultiplied by the expected
phase error variance after a singlemeasurement,

òs
t

f f t f f= Df
-¥

¥
( ) ( )( ( )) ( )T

T
Pd , 62 2

with corresponding frequency stability (or Allan deviation) given by s s=w f
-T2 2 2 .

The probability distribution P(f, τ) of the LOhaving a phase deviationf after Ramsey time τ depends on the
linewidth and lineshape of the LO. As a simple example, we approximate the phase evolution of the LO as a
Gaussian process, following themodel of [3]. For a free-running LO linewidth (or equivalently a dephasing rate)
of γ, thismodel gives aGaussian distribution for the phase deviationf, with variance s t gt=( )LO :

f t
gt p

f
gt

= -
⎡
⎣⎢

⎤
⎦⎥( )

( )
( )P ,

1

2
exp

2
. 7

2

2

Using this probability distribution, we calculate the phase estimation error (Δf)2 and corresponding clock
stability in several instructive cases, as shown infigure 2.

First, we consider a clock operating without excess antisqueezing. The corresponding phase estimation
errors are shown infigure 2(a).We see that as the squeezing increases, the ability to resolve small rotations
aroundf=0 improves: f xD =( ( )) N0 2 2 . However, this comes at a price: the range of phase deviationsf for
which themeasurement is better than the SQL is reduced. In terms of clock precision, as shown infigure 2(b),
this effectmanifests itself in a reduction of the optimal Ramsey time. As a result, the best possible clock stability
increases with squeezing until an optimum is reached near x = -N2 1 3, worsening again for larger values of
squeezing, as found in [3] for unitary squeezing.

Next, we consider the effect of non-unitary squeezing, where the excess antisqueezing is a factor of
x c=A2 2 2 in variance.Wefix x = -15 dB2 and vary the antisqueezingχ=A/ξ. The error in the phase

measurement is shown infigure 2(c). As expected, excess antisqueezing has no effect on themeasurement
precision nearf=0, butmakes the errorΔf significantly worse for larger f∣ ∣. Turning to the clock stability in
figure 2(d), we see that squeezed states with excess antisqueezing lead to clocks with the same stability for short
Ramsey times, but the stability saturates atmuch smaller values of γτ. As a result, when the state area exceeds

=A 15 dB2 (forN=104 atoms), the best attainable long-term stability of the squeezed clock is worse than if we
had simply used aCSS.

Figure 3 shows clock stability for an optimizedRamsey time τ, as a function of squeezing ξ2 and excess
antisqueezingA2. There are two distinct regions in the plot, delineated bywhich term in (3) is greater.When
x- - A N 14 6 1 , i.e. when x > -N2 1 3 and the antisqueezing ismoderate, the antisqueezing term in (3) is small

for all f p<∣ ∣ 2. In this regime, the antisqueezing plays no role in determining the optimal Ramsey time or
clock stability, with the latter improving in direct proportion to ξ, independently ofA: s g x=f

- -( ) N2 1 2 1. In the

other limit, x- - A N 14 6 1 , the optimal Ramsey time becomes shorter, with t g x= - -N Aopt
1 3 2, yielding a

clock stability of s g x=f
- - -( ) A N2 1 2 1 3 2. Note that in this regime, the clock performance deteriorates with

increasing squeezing. Numerically, we find the boundary of the two regions to lie near x =- -A N 54 6 1 , in
agreementwith the result x µ -N2 1 3 for optimumunitary squeezing (A= 1) found in [3].

Using this approach, we can analyze the potential gains in clock stability that could be obtained using SSSs
that have been experimentally realized. As shown in figure 4, better squeezing ξ2 does not necessarily lead to

4
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greater clock stability, especially if it is achieved at the expense of excess antisqueezing. Experiments where the

parameter a =
x
A

N

4

6 is less than one, such as [20–22, 27], would be able to employ the full amount of generated

squeezing in improving an atomic clock.On the other hand, experiments withα? 1, including thosewith the

Figure 2.Phase estimation error and clock stability for squeezed states. (a)Phase estimation error (Δf)2 after one Ramsey experiment
for different amounts of unitary squeezing ξ2 in a clockwithN=104 atoms, as a function of the phase deviationf. (b)Corresponding
clock stability after a timeT=γ−1, as a function of the Ramsey time τ (in units of γ−1). (c) Same as (a),fixing the squeezing at
x = -15 dB2 , and varying the state areaA and accordingly the antisqueezingχ=A/ξ. (d)Corresponding clock stability. Note that
the steps in (Δf)2 near »f

p
∣ ∣ 1

2
are a consequence of transitioning between two regimes of approximating (Δf)2 by (3) and (4), and

are not present in a full numerical simulation (shown infigure B1).

Figure 3.Clock performance in the presence of excess antisqueezing. Best possible clock stability, in units of dB of clock phase variance
compared to a clock at the SQL, as a function of the squeezing ξ2 and excess antisqueezingA2, forN=104 atoms. The green line at
x =-A N54 6 indicates the transition between the regimeswhere clock performance improves or deteriorates with increasing

squeezing.
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largest observed squeezing [19, 29, 30], produce a situationwhere this squeezing cannot be used in such an
efficientmanner. It is interesting to note that [20–22, 27] all employ collective interactions to generate squeezing,
while [29, 30] useQNDmeasurements for entangling the atoms. Inmeasurement-based squeezing, any
undetected photons produce excess antisqueezing; tominimize the latter, one needs tomaximize the quantum
efficiency of light detection and optimally use the available information in the probe light. This suggests that
even thoughmeasurement-based squeezing has been used to create smaller spin variances, collective atom–

atom interactions [33–35]may offer better performance for spin squeezed clocks.
In practice, Ramsey contrast in clocks is usually below unity, due to atom loss or technical imperfections. By

combining the effects of antisqueezing andRamsey contrast decay, we can readily determine parameter regions
of SSSs that can enhance atomic clocks, as discussed in appendix C. The total Ramsey contrastC=C1×C2 has
two components. Thefirst,C1, is the reduction in contrast acquired during the preparation of the SSS, whichwill
be present in optically induced spin squeezing due to the inevitable scattering of probe photons by the atoms
during state preparation. The second factor,C2, is contrast loss during the Ramsey time itself.

An example of the effect of contrast loss is shown infigure 5, wherewe analyze the experiment of [30], which
reported the creation of a statewith x = -20.1 dB2 , =A 19 dB2 , andC=0.962 forN=5×105 atoms. For
these parameters, a change in clock stability ranging between an improvement by 2.7 dB and a deterioration by
0.6 dB could be expected, as compared to a clock operating with aCSS, depending onwhere in the Ramsey
sequence the contrast loss originates.We see that contrast loss during spin squeezing, shown infigure 5(a), is
relatively benign in terms of clock stability compared to contrast loss during theRamsey time, as shown in
figure 5(b); this is also noted in [26] and further discussed in appendix C. For the SSS of [30], if the excess
antisqueezing could be reduced to <A 7 dB2 whilemaintainingC1>0.7,C2>0.96, then the clock could be
operated 10 dB below the SQL. Thus, practical atomic clocksmust control both excess antisqueezing and
contrast loss at a tight level to profit from spin squeezing.

4. Conclusion

Wehave analyzed the effect of non-unitary squeezing and derived simple expressions for potential
improvements in clock stability in the presence of LOnoise, as a function of the squeezing and antisqueezing.
Wefind that for a state withN atoms, the squeezed state offers nometrological gain over a CSS if the excess
antisqueezing variance exceedsN−1/2, and that highly squeezed states with large excess antisqueezing can lead to
worse clock performance thanmoderately squeezed states with less antisqueezing. Therefore, experiments
aiming for ultimate clock stability will benefit fromoperating close to the fundamental limit of unitary
squeezing, by squeezingwith collective atom–atom interactions, or by reducing light loss inmeasurement-based
squeezing.

Figure 4.Potentially realizable clock stability gain using experimentally generated squeezed states after subtraction of detection noise,
compared to a clock at the SQL. Each point reflects the reported squeezing assuming perfect state detection andRamsey contrast
C=1. Circles, squares, and triangles correspond to squeezing via collective interactions in trapped ions, Bose–Einstein condensates,
and ultracold atomic ensembles, respectively, while stars correspond tomeasurement-based squeezingwith ultracold atomic
ensembles. Dashed lines extrapolate the results of [29, 30], assuming a squeezing-independent state areaA, as is typical for
measurement-based squeezing experiments. Numerical labels indicate the value of a x= - -A N4 6 1 for each experimental result.
Whenα>1, the state has toomuch squeezing or excess antisqueezing, preventing the full utilization of available squeezing in
boosting clock performance.
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Weemphasize that these results apply to atomic clocks but not to sensors that require signal readout after an
externally-imposed Ramsey interrogation time, such as those used tomeasure a time-dependent signal. In this
case, for short interrogation times, it is the spin squeezing alone that determines the sensor performance.

Wewould also like to note that schemes to extract the fullmetrological gain from squeezed states in the
presence of LOnoise have been proposed, by using ensembles of clocks [31], or bymeasurement and active
feedback onto the atomic state [32]. It remains to be analyzed howmuch these approaches can enhance the
stability of clocks in the presence of non-unitary spin squeezing and other experimental imperfections.
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AppendixA.Derivation of expression forDSx
2

In theHolstein–Primakoff approximation [36] of anN-particle Bloch sphere as a tangent plane perpendicular to
the+x̂ direction, we have the followingmapping between harmonic oscillator operators a, †a and spin
operators:

= -

= -

= +

( )

( ) ( )

†

†

†

S
N

a a

S
N

a a

S
N

a a

2

2i

2
. A1

x

y

z

The harmonic oscillator ground state ñ∣0 corresponds to an atomic coherent state pointing in the+x̂ direction:

+ ñ = ñÄ∣ ˆ ∣x 0 .N

The squeezing and displacement operators are defined in the usual way:

*l l l= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )†S a aexp

1

2
, A22 2

*a a a= -( ) ( ) ( )†D a aexp . A3

Whenλ is real, the state l ñ( )∣S 0 is squeezed in the Sy quadrature with variance l-eS

2
and antisqueezed in the Sz

quadraturewith variance leS

2
.

A non-unitary squeezed state with antisqueezing varianceχ2 and squeezing variance ξ2 can be decomposed
as a statisticalmixture of unitary squeezed states with squeezing x c= -

0
2 2, displaced in the Sy directionwith a

Figure 5.Effect of contrast loss on clock performance. Possible stability improvement (in units of dB) of a spin squeezed clock over a
coherent spin state clock, as a function of excess antisqueezingA2 and (a) squeezed state generation contrastC1 and (b)Ramsey time
contrastC2.We consider a squeezed state withN=5×105 atoms and squeezing x = -20.1 dB2 as realized in [30]. The star
indicates the experimentally observed values ofA2 andC. In both plots, we assume unity state preparation contrastC1=1 for the
CSS. In (b), we varyC2 for both the CSS and SSS clocks, since contrast loss during the Ramsey time is unaffected by the squeezing
process and should be equal for coherent and spin squeezed states.
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Gaussian probability density of variance x x-2
0
2. For a squeezed state y a lñ = ñ∣ ( ) ( )∣D S 0 , we find the

following expectation values for the number operator = †n a a:

*

l a
l l

a l l
a a l l

á ñ = +
á ñ= á ñ +

+ +
+ +

( ) ∣ ∣
( ) ( )

∣ ∣ ( ( ) ( ))
( ) ( ) ( )

n

n n

sinh

2 sinh cosh

sinh cosh

sinh cosh .

2 2

2 2 2 2

2 2 2

2 2

Adisplacement operator in the Sy direction corresponds to a purely imaginary value forα. Therefore,
D = á ñ - á ñ( )S n nx

2 2 2 equals

a l aD =
-

+
l l-

( ( )) ( ) ∣ ∣S ,
e e

8
.x

2
2 2 2

2

Evaluating the expectation value over theα distribution and substitutingχ and ξ gives the final result:

x c
c c

x cD =
-

+ -
-

-( ( )) ( ) ( )S ,
8

. A4x
2

2 2 2
2 2

For any squeezed state, we have  x c- <-0 12 2 , whichwill have negligible impact on the phase estimate
precisionΔf. Therefore, we can simplify (A4) to give

c c
D =

- -
( ) ( ) ( )S

8
. A5x

2
2 2 2

Appendix B.Numerical validation of phase variance formulas

Here, we describe the procedure for validating the analytical formulas (3)–(5) through a numerical simulation
and generating the results infigure B1. For each value of unitary squeezing ξ and LO-atomphase deviationf, we
calculate the probability distribution f x( )P S , ,z of obtaining a particular value of Sz during the projective
measurement at the end of the Ramsey sequence. From this probability distribution, we determine the estimate
forfwith the smallest root-mean-square error, given a particular observed value for Sz, assuming a uniform
Bayesian prior forf in the interval p p-( )2, 2 . This estimate is given by

ò

ò
f x

f f x f

f f x
=

´
p

p

p

p
-

-

( )
( )

( )
S

P S

P S
,

d , ,

d , ,
.z

z

z

est
2

2

2

2

Next, for each true value off (which can lie outside the (−π/2,π/2) range), we evaluate the expected error in the
f estimate:

Figure B1. Expected error (Δf)2 in the estimate of the LOphasef as a function off for different amounts of squeezing ξ and no excess
antisqueezing, forN=103 spins. Dashed lines are the analytical formula built from (3)–(5), while the solid lines are the result of a
numerical simulation.
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å
å

f f
f x f x f

f x
D =

´ -
=-

=-

( ( ))
( ) ( ( ) )

( )
( )

P S S

P S

, , ,

, ,
. B1

S N

N
z z

S N

N
z

2 2

2
est

2

2

2
z

z

This is the function plotted infigure B1. The effects of contrast loss and excess antisqueezing can be introduced
by the appropriatemodification of the function f x( )P S , ,z to yield similarly good agreement with the analytical
estimates of (Δf)2 derived above.

AppendixC. Effect of contrast loss

Themodel we use can also be extended to include the effects of contrast loss, as shown infigureC1.Wemodel
contrast loss during the SSS preparation by combining a SSS comprised ofNC1 atomswith two equally

populated sub-ensembles, onewith -( )C1N

2 1 atoms in the ground state, and the otherwith the same number

of atoms in the excited state, giving a total Ramsey contrast ofC1. The orientation of the SSS relative to the Sz=0
plane depends on themethod bywhich squeezing is produced—measurement-based squeezing [28–30] gives
θ=0while feedback-based squeezing [27, 33, 34] has q c= ( )arcsin 1 .

During the Ramsey sequence, additional contrast loss by a factorC2may occurwhen some of the atoms
decay from the excited clock state.Wemodel this effect by a population transfer to aCSS containing -( )N C1 2

atoms in the ground state. The net Ramsey contrast of the entire sequence equals = ´C C C1 2, as only the
atoms remaining in the SSS are still contributing to the signal.

Contrast loss adversely affects the clock performance by reducing themagnitude of the signal by a factorC,
and by adding additional noise in thefinal Szmeasurement:

f qD =
-

-

+
-

( ) ( ) ( ( ) ( ))

( ) ( )

S
NC C

N C

1

4
1 cos cos

1

4
C1

z,CSS
2 2 1 2 2

2

with thefirst term arising from contrast loss during squeezing preparation, and the second term from contrast
loss during theRamsey sequence. In typical situationswhere θ andf are small, the second term is greater,
reflecting the fact that contrast loss during the Ramsey sequence is amore severe problem than contrast loss
during the squeezing preparation. These noise terms are added to the noise arising from the SSS itself, giving

x f
c c

f

f q

D = ´ +
-

+ ´ - - -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

[ ( ) ( ) ( )] ( )

S C
N

N
C C C

4
cos

8
sin

4
1 1 cos cos . C2

z f,
2 2 2

2 2 2
2

2 1
2 2

Themean signal produced by the clock sequence is f fá ñ = ´( ) ( )S C S sinz f, , giving the full expression for
(Δf)2:

FigureC1.Ramsey sequence including the effect of contrast loss due to imperfection in spin squeezing generation (C1) and single-
particle decay into the ground state (C2).
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f x
c c

f

f q

D = +
-

+
-

-
-

-
( ) ( ) ( )

( ) ( ) ( ) ( )

CN CN
C

C N

C C

C N

1

2
tan

1
sec

1
cos . C3

2 2
2 2 2

2
2

2
2 2 1

2
2

Similarly, themaximumphase estimation error becomes

f
c c

D =
-

+
--⎡

⎣⎢
⎤
⎦⎥

( ) ( )
N C

C

NC
2 4

1
. C4max

2 2 2

2 2

1 4

By replacing (3) and (4)with (C3) and (C4), we can evaluate the performance of clocks in the presence of
contrast loss and potentially non-unitary squeezing.

As an example, consider a clock operating without any squeezing, for different amounts of remaining
contrastC after the Ramsey time τ. This contrast lossmay occur during the state preparation (C1<1,C2=1)
or during the Ramsey sequence itself (C1=1,C2<1). The errors in estimating the LOphase for these two
situations are shown infigures C2(a) and (c).WhenC=1, the error in phase estimation is always at the SQL for
N=104 atoms: fD = =-( ) N10 12 4 . As the contrast becomesworse, twomechanisms cause (Δf)2 to
grow. Forf=0 andC2=1, the imperfect contrastC1 leads to a smaller signal withmeasurement noise
corresponding to onlyNC1 atoms, so fD =( ( )) ( )NC0 12

1 in this case. However, whenC2<1, allN atoms
contribute to the Szmeasurement noise, giving fD =( ( )) ( )NC0 12

2
2 . As f∣ ∣ increases,Δf becomes equal for

both situations because the -( )N C1 1 atoms decohered during state preparation are rotated toward the
equator and contribute their projection noise to thefinal Szmeasurement. The corresponding clock stabilities
are shown infigures C2(b) and (d), wherewe see that the best Ramsey time remains near γτ≈0.5 and the
optimumclock performance scales as s µf

-C2
1

1 and s µf
-C2
2

2, just like fD( ( ))0 2.
Finally, we focus on the potential gain in clock stability, optimizing over the Ramsey time τ. Figure C3 shows

the effect of contrast loss on the performance of a squeezed clockwithN=104 atoms. The colors and contours
are in units of dB, normalized to the SQL: a clockwith no squeezing and perfect contrast (top-right corner of
these plots). As expected, contrast lossC2 during theRamsey time has amuchmore severe effect on ultimate
clock stability than imperfections in the initial stateC1.We can see that if the former contrast falls below

FigureC2. (a)Phase error (Δf)2 in a clockwithN=104 for different preparation contrastC1, no squeezing, and no contrast loss
during the Ramsey sequence, as a function of the phase deviationf. (b)Corresponding clock stability after a timeT=γ−1. (c) Same as
(a), but with perfect state preparation contrastC1=1, and varying amounts of contrastC2. (d)Corresponding clock stability.
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C2=0.7, the clock performancewill always beworse than a clockwithout squeezing and unity contrast.More
interestingly, asC2 becomes smaller, the potential improvement from squeezing also decreases—forC2=1, we
can gain asmuch as-13.7 dB in clock stability by squeezing, but forC2=0.4, this decreases to only-1.7 dB.
Thisfinding is consistent with the results of [4, 5]: when single-particle loss limits the Ramsey time, squeezing is
unable to significantly improve clock stability.
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