Erratum: Squeezing the collective spin of a dilute atomic ensemble by cavity feedback [Phys. Rev. A 81, 021804(R) (2010)]

Monika H. Schleier-Smith, Ian D. Leroux, and Vladan Vuletić

(Received 2 March 2011; published 28 March 2011)
DOI: 10.1103/PhysRevA.83.039907
PACS number(s): 42.50.Dv, 06.20.-f, 32.80.Qk, 42.50.Lc, 99.10.Cd

An error in our expression for \tilde{S}_{+}(second column of page 2) led us to miscalculate by a factor of 2 the spin variance due to photon shot noise. The correction of this error alters numerical factors but does not affect the conclusions of the paper.

We should have defined $\tilde{S}_{+} \equiv S_{+}(t) e^{-i \operatorname{Re}\left[f_{1}(0)\right] t}$, and thus Eqs. (7)-(11) should read

$$
\begin{gather*}
\left\langle\tilde{S}_{+}\right\rangle_{\beta}=e^{-Q /(2 S)} e^{i Q S_{z} / S} S_{+}(0), \tag{7}\\
\left\langle\tilde{S}_{+}^{2}\right\rangle_{\beta}=e^{-(2+i) Q / S} e^{2 i Q S_{z} / S} S_{+}^{2}(0), \tag{8}\\
\Delta \tilde{S}_{y}^{2}=\frac{S^{2}}{2}+\frac{S}{4}-\left(\frac{S^{2}}{2}-\frac{S}{4}\right) e^{-2 Q / S} \mathcal{G}_{S}(Q), \tag{9}\\
\left\langle\tilde{S}_{y} S_{z}+S_{z} \tilde{S}_{y}\right\rangle=\left(2 S^{2}-S\right) e^{-Q /(2 S)} \sin \left(\frac{Q}{2 S}\right) \mathcal{G}_{S}(Q / 2), \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\Delta \tilde{S}_{y}^{2} \approx \frac{S}{2}\left(1+2 Q+Q^{2}\right) \tag{11}
\end{equation*}
$$

The second term in Eq. (11) indicates the spin variance $Q S$ due to photon shot noise, twice the value given in our original publication.

Although the numerical prefactors in subsequent expressions are of little consequence, we correct them here for completeness:

$$
\begin{gathered}
\sigma_{\alpha_{0}}^{2} \approx 2 / Q+Q^{4} /\left(24 S^{2}\right) \\
\sigma_{\alpha_{0}} \sigma_{\alpha_{0}+\pi / 2} \approx \sqrt{2 Q} \\
Q_{\text {curv }}=12^{1 / 5} S^{2 / 5} \\
\sigma_{\text {curv }}^{2}=(5 / 2) 12^{-1 / 5} S^{-2 / 5}
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{\alpha_{0}, r}^{2} \approx\left(\frac{2}{Q}+\frac{Q}{3 S \eta}\right)=\left(\frac{1}{2 S \eta r}+\frac{4 r}{3}\right), \\
Q_{\text {scatt }}=\sqrt{6 S \eta}, \\
\left.\sigma_{\alpha_{0}, r}^{2}\right|_{Q=Q_{\text {scatt }}}=\sqrt{8 /(3 S \eta)} \\
r_{\text {opt }}=\sqrt{3 /(8 S \eta)}
\end{gathered}
$$

The corrected version of Fig. 2 still indicates substantial squeezing, and the caption is unchanged.

FIG. 2. (Color online) Minimum normalized variance $\sigma_{\alpha_{0}, r}^{2}$ as a function of shearing strength Q for $S=10^{4}$ and various single-atom cooperativities $\eta=0.001,0.01,0.1,1$ (solid lines). The dashed line shows the limit $\sigma_{\text {curv }}^{2}$ due to the curvature of the Bloch sphere when free-space scattering is ignored. The dotted line shows the variance neglecting both free-space scattering and curvature, scaling as $1 / Q$ for $Q \gg 1$.

