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Generating entangled spin states for quantum metrology by single-photon detection
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We propose and analyze a probabilistic but heralded scheme to generate pure, entangled, non-Gaussian
states of collective spin in large atomic ensembles by means of single-photon detection. One photon announces
the preparation of a Dicke state, while two or more photons announce Schrödinger cat states. The method
produces pure states even for finite photon detection efficiency and weak atom-photon coupling. The entanglement
generation can be made quasideterministic by means of repeated trial and feedback, enabling metrology beyond
the standard quantum limit.
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I. INTRODUCTION

State-of-the-art atomic clocks and other atom interferom-
eters are limited by quantum projection noise. For measure-
ments on a system of N uncorrelated atoms in a coherent
spin state (CSS), this projection noise sets a limit scaling
as 1/

√
N , referred to as the standard quantum limit (SQL).

Entangled states can overcome this limit, potentially reaching
the Heisenberg limit, where uncertainty scales as 1/N . Thus
far, the potential for metrological gain has been demonstrated
in atomic ensembles using squeezed spin states [1–9], which
have enabled atomic clock operation surpassing the SQL
[10,11]. In these experiments, the entanglement has been
produced either by spin-dependent atom collisions [7–9] or
by coupling an optical probe to the atomic ensemble [2–6].
The Greenberger-Horne-Zeilinger states [12] have also been
shown to allow metrological gain [13] and have been produced
[14,15] for collections of up to 14 ions [16] via Coulomb
interactions.

In this paper, we describe a method to generate pure en-
tangled states of collective spin in large atomic ensembles for
measurements beyond the SQL. Photons transmitted through
the ensemble experience a weak random Faraday rotation
associated with the quantum noise of the atomic spin. A photon
emerging with polarization orthogonal to its input polarization
heralds the creation of an entangled state of collective atomic
spin. The state thus produced is non-Gaussian in the sense that
its phase-space representation on the Bloch sphere [17,18]
is not described by a Gaussian distribution, unlike that of a
CSS or even a moderately spin-squeezed state. Two or more
orthogonally polarized photons emerging from the system her-
ald increasingly more entangled “squeezed Schrödinger cat”
states [19]. This method generates states of high purity even
for weak atom-photon coupling and finite photon detection
efficiency, which simply reduce the probability of entangled-
state preparation. The heralded entanglement scheme can be
made quasideterministic through repeated trial and feedback,
enabling atom interferometry beyond the SQL.

Our approach has similarities to weak-measurement
schemes [20] that use postselection to enable detection of small
signals in the presence of technical noise [21–24]. It is closely

related to heralded schemes for the creation of Dicke states
in atomic ensembles for quantum communication [25] which
have been experimentally implemented for photon-pair and
single-photon generation [26–28]. In our method, quantum
noise of the atomic state produces a weak Faraday rotation of
the polarization of a photon, whereby the phase of the atomic
CSS becomes entangled with the photon polarization. The
detection of a single photon of select polarization then prepares
the atomic ensemble in a non-Gaussian entangled state that
results from destructive interference between two weakly sep-
arated coherent states. This method can be implemented either
in free space or in an optical cavity; the latter increases the
polarization rotation and hence the entanglement rate. When
the state preparation is fast compared to the atomic coherence
time, as is the case in atomic clocks and many interferometers,
then the present method can be made quasideterministic by
repeated trial and feedback, enabling interferometry beyond
the SQL. The metrological gain is 3 dB for just one detected
photon and improves with additional detected photons. We
note that related methods to generate squeezed Gaussian states
by measuring the Faraday rotation of a light pulse containing
a large number of photons have been proposed [29–31] and
implemented [3]. The scheme proposed and investigated in
Refs. [32,33] for Dicke-state preparation is similar to our
scheme and should allow the same metrological gain.

II. STATE PREPARATION

Consider an ensemble of N three-level atoms. Two ground-
state magnetic sublevels, |↑〉 , |↓〉, correspond to a pseudospin
si = 1

2 . The collective state of the ensemble can be described
by a total spin S = ∑

si that is the sum of individual spins
si. Two degenerate, oppositely circularly polarized modes of
an optical cavity couple |↑〉 and |↓〉 to an excited state |e〉
(Fig. 1). A magnetic field applied along the quantization axis ẑ

lifts the degeneracy between the ground states by an amount h̄δ

such that the two-photon Raman coupling between |↑〉 and |↓〉
is negligible. We assume that the two transitions have equal
coupling strength and that all atoms are equally coupled to
the light, with single-photon Rabi frequency 2g. When the
light-atom detuning � is much larger than the excited-state
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FIG. 1. (Color online) Scheme for the heralded generation of
nonclassical states. (a) Atoms with two spin states |↑〉 and |↓〉 are
coupled to an electronic excited state |e〉 via two degenerate circularly
polarized modes. (b) Incident vertically polarized photons experience
weak Faraday rotation as they traverse the ensemble. The detection
of a horizontally polarized transmitted photon heralds the generation
of a non-Gaussian entangled state of collective atomic spin. A cavity
enhances the Faraday rotation and the state preparation probability.

width �, we can adiabatically eliminate the excited state
|e〉. Ignoring photon emission into free space for now, the
interaction Hamiltonian for the atom-photon system is written
as [29]

H

h̄
=

(
2g2

�

)
JzSz. (1)

J is the Stokes vector of light and obeys the commutation
relation of angular momenta [Ji,Jj ] = iεijkJk . In particular,
Jz = 1

2 (a†
+a+ − a

†
−a−) where a± are the annihilation operators

of σ± light. The atoms are prepared initially in the CSS |x〉
along x̂, satisfying Sx |x〉 = S|x〉 where S = N/2. Consider
a vertically polarized incident photon described by the state
|v〉 = (|σ+〉 + |σ−〉)/√2. While the photon is inside the
cavity, the atom-photon system evolves as e−iH t |x〉|v〉, which
after the photon has been transmitted through the cavity results
in the state [34]

|ψt 〉 = 1√
2

S∑
m=−S

cm|m〉(e−imφ|σ+〉 + eimφ|σ−〉)

= 1√
2

(|σ+〉|φ〉 + |σ−〉|−φ〉). (2)

Here φ = η�/2� is an accumulated phase, expressed in terms
of the cavity linewidth κ and the single-atom cooperativity
η = 4g2/κ� [34,35], and the atomic state is written in
terms of Sz eigenstates |m〉 and binomial coefficients cm =
2−S{(2S)!/[(S + m)!(S − m)!]}1/2. Here |±φ〉 designates the
CSS in the equatorial plane rotated by an angle ±φ about
ẑ away from x̂. In the following we restrict the analysis to
weak atom-cavity coupling, η � 1, and the dispersive limit of
low photon absorption, requiring [35] 2Sη(�/2�)2 � 1. This
implies that the angle φ is much smaller than the CSS angular
width φcss = 1/

√
2S.

The first line of Eq. (2) is readily interpreted as the phase
±mφ being imprinted onto the σ± polarizations of the light
field due to the refractive index of the atoms in the states
|↑〉 , |↓〉 with population difference 2m. A value m �= 0, i.e., a
deviation of Sz from its mean value 〈Sz〉 = 0 due to quantum
noise in the atomic state, thus results in a polarization rotation
of the photon. The detection of a horizontally polarized

FIG. 2. (Color online) Normalized Wigner quasiprobability dis-
tribution W (θ,φ)/

√
2πS (left) and probability distributions of

angular-momentum eigenvalues (right, solid line for Sz, dashed line
for Sy) calculated for N = 50 atoms for [(a), (b)] the input CSS, [(c),
(d)] n = 1 detected |h〉 photon, [(e), (f)] n = 2 detected |h〉 photons,
and [(g), (h)] n = 5 detected |h〉 photons. Wigner functions [(e), (g)]
indicate the production of a Schrödinger cat state for n � 2 detected
|h〉 photons. The distributions of Sy eigenvalues in panels (d), (f), and
(h) consist of several peaks, narrower than the CSS width, enabling
measurements surpassing the SQL.

photon |h〉 requires Sz �= 0 and biases the system towards
states with larger |Sz|, creating a collective spin state whose
quasiprobability distribution on the Bloch sphere shows a hole
in the center (see Fig. 2).

From a complementary viewpoint, σ+ and σ− photons
shift the phase of the atomic CSS in opposite directions
by an amount ±φ. Even though φ � φcss, the detection
of a horizontally polarized photon |h〉 = (|σ+〉 − |σ−〉)/√2
corresponds [according to the second line in Eq. (2)] to the
destructive interference |φ〉 − | − φ〉 of two weakly separated
coherent spin states, which generates the hole in the center of
the state.

The atomic state after detection of one photon in |h〉
can be expressed as |ψ1〉 = ∑

m cm sin(mφ)|m〉, where the
unimportant normalization factor has been omitted, and for
φ � φcss approximated as |ψ1〉 = ∑

m mcm|m〉. |ψ1〉 is the
first Dicke state along x̂, which satisfies Sx |ψ1〉 = (S − 1)|ψ1〉.

We now consider the effect of a multiple-photon input state.
We begin by considering an input Fock state and later discuss
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the effects due to the more easily realizable situation of an input
coherent state. For an input photon Fock state of n0 photons,
with n photons exiting the system in |h〉 and n0 − n photons
exiting in the original polarization |v〉, the atomic state is given
by

|ψn〉 =
∑
m

cm sinn(mφ) cosn0−n(mφ)|m〉. (3)

In the dispersive limit and for small η, cos(mφ) ≈ 1 for m �√
S/2, and the state |ψn〉 for n � 2 corresponds to a “squeezed

cat” state [19], a superposition of two Gaussian states squeezed
by a factor of 2 and separated on the Bloch sphere by an angle
�θ = 2

√
n/S = √

8nφcss (see Fig. 2). Remarkably, as both
the separation angle �θ and the CSS angular width φcss scale
as 1/

√
S, this allows the production of states separated by

an angle greater than the CSS width for just a few detected
photons, regardless of the atom number used. We emphasize
that for φ � φcss the states |ψn〉 are independent of φ, which
affects only the likelihood of producing the state.

III. METROLOGICAL GAIN

The entangled states |ψn〉 display peaks in the angular-
momentum distributions along both Sz and Sy that are narrower
than the CSS width. In particular, expressed in terms of Sy

eigenstates |m〉y , the state |ψn〉 is to lowest order independent
of n0 and is well approximated by

|ψn〉 =
⎧⎨
⎩

∑
m An,Se

−m2

4S sin(m
√

n/S) |m〉y n odd,∑
m An,Se

−m2

4S cos(m
√

n/S) |m〉y n even,

(4)

where An,S = (πS/2)−1/4(1 − e−2n)−1/2 is a normalization
constant. Figure 2 shows the Sz and Sy probability distributions
of the state |ψn〉. We also plot the corresponding Wigner
function W (θ,φ) for the spin state, given by [36]

W (θ,φ) =
2S∑

k=0

k∑
q=−k

ρkqYkq(θ,φ), (5)

where the terms ρkq represent density matrix elements in the
spherical harmonic basis and the Ykq(θ,φ) are the spherical
harmonics. We note that the probability distributions of angular
momentum eigenvalues are given by the marginals of the
Wigner function. Figures 2(a) and 2(b) show the input CSS,
while Figs. 2(c) and 2(d) show the state produced by the
conditional detection of one photon in |h〉. Higher-order states
produced by the conditional detection of more than one |h〉
photon are shown in Figs. 2(e)–2(h).

The narrower features along Sy enable improved phase
readout in a Ramsey measurement compared to the CSS:
After initial-state preparation, a period τ of free evolution
is followed by rotation about the average direction of the
spin vector, which can be chosen as x̂, thereby mapping
the multipeaked Sy distribution onto the Sz axis. The value
of 〈Sz〉, and hence the accumulated interferometer phase, is
found by fitting the measured distribution of Sz values to
the a priori distribution given by Eq. (4). (We assume that
decoherence in the interferometer leads to phase fluctuations
much less than the width of the peaks.) To see that this
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FIG. 3. Black squares show the measurement variance of the
states |ψn〉, normalized to the CSS variance, (�S(w)

z )2/(S/2), in dB, as
a function of number of detected |h〉 photons n, indicating substantial
metrological gain for n of a few. The dashed curve shows that for
larger n the normalized variance asymptotically approaches the value
(�S(w)

z )2/(S/2) = 0.64/n (see text). Due to the finite atom number,
N = 100, used for the calculations, points in the figure show slight
deviations from the asymptotic behavior expected for large N .

procedure gives lower quantum uncertainty in the estimation
of 〈Sz〉, consider M measurement points, of which a known
fraction fi falls under a particular peak i, μi is the mean
value of Sz associated with that peak, and σ0 is the width of
each peak. The weighted average, given by S(w)

z = ∑
i μifi ,

has variance given by (�S(w)
z )2 = σ 2

0 /M , the same as for M

measurements conducted on a single peak of width σ0. Thus,
a probability distribution composed of multiple narrow peaks
allows the same reduction in measurement uncertainty as one
containing a single peak of equal (reduced) width. This allows
the entangled states |ψn〉 to produce substantial metrological
gain. In particular, the first excited Dicke state, produced by
a single detected photon, results in measurement variance
3.4 dB below the SQL. This metrological gain is confirmed
by calculations of the classical Fisher information in the Sz

distributions [37], which show enhancement beyond the SQL
in agreement with the values obtained by the measurement
protocol we have described.

Figure 3 shows the measurement variance (normalized to
the CSS variance) as a function of detected photon number
n, assuming large atom number N . The normalized variance
asymptotically approaches the value 0.64/n (dashed curve in
Fig. 3). This represents the squared ratio of the width of one
peak of the function cos2(m

√
n/S), assuming n large, to the

CSS width
√

S/2. While the probability to produce high-n
states decreases exponentially, Fig. 3 indicates that substantial
metrological gain is obtained even for n of a few. (Similar
calculations for higher-order excited Dicke states [32] indicate
that the nth Dicke state results in the same metrological gain
as the n-photon state produced by our scheme.) We also note
that metrological gain can be used to prove that the atomic
ensemble is entangled [38,39].

IV. RATE OF ENTANGLED-STATE GENERATION

To calculate the heralded generation rate of these entangled
states, we note that the probability of converting one incident
|v〉 photon into an |h〉 photon and detecting it is easily
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calculated from the mean square of the polarization rotation
angle 〈β2〉 = Sφ2/2 and is given by p = qSφ2/2 � 1, where
q � 1 is the photon detection efficiency. The probability of the
incident photon being scattered into free space by the atomic
ensemble is psc = 2Sη(�/2�)2 = 2Sφ2/η [35]. Therefore
the success probability is simply related to the free-space
scattering probability via p = qηpsc/4. A cavity increases the
single-atom resonant optical depth 2η [35] and hence greatly
improves the generation efficiency for a given psc.

In realistic implementations, the input photons will typ-
ically be in a coherent state with mean photon number n0

rather than a Fock state. This means that an unknown number
of photons will exit the system in the original polarization
|v〉. Whether detected or not, these |v〉 photons have minimal
impact on the atomic state: They multiply the coefficients cm

of the state by cos(mφ) ≈ 1 as shown in Eq. (3). The series of
cosine factors does not significantly degrade the atomic state
until Nn0φ

2 approaches unity. Since the probability p1 to
detect one outgoing |h〉 photon out of n0 incident |v〉 photons
is given by p1 = qNn0φ

2/4, this results in the requirement
p1 � q. Under this condition, an input coherent state of the
light will have the same effect as an input Fock state of the light.

The produced state can also be degraded by undetected
|h〉 photons. When a coherent state is used for the input,
the probability to detect exactly n photons in |h〉 is given
by the weighted sum over values of Sz of P (n̄(Sz),n), where
P (n̄(Sz),n) is the chance to find exactly n output photons given
a Poisson distribution with mean value n̄(Sz) = qn0S

2
z φ

2. For
p1 � 1, the overall probability for exactly n photons to exit the
system in |h〉 is (p1/2)n(2n)!/(n!)2qn, and the probability to
detect them all is pn = (p1/2)n(2n)!/(n!)2. The probability
that n + 1 photons exit in |h〉 of which n are detected is
then pn+1q

n(1 − q)(n + 1)/qn+1 = p1pn(2n + 1)(1 − q)/q.
Such “false positive” states, corresponding to an additional
undetected |h〉 photon, produce an atomic state different from
the heralded state, substantially reducing the signal-to-noise
ratio. Under the requirement p1 � q/(2n + 1), the probability
for such “false-positive” states is smaller than that of the
heralded state by a factor p1(2n + 1)(1 − q)/q � 1.

Note that, in order to maintain the coherence of the atomic
spin state, the photon number scattered into free space must
remain substantially smaller than the atom number, n0psc �
N . For optically dense ensembles in free space, 2Nη > 1, this
condition is automatically met by p1 � 1, and the method
proposed here can also be directly applied to dense ensembles
in free space.

Given a coherent input state with mean photon num-
ber n0, the probability per trial to detect n photons is
(p1/2)n(2n)!/(n!)2, which requires on average only a small
number nsc = 4p1/qη of photons to be scattered into free

space. While the success probability decreases exponentially
with n, even states corresponding to n of a few display
significant nonclassicality. For instance, with a realistic q =
0.5 detection efficiency and choosing np1 = 0.2q, the creation
of entangled states corresponding to n = 1,2,3 requires on
average 10, 300, and 1 × 104 trials, respectively, for any
number of atoms. The corresponding improvements over the
SQL are 3.4, 6.0, and 7.4 dB, respectively.

Although the states are generated only probabilistically, due
to the heralding, preparation attempts may be repeated until
success. For Ramsey measurements, the free precession time
τ is typically much longer than the state preparation time.
Under these conditions, even if entangled-state preparation
requires many attempts, the total preparation time can remain
small compared to τ and there is no significant reduction of
measurement duty cycle. As one example, state preparation
in the Sr optical lattice clock is limited by the 20 μs decay
time of the optical pumping transition, suggesting that state
preparation, consisting of optical pumping to |↓〉, preparation
of a coherent state |x〉 with a π/2 pulse, and illumination by
the probe pulse, could be performed in as little as 200 μs,
while the available measurement time for that system is ∼1 s
and is currently laser-limited [40]. Thus, up to ∼104 state
preparation attempts may be made without compromising
available measurement time; a transition with faster excited-
state decay time may allow even more attempts.

V. CONCLUSIONS

In conclusion, we have proposed a technique where a single
photon can create an entangled spin state of a very large
ensemble of atoms. This can be achieved even in the limit of
weak coupling between a photon and an atom and finite photon
detection efficiency. The use of these states for interferometry
below the SQL requires state readout capabilities well below
the CSS width, as have been recently demonstrated [41].
While spin squeezing [1–9] can generate larger metrological
gain than the method proposed here, all such experiments to
date have produced antisqueezing that is much larger than
the squeezing, resulting in mixed spin states. In contrast,
the method proposed here generates nearly pure states and
can be used to create “Schrödinger cat” states that are of
fundamental interest.
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