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I. CAVITY AND DIPOLE TRAP PARAMETERS

The parameters of the near-confocal cavity at the
wavelength of the probe light are summarized in Table
A1. The characteristics of the atomic cloud in the opti-
cal dipole trap are summarized in Table A2. These pa-
rameters are known from previous measurements of the
apparatus more fully described in [1].

cavity length L 26.62(1)mm

Free spectral range ωFSR/(2π) 5632.0(2)MHz

Finesse F 5.6(2) × 103

Linewidth κ/(2π) 1.01(3) MHz

Mode waist w 56.9(4)µm

TABLE A1: Cavity parameters. All values refer to the probe
wavelength λ = 780 nm. The mode waist is calculated at the
position of the atom cloud.

Trap depth U0/h 18(3) MHz

Mode waist wt 59.5(5)µm

Radial frequency ωr/(2π) 1.5(1)kHz

Atom radial temperature kBTr 1.0(1)MHz

Atomic cloud rms radius ρrms 7.0(7)µm

TABLE A2: Parameters of the optical dipole trap and the
atom cloud.

II. VERIFICATION OF SINGLE-ATOM SIGNAL

FROM THE VARIANCE OF A BINOMIAL

DISTRIBUTION

When an average fraction f of atoms is depumped
from an ensemble containing N0 atoms, the measured
variance of the depumped atom number Var(N0d) fol-
lows the binomial distribution Var(N0d) = N0f(1 − f).
Next we express this binomial distribution in terms of
the antinode atom number N and the depumped antin-
ode atom number Nd. Because N0 atoms are uniformly
distributed along the standing-wave of the probe light,
the effective antinode atom number is N =

〈

cos2kx
〉

N0,

where 〈〉 denotes an average over the atomic position x
along the cavity axis. Atom number fluctuations at dif-
ferent positions x are uncorrelated, so the variance of
Nd is the integral of the depumped atom number vari-
ance at position x weighted by cos4kx, giving Var(Nd) =
〈

cos4kx
〉

Var(N0d). Hence we obtain the variance of the
depumped antinode atom number

Var(Nd) =

〈

cos4kz
〉

〈cos2kz〉 f(1− f)N =
3

4
f(1− f)N. (1)

The cavity shift is δω = α(g2/∆)N , where α takes into
account the reduction of the atom-cavity coupling due to
the finite radial temperature and is given by the thermal
average

α =

∫

∞

0
drre−2r2/w2

e−mω2

r
r2/2kBTr

∫

∞

0
drre−mω2

r
r2/2kBTr

= 0.94 (2)

for our atomic cloud.
The variance of the change in the cavity shift caused by

depumping Nd atoms is Var(δωd) = α2(g2/∆)2Var(Nd).
Here we neglect the fluctuation of the radial coupling be-
cause α is close to unity, and our typical measurement
time is the same or larger than the period of the radial
motion thus the measurement averages over different ra-
dial positions. Substituting Eq. 1 we obtain the normal-
ized variance

V =
Var(δωd)

δω
=

3

4
α
g20
∆

f(1− f). (3)

III. DEPENDENCE OF THE VARIANCE ON

AVERAGING TIME

Equation 1 in the text describes the dependence of the
measured atom variance on averaging time τ . Several
sources contribute to the measured variance. These in-
clude shot noise fluctuations in the probe laser power,
additional technical noise due to probe laser frequency
fluctuations, and the shot noise of atom loss from the
state of interest due to Raman scattering events or evap-
oration from the trap. At a given atom-cavity detuning
∆ and probe power P , the contributions to the variance



2

due to laser noise can be combined into a single term
which averages down with τ , while those related to atom
loss are combined into a single term which increases with
τ . For the laser powers and atom-cavity detunings used
for these measurements, electronic noise in our detector
makes a negligible contribution to our measurement vari-
ance. We also looked for a fixed contribution to the mea-
surement variance (i.e., a contribution not scaling with
time τ), but found this term to be negligible.

The measured atom number variance is thus described
as

(∆N)2 = c1τ
−1 + c2Nτ, (4)

with c1 and c2 constants. As c1 depends only on laser
fluctuations, this term can be determined by a measure-
ment of the signal fluctuations when no atoms are present
in the cavity (and, therefore, no contribution from atom
loss is present). The fit shown in Figure 2 establishes c1,
in terms of an atom number variance at a detuning of
∆/(2π) = 250 MHz, to be 0.17 ms. The coefficient c2
must be measured with atoms in the cavity. This coef-
ficient is found by an average to fits with different atom
numbers in the cavity and is given by c2 = 0.023 ms−1.

For a Pound-Drever-Hall measurement of peak-to-peak
signal amplitude VA, the signal slope on resonance is
dV/dω = 2VA/κ, and the signal fluctuation due to shot
noise is δV = VA/2

√
Ns, where Ns = qPsτ/(hν) is

the expected number of sideband photons collected [2].
Here, κ is the cavity linewidth, Ps is the probe side-
band power, q is the quantum efficiency of the detec-
tion path, τ is the measurement time, and ν is the laser
frequency. These voltage fluctuations are converted to
frequency fluctuations by dividing by the slope, so that
δω = κ/4

√
Ns. Converting to atom number resolution

by the factor (∆N)2 = (g20/∆)2(δω)2, and taking into
account known excess noise from our detector, we obtain
(∆N)2 = 0.06 atoms variance at an averaging time of 1
ms. Independent measurements of the signal fluctuations
in an empty cavity with and without stabilization of the
probe laser frequency confirm that laser shot noise does
not account for all of the term c1. The term c1 thus in-
cludes additional technical noise due to laser frequency
fluctuations, which could in principle be removed with a
tighter lock.

The variance due to shot noise in the atom loss process
can be understood in the following way. We make a mea-
surement of atom number N by averaging for two time
periods τ to get two estimatesN1 andN2 of atom number
N , then take the measurement variance (Var(N1−N2))/2
derived from many repeated such measurements. The
measurement of N1 can be written as

N1 =
1

τ

∫ τ

0

N(t) dt, (5)

where

N(t) = N(0)−
∫ t

0

L(t′) dt′. (6)

Here L(t′) is the instantaneous loss rate at time t′; define
its expectation value as L0. The loss in an amount of
time dt′ is a Poisson random variable with expectation
value and variance both equal to L0 dt

′. In the limit that
the total number of atoms lost during the measurement
time 2τ is small, the loss at any t′ is random and does
not depend on t′. The expectation value and variance of
the loss in a time window dt′ are both L0dt

′. We now
write

N1 −N2 =
1

τ

[
∫ τ

0

(

N(0)−
∫ t

0

L(t′) dt′
)

dt−
∫ 2τ

τ

(

N(0)−
∫ t

0

L(t′) dt′
)

dt

]

, (7)

which simplifies to

N1 −N2 =
1

τ

[
∫ 2τ

τ

∫ t

0

L(t′) dt′ dt

−
∫ τ

0

∫ t

0

L(t′) dt′ dt

]

=
1

τ

[
∫ 2τ

τ

∫ t

τ

L(t′) dt′ dt

+

∫ τ

0

∫ τ

t

L(t′) dt′ dt

]

. (8)

Because the loss is random and uncorrelated, the vari-
ances of the two final terms are equal. We now make use
of the relation

1

τ

∫ τ

0

∫ τ

t

L(t′) dt′ dt

=
1

τ

∫ τ

0

∫ t′

0

L(t′) dt dt′

=
1

τ

∫ τ

0

t′L(t′) dt′. (9)

The variance of the final expression is easily calculated.
Since the loss L(t′) is random and uncorrelated, the total
variance is merely an integral of variances L0 dt

′ weighted
by the factor t′2/τ2. Finally we obtain

1

2
Var(N1 −N2) =

∫ τ

0

t′2

τ2
L0 dt

′

=
1

3
L0τ. (10)

Finally, this term is multiplied by the factor (3/4)α (see
Section II of the Supplementary Information) to account
for the nonuniform coupling of the atoms. Since the
dominant loss processes in our system are single-atom
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effects, the average loss rate can be written L0 = Nℓ0.
Thus, the contribution to measurement variance from
atom shot noise is (1/4)αℓ0Nτ . For our total loss time
constant of 15 ms, we calculate the coefficient of the con-
tribution to measurement variance from atom loss to be
c2 = (1/4)αℓ0 = 0.016 ms−1, in reasonable agreement
with the fit value of 0.023 ms−1. The actual fitted value
for c2 is somewhat higher than the calculated value, most
likely due to collective motional excitations within the
atom cloud, which are not included in our model. Evi-
dence for this is the even-higher variance at longer aver-
aging times for higher atom numbers, as shown in Fig-
ure 2 in the text. The observed variances for a partic-

ular atom number therefore differ from the model pre-
dictions for our data by up to 10%. Nevertheless a sim-
ple two-parameter model demonstrates reasonable agree-
ment with the observed measurement variance as a func-
tion of time.
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