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We propose a versatile and efficient method to generate a broad class of complex entangled states of
many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled
optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the
frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-
resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure
entangled state. This method can be implemented with existing technology, yields high success probability
per trial, and can generate complex entangled states such as mesoscopic superposition states of coherent
spin states with high fidelity.
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Entanglement is a useful resource in physics. By means
of interatomic entanglement, it is possible to overcome
the standard quantum limit associated with projection
noise in atom interferometers and atomic clocks [1–11].
Entanglement can also be used to implement secure
communication networks [12–14], and may enable more
efficient computation algorithms, potentially with a sig-
nificant impact on computer science [15–19].
Entanglement in many-particle systems is nontrivial to

generate, and often as challenging to experimentally verify.
Entanglement implies correlations between the particles,
and hence its generation requires controlled interactions
between many particles. Therefore, the difficulty of gen-
erating entanglement typically dramatically increases both
with particle number and with the complexity of the
entangled state. Most entangled states of many atoms
generated so far have been relatively simple, characterized
by positive Gaussian quasi-probability distribution func-
tions [3–11,20], or a Wigner function with at most one
negative region [21]. More complex entangled states [22],
Greenberger-Horne-Zeilinger states [23], have been gen-
erated in chains containing up to 14 ions [24–26].
It is in general difficult to realize complex nonclassical

atomic states, as entanglement with unobserved degrees of
freedom leads to decoherence. Thus, with the exception of
Ref. [21], all entangled states ofmany atoms generated to date
have been mixed quantum states with low purity. In the work
byMcConnell et al. [21], a scheme to generate entanglement
in many-atom ensembles by probabilistic photon detection is
used [27–31], where the probability of entanglement gener-
ation is traded in for high state purity on rare but heralded
occasions [12]. However, for that method the success prob-
ability decreases exponentially for more complex states with
smaller structures in the Wigner function [27].
In this Letter, we propose a heralded scheme to

universally engineer a broad class of complex entangled

states simply by the detection of one photon. When a
strongly coupled ensemble-cavity system [32] is illumi-
nated by a weak light field, the atom-light interaction
entangles every eigenstate of the collective atomic spin
(Dicke state [33]) with a corresponding frequency com-
ponent of a photon transmitted through the cavity. A
coherent superposition of different Dicke states with
arbitrary amplitudes and phases can be engineered by
spectral shaping of the input photon, recording a trans-
mitted photon, and rotating the atomic spin conditioned
on the detection time of the transmitted photon. This
represents a powerful technique to “carve” a complex
entangled state out of an unentangled product state of the

FIG. 1 (color online). Setup for entanglement carving in atomic
ensembles by single-photon detection. The cavity mode couples
one of the ground states j↑i to an electronic excited state jei with
a detuning Δ. The system operates in the strong-coupling regime
(cooperativity η ≫ 1), such that each atom in j↑i shifts the cavity
resonance by an amount Ω > κ, where κ is the cavity linewidth.
We prepare all N atoms in the rotated CSS jθ;ϕi. Then, we send
in a weak optical pulse

P jωii containing multiple frequency
components that coincide with possible cavity resonance frequen-
cies. Once the photon detector registers a transmitted photon, the
atomic ensemble is projected into a known entangled state, that is
determined by the spectrum of the incoming light and the
detection time of the photon.
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individual atomic spins via the detection of just one
photon. The proposed method is efficient in that the
generation probability is simply given by the overlap of
the initial unentangled state with the target state, divided
by the number of frequency components in the incident
photon pulse. The accessible states, that include individ-
ual Dicke states [34], mesoscopic superposition states of
coherent spin states, and maximally entangled GHZ-like
states [23], can have small features in phase space, and
correspondingly large Fisher information [35], thus ena-
bling atomic clocks and interferometers operating beyond
the standard quantum limit [27].
We consider N three-level atoms trapped inside, and

uniformly coupled to, an optical cavity (Fig. 1). Two
ground states, j↑i and j↓i, correspond to a pseudospin
~si of atom i with si ¼ 1=2, and we define a collective spin
~S≡P

~si. An excited state jei is coupled to one of the
ground states j↑i by the cavity mode. The detuning
between the cavity mode and the atomic transition is Δ.
By adiabatically eliminating the excited state, the inter-
action Hamiltonian can be written as [36]

H ¼ ℏΩðSz þ SÞĉ†ĉ: ð1Þ

Here, Ω ¼ g2=Δ is the coupling strength, S ¼ N=2 is the
magnitude of the collective spin ~S, 2g is the single-photon
Rabi frequency, and for the moment we are ignoring the
scattering of photons into free space by the atoms, and the
associated reduction in cavity transmission. Each atom in
state j↑i shifts the cavity resonance by a frequency Ω ≪ Δ.
When Ω is larger than a few cavity linewidths κ, each
possible value of Sz (Sz ¼ −S, −Sþ 1, …, S − 1, S)
corresponds to a resolved cavity line. We define ωc as
the cavity resonance without any atoms in j↑i, so the
resonance frequency of the cavity with n ¼ Sz þ S (the nth
Dicke state) atoms in state j↑i is ωn ¼ ωc þ nΩ.
We first initialize all N atoms in the coherent spin state

(CSS) with the polar angle θ and the azimuthal angle ϕ:

jθ;ϕi ¼ ½cosðθ=2Þj↓i þ eiϕ sinðθ=2Þj↑i�⊗N: ð2Þ

For the following, it is convenient to write the CSS jθ;ϕi
in the Dicke basis jS; Sz ¼ −Sþ ni. Thus jθ;ϕi ¼P

2S
n¼0 cnjS;−Sþ ni with coefficients [37]

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2S
n

�s
einϕcos2S−nðθ=2Þsinnðθ=2Þ: ð3Þ

We prepare the incident light field by modulating a weak
pulse of monochromatic light so that it acquires sidebands
at various frequencies ωn, which coincide with the possible
cavity resonance frequencies. The resultant state of the light
is expressed as jγi ¼ P

nAnjωni, where An is the complex
amplitude of frequency component ωn. When this light is
incident onto the cavity, the frequency component ωn is

transmitted through the cavity only when there are n atoms
in state j↑i. The transmission of other frequency compo-
nents corresponds to other values of Sz. Thus the strongly
coupled atom-cavity system generates correlations between
the spectrum of the transmitted light and the possible Sz
values of the collective atomic spin. The quantum state of
the atom-light system when a single photon has been
transmitted is then

jΨti ¼
X2S
n¼0

cnAnjS;−Sþ ni ⊗ jωni: ð4Þ

Subsequently, we measure the transmitted weak light
with a single-photon detector. If a transmitted photon is
detected in the state jγ0i ¼ P

nBnjωni, then the collective
atomic spin is projected onto

jψi ¼ C
X2S
n¼0

AnB�
ncnjS;−Sþ ni; ð5Þ

where C is a normalization factor.
By controlling the complex coefficients An and Bn, we

can generate an arbitrary quantum state jψi of the atomic
spin by simply detecting a single photon in the state jγ0i.
The effect is a carving process on the initial CSS. The
cavity transmission in combination with photon detection
in state jγ0i engraves the coefficients of different Dicke
states, and projects the collective atomic spin into a chosen,
potentially highly entangled state jψi. The carving is
efficient in that the state generation probability is simply
given by the projection jhθ;ϕjψij2 of the initial CSS jθ;ϕi
onto the desired final state jψi, divided by the number of
frequency components in the incident photon pulse.
We plot a few examples of mesoscopic superposition

states of coherent spin states carved with this method. In
Fig. 2, we display both the Husimi Q function and the
Wigner function [38] to characterize the entangled state,
where the Q function shows the separation between differ-
ent quasi-probability regions, and the Wigner function
displays the coherence in the form of fringes. Using merely
three frequencies, ωq, ωqþp, ωqþ2p, we can generate a
p-fold symmetric entangled state by projecting the atomic
state into different superpositions of jS;−Sþ qi,
jS;−Sþ qþ pi, and jS;−Sþ qþ 2pi, where q can be
an arbitrary integer.
Since a weak incident light beam can be easily prepared

as a superposition of frequency components
P

nAnjωni by
a combination of frequency and amplitude modulation, the
remaining challenge is how to measure the transmitted
photon in the jγ0i basis. We propose one universal and
simple detection scheme that projects the photon into state
jγ0i ¼ P

nBnjωni as below.
Let us start with the simplest case. If the incident

single-photon Fock state (k ¼ 1) or weak light pulse
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with average photon number hki ≪ 1 is monochromatic
with frequency ωn, we simply measure the cavity trans-
mission. (We assume that the pulse is long compared to the
cavity decay time κ−1, so that it can be approximated as
monochromatic.) If there is a photon detection event, the
atomic collective spin is projected into the Dicke state
Sz ¼ −Sþ n. This prepares a Dicke state of the atomic
ensemble, similar to the scheme of Ref. [39], where,
however, many photons are used.
If the input pulse corresponds to a superposition of two

frequencies, jγi ¼ Anjωni þ Amjωmi, we record the trans-
mission time τ of the photon. This situation corresponds to
a photon annihilation operator at the detector for time t,
measured relative to a local oscillator at the frequency Ω
used for generating the photon frequencies ωn, ωm (Fig. 1):

Ê−ðtÞ ¼ Aðâωn
e−iωnt þ âωm

e−iωmtÞ: ð6Þ

Here A is a constant coefficient, âωi
is the annihilation

operator for a photon of frequency ωi, and we have
assumed that the photon detector is sufficiently broadband
so that it does not distinguish between the frequency
components ωn, ωm. For a given detection time τ, there
always exists one “bright” photon state jγþðτÞi and one
“dark” photon state jγ−ðτÞi

jγ�ðτÞi ¼
1ffiffiffi
2

p ½jωni � eiðωm−ωnÞτjωmi�; ð7Þ

where Ê−ðτÞjγ−ðτÞi ¼ 0. Once we detect a photon at time
τ, it is projected onto the bright state jγþðτÞi. From Eqs. (7)
and (5) we see that, for detecting a photon at time t ¼ τ
compared to time t ¼ 0, the collective atomic spin is rotated
by an angle −Ωτ about the ẑ axis. In other words, the
detection time t ¼ τ of the photon simply serves as the new
time reference, relative to which always the same entangled
state is created.
This scheme also works when the photon has more

than two frequency components. For the photon with p
frequency components, we write out the corresponding
annihilation operator at time t as

Ê−ðtÞ ¼ A
Xp
j¼1

âωnj
e−iωnj

t: ð8Þ

There is always one bright state,

jγþðτÞi ¼
1ffiffiffiffi
p

p
Xp
j¼1

eiωnj
τjωnji; ð9Þ

and p − 1 dark states fjγ−jðτÞig for τ, the time that the
photon is detected, where Ê−ðτÞjγ−jðτÞi ¼ 0. As before,
detection of a photon at time τ, which projects the photon
into jγþðτÞi, creates the desired entangled state at that
time t ¼ τ.
So far, we have assumed that the cavity lines are

perfectly resolved, i.e., a photon at frequency ωn is trans-
mitted if and only if the atomic collective spin takes on the
value Sz¼−Sþn. This situation corresponds to an infinite
cooperativity parameter [40]. At finite cooperativity, the
cavity amplitude transmission function is a Lorentzian of
finite width that for n atoms in j↑i given by [40]

T ðδ; nÞ ¼ 1

1þ nη
1þ4ðΔþδÞ2=Γ2 − 2i

h
δ
κ − nη ðΔþδÞ=Γ

1þ4ðΔþδÞ2=Γ2

i :
ð10Þ

Here, η ¼ 4g2=ðΓκÞ is the cavity cooperativity, Γ and κ are
the linewidth of the atomic transition and cavity, Δ is the
cavity-atom detuning, and δ ¼ ωl − ωc is the light-cavity
detuning. Equation (10) includes the effect of photon
emission into the free space that leads to a broadening
of the cavity lines. To avoid state deterioration by unde-
tected photons scattered into free space or reflected from
the cavity, we limit the input pulse to a single-photon Fock
state or a weak coherent state with average photon number
hki ≪ 1. The average transmitted photon number must be
kept much smaller than one, in order to avoid that a second
undetected transmitted photon creates a different atomic
state than the desired state.

FIG. 2 (color online). Examples of two-, three-, and fourfold
symmetric mesoscopic superposition states of coherent spin
states. 100 atoms are initialized in a rotated CSS jθ;ϕi with
θ ¼ 0.248 rad and ϕ ¼ 0. (a)–(f) show the entangled states
generated with an ideal cavity of infinite cooperativity η.
(a)–(c) are the plots of the Husimi Q function, Q ¼
2hθ;ϕjρjθ;ϕi, where ρ is the atomic density matrix, and
(d)–(f) are the plots of the Wigner function. Here each row
shows the superposition of Dicke states n ¼ 0, 2, 4, n ¼ 0, 3, 6,
and n ¼ 1, 5, respectively. We also plot the Wigner function for
the nonideal case calculated for η ¼ 200 in (g)–(i). (j)–(l) show
the carving process on the atomic ensemble, with the Dicke state
distribution of the initial CSS (red solid bars), and the frequency
spectrum of the incident light (dashed black lines).
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We write the transmitted state at finite cooperativity as

jΨti ¼
X2S
n¼0

cnjS;−Sþ ni
X
k

AkT ðωk − ωc; nÞjωki: ð11Þ

When the entangled photon is projected onto stateP
kBkjωki by photon measurement, the atomic state

becomes

jψi¼C0X2S
n¼0

X
k

AkB�
kT ðωk−ωc;nÞcnjS;−Sþni; ð12Þ

where C0 is a normalization factor. The finite cooperativity
thus leads to an admixture of Dicke states neighboring the
desired Dicke state, and an imperfect spin state fidelity
compared to the desired ideal state. We use realistic
parameters and plot the Wigner function of the correspond-
ingly generated superposition states in Figs. 2(g)–2(i),
setting η ¼ 200, Δ ¼ 2π × 66 MHz, Γ ¼ 2π × 5.2 MHz,
and κ ¼ 2π × 0.1 MHz. Compared to the Wigner function
of the ideal states, the interference structure is unchanged
but exhibits reduced contrast. The finite cooperativity also
leads to a nonlinear cavity transmission spectrum. It
introduces lower transmission and a broader cavity line-
width for a higher-order Dicke state component due to a
larger absorption by more atoms in the j↑i state. The
Sz-dependent transmission reduction can be compensated
by adjusting the input frequency spectrum. However, the
broadening of the cavity lines due to atomic absorption
deteriorates the cavity filtering behavior, and the admixture
of unwanted Dicke states reduces the fidelity of the
generated state compared to the target state. The filtering
can be improved by increasing the cavity cooperativity η
and the detuning Δ. This is illustrated in Fig. 3(a), where
the fidelity for various Dicke states, and for a superposition
of Dicke states, are shown. The state creation probability,
when a photon is incident, is between 0.15 and 0.05.
In order to apply this state-carving method for metrology

beyond the standard quantum limit, we plot the metrologi-
cal gain for different Dicke states, for a superposition of
Dicke states, as well as for a squeezed state, as a function of
cooperativity η [Fig. 3(b)]. The curves show that the created
superposition state is robust at finite η, carrying larger
Fisher information than the CSS. For any η, we can carve a
superposition state such that it has a larger metrological
gain than the spin squeezed state generated by a single
photon. The complex states could achieve high metrologi-
cal gain at a given cooperativity η.
The cooperativity η can be improved by means of

microcavities [41] or higher-reflectivity coatings. If we
consider the two-component superposition state in
Fig 2(a), the predicted fidelity in the experiment should
be 0.63 for η ¼ 20, 0.88 for η ¼ 100, and 0.99 for
η ¼ 1000. We have verified that this result does not depend
on ensemble size.

In conclusion, we propose a universal scheme that
uses only available technology, to efficiently generate a
large variety of entangled states by detecting one
photon. The method resembles a carving process, which
engineers the amplitude and phase of each Dicke state.
Variations of this scheme may be used for creating
nonclassical states of superconducting qubits [42],
ensembles of quantum dots [43], or mechanical oscil-
lators coupled to a cavity [44].
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