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Entanglement with negative Wigner function of
almost 3,000 atoms heralded by one photon
Robert McConnell1*, Hao Zhang1*, Jiazhong Hu1, Senka Ćuk1,2 & Vladan Vuletić1

Quantum-mechanically correlated (entangled) states of many part-
icles are of interest in quantum information, quantum computing
and quantum metrology. Metrologically useful entangled states of
large atomic ensembles have been experimentally realized1–10, but
these states display Gaussian spin distribution functions with a
non-negative Wigner quasiprobability distribution function. Non-
Gaussian entangled states have been produced in small ensembles of
ions11,12, and very recently in large atomic ensembles13–15. Here we
generate entanglement in a large atomic ensemble via an interaction
with a very weak laser pulse; remarkably, the detection of a single
photon prepares several thousand atoms in an entangled state. We
reconstruct a negative-valued Wigner function—an important hall-
mark of non-classicality—and verify an entanglement depth (the
minimum number of mutually entangled atoms) of 2,910 6 190
out of 3,100 atoms. Attaining such a negative Wigner function and
the mutual entanglement of virtually all atoms is unprecedented for
an ensemble containing more than a few particles. Although the
achieved purity of the state is slightly below the threshold for entan-
glement-induced metrological gain, further technical improvement
should allow the generation of states that surpass this threshold, and
of more complex Schrödinger cat states for quantum metrology and
information processing. More generally, our results demonstrate the
power of heralded methods for entanglement generation, and illus-
trate how the information contained in a single photon can drastic-
ally alter the quantum state of a large system.

Entanglement is now recognized as a resource for secure commun-
ication, quantum information processing, and precision measurements.
An important goal is the creation of entangled states of many-particle
systems while retaining the ability to characterize the quantum state and
validate entanglement. Entanglement can be verified in a variety of ways;
one of the strictest criteria is a negative-valued Wigner function16,17,
which necessarily implies that the entangled state has a non-Gaussian
wavefunction. To date, the metrologically useful spin-squeezed states1–10

have been produced in large ensembles. These states have Gaussian spin
distributions and therefore can largely be modelled as systems with a
classical source of spin noise, where quantum mechanics enters only to
set the amount of Gaussian noise. Non-Gaussian states with a negative
Wigner function are however manifestly non-classical, since the Wigner
function as a quasiprobability function must remain non-negative in the
classical realm. Whereas before this work a negative Wigner function
had not been attained for atomic ensembles, in the optical domain, a
negative-valued Wigner function has very recently been measured for
states with up to 110 microwave photons18. Another entanglement mea-
sure is the entanglement depth19, that is, the minimum number of atoms
that are demonstrably, but possibly weakly, entangled with one another.
This parameter quantifies how widely shared among the particles an
entangled state is. For a state of an ensemble characterized by collective
measurements, the entanglement depth depends sensitively on the prox-
imity of the state to the ideal symmetric subspace of all particles. The
largest entanglement depth verified previously has been 170 out of 2,300
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Figure 1 | Scheme for heralded entanglement generation in a large atomic
ensemble by single-photon detection. a, Incident vertically polarized light
(top left) experiences weak polarization rotation q due to atomic quantum
noise, and the detection of a horizontally polarized transmitted photon | hæ
heralds an entangled state of collective atomic spin. An optical resonator
formed by two mirrors enhances the polarization rotation and the heralding
probability. The Bloch spheres show the ideal Wigner distribution functions for

the collective spin S upon registering the corresponding single-photon
detection events. b, Atoms of 87Rb in the 5S1/2, F 5 1 hyperfine manifold are
coupled to the excited 5P3/2 manifold via linearly polarized light, decomposed
into two circular polarization components | s6æ (indicated by red arrows) that
interact with the atomic ground-state populations. The outgoing polarization
state of the light reflects the quantum fluctuations between the | 5S1/2F 5 1,
m 5 6 1æ magnetic sublevels. See Methods for details.
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atoms for a spin-squeezed state6, and very recently 13 out of 41 atoms for
a non-Gaussian state13.

Here we generate entanglement in a large atomic ensemble by detect-
ing a single photon that has interacted with the ensemble20. An incident
vertically polarized photon experiences a weak random polarization
rotation associated with the quantum noise of the collective atomic spin.
The detection of a horizontally polarized emerging photon then heralds
a non-Gaussian entangled state of collective atomic spin (Fig. 1) with a
negative-valued Wigner function of 20.36 6 0.08, and an entanglement
depth of 90% of our ensemble containing several thousand atoms.

The pertinent atom–light interaction is enhanced by an optical cavity,
into which we load Na 5 3,100 6 300 laser-cooled 87Rb atoms (Fig. 1a).
The atoms are prepared in the 5S1/2, F 5 1 hyperfine manifold, such that
each atom i can be associated with a spin f i, and the ensemble with a
collective-spin vector S~

P
i f i. After polarizing the ensemble (Sz <

S 5 F Na) by optical pumping, the collective spin state is rotated onto
the x̂ axis by means of a radio-frequency p/2 pulse. This (unentangled)
initial state, which is centred about Sz 5 0 with a variance (DSz)

2 5 S/2, is
known as a coherent spin state (CSS). In our experiment, the atoms are
non-uniformly coupled to the optical mode used for state preparation
and detection, but the relevant concepts can be generalized to this situ-
ation, as discussed in Methods.

Probe light resonant with a cavity mode and detuned from the 87Rb
D2 transition is polarization-analysed upon transmission through the
cavity. The vertical polarization state of each photon in the incident laser
pulse vj i~ szj iz s{j ið Þ

� ffiffiffi
2
p

can be decomposed into two circular
polarization components js6æ that produce opposite differential light
shifts between the atomic magnetic sublevels jm 5 61æ. Hence a js6æ
photon causes a precession of the collective spin vector S in the x–y plane
by a small angle 6w (see Methods), and we denote the corresponding
slightly displaced CSS by j6wæ. Then the combined state of the atom–
light system after the passage of one photon can be written as20

yj i! szj izwj iz s{j i{wj i ð1Þ
Conversely, atoms in the states jm 5 61æ cause different phase shifts on
the s6 photons, resulting in a net rotation of the photon linear polar-
ization if the states jm 5 61æ are not equally populated. Then the atomic
quantum fluctuations between jm 5 61æ in the CSS randomly rotate the
polarization of the input photons jvæ, giving rise to a non-zero probabil-
ity / w2 for an incident jvæ photon to emerge in the polarization hj i~

szj i{ s{j ið Þ
� ffiffiffi

2
p

, orthogonal to its input polarization. The detection
of such a ‘heralding’ photon projects the atomic state onto Æhjyæ /
jwæ 2 j2wæ, which is not a CSS, but an entangled state of collective spin,
namely, the first excited Dicke state21 jy1æ along x̂ (Fig. 1a). In contrast, if
the photon is detected in its original polarization jvæ, the atomic state is
projected onto Ævjyæ / jwæ 1 j2wæ, a state slightly spin squeezed1 and
essentially identical to the input CSS. Thus the entangled atomic state
jy1æ is post-selected by the detection of the heralding photon jhæ.

From a different perspective, the entangled state is generated by a
single-photon measurement event. The incident photon undergoes
Faraday rotation by an angle q proportional to the collective spin along
the cavity axis, Sz, that exhibits quantum fluctuations around ÆSzæ 5 0.
Since detection of the outgoing photon in jhæ is only possible if Sz ? 0,
such detection excludes values of Sz near 0 from the spin distribution20,
and biases the collective spin towards larger values of jSzj. This creates a
‘hole’ in the atomic distribution near Sz 5 0, as seen in Fig. 1a.

The mean photon number in the incident laser pulse k < 210 is
chosen such that the probability for one photon to emerge in heralding
polarization jhæ is p<0:05=1. This ensures a very small probability /
p2 for producing a different entangled state jy2æ heralded by two
photons20, a state which, owing to our photon detection efficiency of
q 5 0.3 , 1, we would (mostly) mistake for jy1æ. This admixture of jy2æ
to the heralded state is suppressed by a factor of 3p(1 2 q) < 0.1. Further
state imperfection arises from false heralding events due to residual
polarization impurity of the probe beam (independent of the atoms)

of ,3 3 1025 5 0.1p/k, adding an admixture of about 10% of the CSS to
the heralded state.

In order to reconstruct the collective-spin state generated by the
heralding event, we rotate the atomic state after the heralding process

by an angle b~0,
p

4
,
p

2
,
3p
4

about the x̂ axis before measuring Sz. (Thus

b 5 0 corresponds to measuring Sz, b 5p/2 corresponds to Sy, and so
on). The measurement is performed by applying a stronger light pulse in
the same polarization-optimized set-up used for heralding. As the
Faraday rotation angle q=1 is proportional to Sz, and the probability
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Figure 2 | Collective-spin distribution of atomic state heralded by one
photon. a–d, Measured photon distributions g(nb) for no heralding photon
detected (blue squares), and for one heralding photon detected (red circles), for
rotation angles b of 0 (a), p/4 (b), p/2 (c) and 3p/4 (d). Inset, logarithmic
representations of the same data. In the ideal case, the ratio for the heralded
state and the CSS is nb

� �
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her

.
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CSS

~3 for any angle b,

and we measure Ænbæher/ÆnbæCSS 5 {2.7 6 0.2, 2.2 6 0.2, 2.4 6 0.2, 2.1 6 0.1}

for b~ 0,
p

4
,
p

2
,

3p
4

� �
. For each b, the blue and red data sets represent

approximately 1.5 3 104 and 200 experiments, respectively. The solid blue and
the dashed red curves are predictions without any free parameters, calculated
from first principles and the separately measured atom number, for the CSS and
the perfect first Dicke state, respectively. The solid red line corresponds to the
simultaneous fit to all measurement angles b, that is, the reconstructed density
matrix. Error bars, 1 s.d. The planes through the Bloch spheres indicate the
measurement direction for the collective spin as specified by the angle b.
e–h, Reconstructed collective spin distributions of the heralded state (red) for
rotation angles b of 0 (e), p/4 (f), p/2 (g) and 3p/4 (h). The spin distributions of
the CSS (blue) are for reference. The horizontal axis Sb is expressed in terms of
the effective atom number4 N 5 (2/3)Na 5 2,100, obtained by weighting each
atom with its coupling strength to the standing-wave probe field inside the
cavity, such that the experimentally measured spin fluctuation (DSb)2 of the
CSS via its interaction with the probe light satisfies the standard relation
(DSb)2 5 S/2 5 NF/2 for spin F atoms (see Methods). The shaded area indicates
the statistical uncertainty of 1 s.d. The spin distribution in f shows no ‘hole’ in
the middle owing to the lower quality of data for this measurement run,
b 5p/4.
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for detecting jhæ-polarized photons is proportional to q2, the measured
probability distribution of jhæ photon number, g(nb), reflects the pro-
bability distribution of S2

b. Figure 2a–d shows that a single heralding
photon substantially changes the spin distribution towards larger values
of S2

b

D E
. We further verify that the heralded state remains (nearly) spin

polarized with a contrast ofC~0:99z0:01
{0:02, the same as for the CSS within

error bars (Fig. 3a).
From the photon distributions g(nb) we can reconstruct the density

matrix rmn in the Dicke state basis21 along x̂, where jn 5 0æ denotes the
CSS along x̂, jn 5 1æ the first Dicke state, jn 5 2æ the second Dicke state,
and so on. From the density matrix we obtain the Wigner function
W(h, w) on the Bloch sphere22 (Fig. 3). To accurately determine the
Wigner function value on the axis, W h~

p

2
,w~0

� 	
~
P

n {1ð Þnrnn,

which depends only on the population terms rnn, we average the
photon distributions g(nb) over four angles b and thereby reduce the
fitting parameters to just rnn, n # 4. This is equivalent to constructing a
rotationally symmetric Wigner function from the angle-averaged mar-
ginal distribution17. We obtain r00 5 0.32 6 0.03, r11 5 0.66 6 0.04 with

negligible higher-order population terms, giving W
p

2
,0

� 	
~{0:36+

0:08, to be compared to W
p

2
,0

� 	
~{1 for the perfect first Dicke state.

We can also fit the density matrix including the coherence terms
simultaneously to g(nb) for all four angles b, without angle-averaging.
Since the photon distributions g(nb) depend only on S2

b, they determine
only the even terms of the density matrix, that is, rmn where m 1 n is
even, and contain no information about the odd terms. If we calculate

W
p

2
,0

� 	
from the density matrix without angle-averaging, we find

W
p

2
,0

� 	
~{0:27+0:08, within error bars consistent with the angle-

averaged value. In order to display the Wigner function, we bound the
odd terms (m 1 n odd) by verifying that the heralding process does not

displace the state relative to the CSS (see Methods). Therefore we set the
odd terms to zero, and display the resulting density matrix and corres-
ponding Wigner function in Fig. 3b–d. The spin distributions f(Sb)
obtained from this density matrix are shown in Fig. 2e–h.

In order to quantify the minimum number of mutually entangled
atoms, we use a criterion derived in ref. 13 that establishes entanglement
depth as a function of the populations r00 and r11. From this criterion,
generalized to the case of non-uniform coupling to the measurement
light field (see Methods), we deduce an average entanglement depth of
N a~2,910+190 out of Na 5 3,100 atoms (Fig. 3e) using the angle-
averaged density matrix. Our results represent the first (to our know-
ledge) experimental verification of the mutual entanglement shared by
virtually all atoms in an ensemble that contains more than a few particles.

The above results demonstrate that even with limited resources, that is,
weak atom–photon coupling, heralding schemes can be used to boost the
effective interaction strength by a large factor, enabling the production of
highly entangled states20,23. Furthermore, by repeated trials and feed-
back the entanglement generation can be made quasi-deterministic24,25.
Our approach is related to other heralded schemes for quantum
communication24–27 and entangled-state preparation28–30, and it would
be interesting to generalize the present analysis to infer characteristics of
the atomic state from the measured optical signals in those experiments.
We note that the same first Dicke state was created in an ensemble of
up to 41 atoms with a scheme that uses many heralding photons in a
strongly coupled atom–cavity system13. In our system, the maximum
atom number of ,3,000 is set by the accuracy of the spin rotation, and
could be increased by two orders of magnitude by better magnetic-field
control10. The state purity r11 can probably be further improved by
reducing the heralding probability, and a value of r11 . 0.73 would be
required for the Fisher information14 to exceed that of the CSS, and
enable metrological gain of up to 3 dB. The detection of two or more
photons prepares Schrödinger cat states20 of the atomic ensemble with
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Figure 3 | Reconstruction of the heralded many-atom entangled state.
a, Normalized spin component Sz/S measured in a Ramsey sequence, as a
function of the phase of the second Ramseyp/2 pulse, for the CSS (blue squares)
and the heralded state (red circles). The fit (red line) shows a contrast of
0:99z0:01

{0:02 for the heralded state, within error bars the same as the contrast
0.995 6 0.004 of the CSS. The negligible contrast reduction is expected given
that we send only 210 photons into the system at large detuning from atomic
resonance. b, Reconstructed Wigner function W(h, w) for the heralded state on
the Bloch sphere22 with a radius given by the effective atom number N 5 2,100.
h is the polar angle with respect to ẑ and w is the azimuthal angle with respect to
x̂. The first excited Dicke state and the CSS have W

p

2
,0

� 	
~{1 and

W
p

2
,0

� 	
~1, respectively. To provide a reference scale for the size of the

negative region, the black dashed line is the contour at which the CSS has a
Wigner function value equal to 1/e. c, d, Real and imaginary parts, respectively,
of the reconstructed density matrix elements, in the Dicke state basis along x̂,
for the heralded state. e, Entanglement depth criterion13 for the heralded state,
plotted in terms of density matrix elements r00 and r11. The red shaded region
represents the 1 s.d. confidence region for the heralded state. Lines (orange,
green and blue, labelled with k) represent boundaries for k-particle
entanglement in terms of atom number Na; a state with r11 greater than such a
boundary displays at least k-particle entanglement. States falling within the blue
shaded region are not provably entangled by the used criterion. The hatched
area indicates the unphysical region where the density matrix trace would
exceed unity.
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more metrological gain. We expect that heralded methods can generate
a variety of nearly pure, complex, strongly entangled states that are
not accessible by any other means at the present state of quantum
technology.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Photon polarization rotation by atomic spin. Probe laser light red-detuned by
D0/(2p) 5 2200 MHz from the 87Rb transition 52S1/2, F 5 1 to 52P3/2, F9 5 0 is sent
through an optical cavity containing the atomic ensemble. We first consider the case
where all the atoms are coupled with equal strength to the probe light. For detuning
D much larger than the excited state linewidth C/(2p) 5 6.1 MHz, the excited state
manifold can be adiabatically eliminated. The vector component of the a.c. Stark
shift is described by the Hamiltonian

H
B

~
g2

D
JzSz ð2Þ

where Jz~
1
2 a{zaz{a{{a{

� 	
, with a6 the annihilation operators for photons with

s6 circular polarizations. Here 2g is the effective single-photon Rabi frequency
taking into account the multiple transitions from 52S1/2, F 5 1 to 52P3/2, F9 5 0, 1,
2, given by

g2~ g0,0
1,1


 �2
z g1,0

1,1


 �2
z g2,0

1,1


 �2
{ g2,2

1,1


 �2 ð3Þ

where 2gF’,m’
F,m is the single-photon Rabi frequency between the ground state jF 5 1,

mæ and the excited state jF9, m9æ. As D0 is comparable to the hyperfine splittings of the
52P3/2 excited states, the interaction strength g2=D is given by

g2

D
~

g0,0
1,1


 �2

D0
z

g1,0
1,1


 �2

D0{D1
z

g2,0
1,1


 �2

D0{D1{D2
{

g2,2
1,1


 �2

D0{D1{D2
ð4Þ

where D1/(2p) 5 72 MHz is the hyperfine splitting between the F9 5 0 and F9 5 1
manifolds, D2/(2p) 5 157 MHz between F9 5 1 and F9 5 2, and D/(2p) 5 2150 MHz
is the effective detuning when D0/(2p) 5 2200 MHz. The value g2=D for our experi-
ment is 2p3 0.7 kHz.

This vector shift (equation (2)) gives rise to a Jz-dependent Larmor precession of
the atomic collective spin S in the x–y plane. Consider one js6æ photon passing
through the optical cavity and causing the atomic spin to precess by phase 6w. The
characteristic atom–photon interaction time is 2/k, where k is the cavity linewidth,
therefore the atomic phase is given by20,31 w~g2=(Dk) 5 gvC/(4D), where the cavity
cooperativity gv~4g2=(kC)~0:07. Another way to think of the Hamiltonian
(equation (2)) is that the atomic spin component Sz causes different phase shifts
on the photon s1 and s2 components, resulting in a rotation of the linear polar-
ization of the light. The polarization rotation angle q~(g2=D)(Sz=2)(2=k)~wSz .

In general, the incident light can introduce Raman transitions between different
magnetic levels in the F 5 1 ground state manifold. We apply a bias magnetic field of
4.7 G along the cavity axis to introduce a Zeeman shift between the magnetic levels,
so that the Raman coupling is off-resonant. The Larmor frequency is vL/(2p) 5

3.3 MHz, larger than the cavity linewidth k/(2p) 5 1.0 MHz, so that the Raman
coupling can be neglected. There is also an unimportant scalar light shift, as well
as a tensor light shift that gives rise to squeezing that is negligible for our experi-
mental conditions.
Experimental details. We load an ensemble of 87Rb atoms, cooled to T 5 50mK, into
a medium-finesse optical cavity (cavity finesseF~5,600, linewidth k/(2p) 5 1.0 MHz,
cooperativity g0 5 0.2 at an antinode on a transition with unity oscillator strength).
The atoms are confined on the cavity axis by a far-detuned optical dipole trap at
852 nm with trap depth U/h 5 20 MHz. Characteristics of the optical cavity at the
780 nm probe laser wavelength and the 852 nm trap laser wavelength are summar-
ized in Extended Data Table 1. One Glan-Taylor polarizing beamsplitter (Thorlabs
GT5) purifies the polarization of probe light entering the cavity, while a second
polarizing beamsplitter after the cavity allows us to measure the rotation of the probe
light due to the atomic projection noise. Two Single Photon Counting Modules
(SPCMs, models SPCM-AQRH-14-FC and SPCM-AQR-12-FC) are placed at the
transmitting and reflecting ports of the polarizing beamsplitter to detect the photons.
Owing to the fibre coupling and finite SPCM detection efficiency at 780 nm, the
overall quantum efficiency of the detection process is q 5 0.3.
Definition of effective atom number. Atoms are optically confined at the antinodes
of the 852 nm trap laser standing wave. The 780 nm probe light in the cavity forms a
standing wave that is incommensurate with the trap standing wave. Consequently,
the atoms experience spatially varying couplings to the probe light and rotate the
probe photon polarization by different amounts. For an atom at position z on the
cavity axis, the cooperativity is g(z) 5 gv sin2(kz). When Na atoms are prepared in a
CSS, the atomic projection noise gives rise to fluctuations of the photon polarization
rotation. The measured variance of the polarization rotation is proportional to
Na

2
g2 zð Þ
� �

where averaging is performed over the position z. This variance differs

by a factor of order unity from that of a CSS consisting of Na atoms uniformly
coupled to the light. As described in a previous paper4, we introduce the effective
atom number N and the effective cavity cooperativity g to satisfy two conditions:
that the experimentally measured variance equals that of N uniformly coupled

atoms,
Na

2
g2

z

� �
~

N
2

g2, and that the total amount of interaction between the
atomic ensemble and the probe light is the same, that is, NaÆgzæ 5 Ng. To satisfy

these two conditions we define the effective atom number N~
2
3

Na and the

effective cavity cooperativity g~
3
4

gv. This re-scaling allows direct comparison

with the well-known expressions for the uniformly coupled CSS.
As in the main text and the rest of Methods, Sz refers to the collective spin of an

ensemble containing N effective atoms, and therefore the atomic spin precession
phase for each transmitting cavity photon is given by w 5 gC/(4D) 5 (3/4)gvC/(4D).
Note that this value g 5 0.05 , 1 corresponds to the weak atom–cavity coupling
regime. For our parameters,w~5|10{4=wCSS~1:5|10{2 where wCSS~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2Sð Þ

p
is the angular r.m.s. width of the CSS.
Choice of the heralding photon number. The heralding light must be weak enough
that it does not introduce substantial decoherence of the desired atomic state. The
fundamental shot noise between the s1 and s2 circular polarization components of
the heralding light gives rise to phase broadening of the atomic state, which limits the
purity of the heralded entangled state. To measure the phase broadening, heralding
light pulses with variable photon number are sent into the cavity, and the variance
DS2

y is measured by applying a radio-frequency p/2 pulse to rotate the atomic state
about the x̂ direction before measuring DS2

z . Extended Data Fig. 1 shows the mea-
sured atomic state varianceDS2

y as a function of the photon number in the heralding
light, in agreement with the predicted linear dependence. The heralding photon
number is thus chosen to be ,210, with corresponding herald detection probability
pq 5 1.5%, to give fairly small phase broadening. Lower heralding photon number
results in a purer heralded state, but at the expense of a lower heralding and state
generation probability.
Relation between f (Sb) and g (nb). To measure the atomic state spin distribution,
measurement light with the same polarization jvæ as the heralding light is sent
through the atoms, and the number of photons with the orthogonal polarization
jhæ is measured. The measurement light contains a large number of input photons
nin 5 1.7 3 104 to perform destructive measurements with good signal-to-noise
ratio. The photon polarization is rotated by a small angle q 5 wSz and the probability
for each photon to emerge in jhæ is q2. For a given number of input photons nin, the
average number of detected photons with jhæ polarization is Ænæ 5 qnin(wSz)

2, where
q is the overall quantum efficiency. Therefore, a spin distribution f(Sz) is mapped to a
measured photon distribution g(n). For a given Sz, the detected photons follow a
Poisson distribution with mean number Ænæ, and the probability to measure exactly n
photons is given by

P n,Szð Þ~exp {qnin wSzð Þ2
�  qnin wSzð Þ2

� n

n!
ð5Þ

For an atomic state with the spin distribution f(Sz), the photon distribution g(n) is
given by

g nð Þ~
X

Sz

f Szð ÞP n,Szð Þ~
X

Sz

f Szð Þexp {qnin wSzð Þ2
�  qnin wSzð Þ2

� n

n!
ð6Þ

In order to measure the spin along a general direction, the atomic spin is rotated by
an angle b with a radio-frequency pulse before detection. Replacing Sz by Sb in
equation (6), we write the relation between the spin distribution f(Sb) and the
measured photon distribution g(nb) as

g nb


 �
~
X

Sb

f Sb


 �
P nb,Sb


 �
~
X

Sb

f Sb


 �
exp {qnin wSb


 �2
h i qnin wSb


 �2
h inb

nb!
ð7Þ

Choice of the measurement photon number. The measurement photon number is
chosen to optimize the readout quality. Extended Data Fig. 2 illustrates the depend-
ence of readout on the input measurement photon number nin by showing how the
reconstructed distributions f(Sz) change as nin is varied (the method of reconstruc-
tion is discussed later). When the photon number is small, there is large detection
noise due to photon shot noise, reflected as the large error band. With increasing
photon number, the photon scattering by atoms into free space increases and the
atomic state is more strongly perturbed, therefore the ‘dip’ at Sz 5 0 becomes less
distinct. To balance these two competing effects, the optimized atomic-state-mea-
surement photon number is set to 1.7 3 104.
Subtracting background photon counts. Owing to the residual polarization impur-
ity of the measurement light, there are a small number of background photon counts
even when there are no atoms. The background counts account for about 4% of
the photon signal of the heralded state. We independently measure the background
photon distribution and subtract it from the directly measured atomic signal to
obtain g(nb). If we were not to correct for these background counts, we would
overestimate the density matrix population r11 by 10%.
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Reconstruction of the density matrix. Using the measured photon distributions
g(nb) for all four angles b 5 0, p/4, p/2, 3p/4, the density matrix r of the heralded
state can be reconstructed.

As the entangled state maintains 0:99z0:01
{0:02 contrast, the magnitude of the total

spin S < N and we can express the density matrix in the basis of Dicke states jmæx

along the x̂ direction

r~r00 0j ix 0h jxzr11 1j ix 1h jxzr01 0j ix 1h jxzr10 1j ix
0h jxzr22 2j ix 2h jxzr02 0j ix 2h jxzr20 2j ix 0h jxz . . . :

ð8Þ

The spin distribution f(Sb) can be written as a function of atom number N and the
density matrix elements r00, r11, and so on:

f Sb,r,N

 �

~ Sb rj jSb

� �
~r00G 0,Sb


 �
G� 0,Sb


 �
zr11G 1,Sb


 �
G� 1,Sb


 �
zr01G 0,Sb


 �
G� 1,Sb


 �
zr10G 1,Sb


 �
G� 0,Sb


 �
zr22G 2,Sb


 �
G� 2,Sb


 �
zr02G 0,Sb


 �
G� 2,Sb


 �
zr20G 2,Sb


 �
G� 0,Sb


 �
z . . . :

ð9Þ

Here G(m, Sb) 5 ÆSbjmæx is the wavefunction of Dicke state jmæx in the representa-
tion of spin component Sb and is given by

G m,Sb,N

 �

~
1ffiffiffiffiffiffiffiffiffiffiffi

2mm!
p 1

pN

� �1=4

eimb{S2
b

�
2Nð ÞHm

ffiffiffiffi
1
N

r
Sb

 !
ð10Þ

where Hm(x) is the mth order Hermite polynomial and N is the atom number. Using
equation (7), we write the theoretically predicted photon distribution gth(nb) as a
function of the density matrix r, atom number N and input photon number nin

gth nb,r,N,nin

 �

~
X

Sb

fth Sb,r,N

 �

P nb,Sb


 �

~
X

Sb

fth Sb,r,N

 �

exp {qnin Sbw

 �2

h i qnin Sbw

 �2

h inb

nb!
:

ð11Þ

We independently measure the input photon number nin and find the atom number
N by fitting the photon distributions of the CSS, whose only non-zero density matrix
element is r00 5 1. The fitted atom numbers N for different angles b agree within
15% with the values independently measured from the shift of the cavity resonance.
We then use the density matrix r of the heralded state as the only free parameter, to
fit the theoretical distributions gth(nb) to the measured photon distributions g(nb)

along all four angles b. We do this by minimizing the least squares deviation D
weighted by the error sg of g(nb), given by

D~
X

b

X
n§0

gth nb,r

 �

{g nb,r

 �

sg

� �2

ð12Þ

Since the photon distributions g(nb) measure S2
b, we can obtain the even terms of the

density matrix (rmn where m 1 n is even) and our measurements are not sensitive to
the odd terms. Because the overall heralding probability is pq 5 1.5%, the higher-
order Dicke state components are exponentially suppressed. We fit the density matrix
up to Dicke state j4æx. The fitted values r22 5 0.03 6 0.02, r33 5 0.02 6 0.01, r44 5

0.01 6 0.01 agree with the theoretical expectation20 for our system.
From the fitted density matrix r (with coherence terms) we obtain the spin

distributions f(Sb) using equation (9) for different angles b, as shown in Fig. 2e–h.
To reconstruct the Wigner function for the spin state on the Bloch sphere20,22, we

convert r from the Dicke state basis into the spherical harmonic basis and obtain the
normalized Wigner function according to

W h,wð Þ~ 1ffiffiffiffiffiffiffiffiffiffi
2S=p

p XN

k~0

Xk

q~{k

rkqYkq h,wð Þ ð13Þ

where the terms rkq represent the density elements in the spherical harmonic basis
and Ykq(h, w) are the spherical harmonics, with h, w being the polar and azimuthal
angles on the Bloch sphere, respectively. The normalization factor

ffiffiffiffiffiffiffiffiffiffi
2S=p

p
is chosen

such that the CSS has W
p

2
,0

� 	
~1. Note that, in the limit of large atom number, this

normalization also means that the pure first excited Dicke state has W
p

2
,0

� 	
~{1,

and generally the value of the Wigner function on the x̂ axis depends only on the

populations rnn such that W h~
p

2
,w~0

� 	
~
P

n {1ð Þnrnn.

Measurement of mean value of Sz. The measured photon distributions g(nb) do
not give information about the density matrix odd terms (rmn where m 1 n is odd).
In order to bound the odd terms, we verify that the heralding process does not
displace the produced heralded state relative to the CSS. This is accomplished by

performing a measurement with a probe beam polarized at 45u relative to jvæ, such
that the difference between the measured jhæ and jvæ photon numbers is proportional
to Sz. We find a heralding-light-induced shift dÆSzæ 5 20.2 6 1.6, consistent with
zero, and very small compared to the CSS r.m.s. width (DSz)CSS < 30. Therefore we
set the odd terms of the density matrix to zero in Fig. 3b–d.
Entanglement depth for finite contrast. Entanglement depth is defined as the
minimum number of entangled particles in an ensemble. A fully separable pure state
can be written as Qj i~ Q1j i6 . . .6 QNj i, where N is the atom number. A pure
k-producible state can be written as Qj i~ Q1,...,k1

1

��� E
6 . . .6 Q1,...,kM

M

��� E
, where k1, …,

kM # k, k1 1 … 1 kM 5 N. If a state cannot be written as a pure (k 2 1)-producible
state or a mixed state of (k 2 1)-producible states, then it has entanglement depth of
at least k.

We slightly generalize the entanglement criterion derived in ref. 13 to take into
account the finite contrast C of the collective atomic spin in our experiment. The
derivation in ref. 13 considers the case in the fully symmetric Dicke subspace of N
atoms, and finds that for a k-producible state the maximum population of the first
Dicke state r11 (P1) as a function of the CSS population r00 (P0) is

max
P0

P1~
P0

N
max

ffiffiffi
k
p

max
PM{1

i~1 ai~x
FM{1 a1, . . . ,aM{1ð Þz

ffiffiffiffi
k’
p

F1
ffiffiffiffiffi
P0
p �

x

 �" #2

ð14Þ

Here M 5 [N/k], k9 5 N 2 k(M 2 1), and Fn a1, . . . ,anð Þ~
Pn

i~1

ffiffiffiffiffiffiffiffiffiffiffiffi
1{a2

i

p
ai

. Equa-

tion (14) is generally not a concave function of P0. In order to obtain the upper bound
for mixed states, denote the concave hull of the right side of equation (14) as
B P0,k,Nð Þ. We define B P0,k,Nð Þ~B P0,k,Nð Þ=N . Note that when N1 , N2, B(P0,
k, N1) # B(P0, k, N2).

The heralded state we produce does not necessarily retain perfect contrast, so the
state can be a mixture of different total spins S~N,N{1, . . . ,N 1{eð Þ, with e<1%.
The contrast loss is mainly caused by the decoherence between F 5 1 magnetic
sublevels, and the free space scattering of the heralding light by the atoms. We
decompose the density matrix r into the total spin basis

r~
XeN

i~0

wirN{i ð15Þ

Here rN2i is the density matrix in the subspace of total spin S 5 N 2 i, wi is the
weight for each rN2i and

P
wi~1. For each rN2i,

B P0,k,N{ið Þ~B P0,N{i,k,N{ið Þ= N{ið ÞƒB P0,N{i,k,Nð Þ= N{ið Þ ð16Þ
Here P0,N2i is the probability for the state to be found in the ground state in the
subspace of total spin N 2 i.

Measurements of the spin distributions do not allow us to determine the total spin
of the system at single-atom resolution. We define populations of the CSS and the
first Dicke state by

P0~
XeN

i~0

wiP0,N{i ð17Þ

P1~
XeN

i~0

wiP1,N{i ð18Þ

The upper bound of P1 is given by

max
P0

P1ƒ
XeN

i~0

wi max
P0,N{i

P1,N{iƒ
XeN

i~0

wiB P0,N{i,k,N{ið Þ= N{ið Þ ð19Þ

Using equation (16) and the fact that B(P0, k, N) is a concave function of P0 we have

max
P0

P1ƒ
XeN

i~0

wiB P0,N{i,k,Nð Þ= N{eNð Þ

ƒ

1
1{eð ÞN B

XeN

i~0

wiP0,N{i,k,N

 !

~
1
C B P0,k,Nð Þ:

ð20Þ

Here C is the contrast of the collective spin. Comparing to ref. 13, the result is
modified by a factor 1=C. In our experiment, C~0:99z0:01

{0:02, so the effects of finite
contrast on entanglement depth are minimal.
Entanglement depth in terms of the actual atom number. In the experiment the
atoms have spatially varying coupling to the probe light. However, the criterion in
ref. 13 is derived for the case where atoms are equally coupled to the light. Here we

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015



generalize the entanglement criterion to our experimental conditions and prove that
the sample-averaged fractional entanglement depth for the ensemble containing
3,100 actual non-uniformly coupled atoms is the same as that of 2,100 uniformly
coupled effective atoms. Consider an ensemble of Na actual atoms where each atom j
has spin component fz,j and cooperativity gj. The effective total spin of the ensemble
is Sz and the effective cooperativity is g, so that

Szg~
XNa

j~1

fz,j|gj ð21Þ

As mentioned in the main text, the ideal heralded state jy1æ (the first Dicke state of
non-uniformly coupled atoms) is the destructive interference of two slightly dis-
placed CSSs j6wæ and can be written as

y1j i! wj i{ {wj i

~ eiSz gC= 4Dð Þ{e{iSz gC= 4Dð Þ
h i

y0j i

~ eiC
�

4Dð Þ
P

Na
j~1 fz,jgj {e{iC

�
4Dð Þ
P

Na
j~1 fz,jgj

� �
y0j i

ð22Þ

where jy0æ is the initial CSS along x̂. By expanding the exponent to first order and
using fz 5 (f1,x 2 f2,x)/(2i), we get

y1j i~
XNa

j~1

g2
j

 !{1=2XNa

j~1

gj P
j’=j

0j’
�� �

x

� �
6 1j

�� �
x

ð23Þ

where j0jæx and j1jæx are the single-particle spin eigenstates along x̂ of the atom j. For

a fully separable state Qj i~PNa

j~1 aj 0j

�� �
xzbj 1j

�� �
xz . . .

� 	
the population P1 5

jÆQjy1æj2 is given by

P1~
XNa

j~1

g2
j

 !{1 XNa

j~1

gjbj P
j’=j

aj’

�����
�����

2

ð24Þ

The expression for P1 is similar to that in ref. 13 and differs by the additional weight
factor gj. When the real atom number Na?1, the upper bound of P1 for the fully
separable state jQæ, B P0,Nað Þ, as a function of the population P0 5 jÆQjy0æj2, is the
same as ref. 13, and independent of Na.

Next consider a state which can be factorized into two subsets Qj i~ Q1,...,k1
1

��� E
6

Q1,...,k2
M

��� E
where k1 1 k2 5 Na. Each jQi 5 1,2æ can be expanded as

Qij i~ai yki
0

�� �
zbi yki

1

�� �
z . . . ð25Þ

where yki
0

�� �
is the CSS containing ki atoms, and yki

1

�� �
is given by equation (23) with

Na replaced by ki. The populations P0 5 jÆQjy0æj2 and P1 5 jÆQjy1æj2 are given by

P0~ a1j j2 a2j j2,

P1~
XNa

j~1

g2
j

 !{1

a2b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXk1

j~1

g2
j

vuut za1b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNa

j~k1z1

g2
j

vuut
������

������
2

ð26Þ

The expression for P1 recovers that of ref. 13 when gj 5 1. When k1, k2 and Na are

large, we take the ensemble averages
P k1

j~1g2
j ~k1 g2h i,

P Na
j~k1z1g2

j ~k2 g2h i andX
Na
j~1g2

j ~Na g2
� �

. Therefore the bound of P1 in equation (26), B P0,ka~ð
max k1,k2f g,NaÞ, is the same as B P0,k,Nð Þ for uniformly coupled atoms when
ka/Na 5 k/N. This proves that the average fractional entanglement depth for the
ensemble containing 3,100 actual non-uniformly coupled atoms is the same as
that of 2,100 uniformly coupled effective atoms, thus in our system a minimum of
1,970 out of 2,100 effective atoms or 2,910 out of 3,100 real atoms are mutually
entangled.

It might seem as if the addition of Nw?N weakly coupled atoms (coupling
strength gw) to the system would increase the entanglement depth without having
physical consequences as long as Nwg2

w=Ng2. However in this case the uncertainty

DN ’ on the entanglement depth also increases, given by
DN 0

Nw
~

DN
N

Ng2

Nwg2
w
?

DN
N

,

so as to be consistent with the entanglement depth N before adding the weakly
coupled atoms. Atoms that do not change the observed spin distribution have no
effect on the entanglement depth.
Sample size. No statistical methods were used to predetermine sample size in the
above.

31. Tanji-Suzuki, H. et al. Interaction between atomic ensembles and optical
resonators: classical description. Adv. At. Mol. Opt. Phys. 60, 201–237 (2011).
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Extended Data Figure 1 | The measured atomic state spin variance,DS2
y , as a

function of the heralding light photon number and corresponding
probability pq of detecting one photon. The solid red line is the prediction for

DS2
y broadened by the photon shot noise of the heralding light. The dashed

black line shows the CSS variance for 2,030 F 5 1 effective atoms used in this
measurement. Error bars, 1 s.d.
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Extended Data Figure 2 | Dependence of the reconstructed distribution of
collective spin Sz on the measurement photon number. This dependence is
illustrated by reconstructed spin distributions for photon numbers 0.5 3 104

(a), 1.1 3 104 (b), 1.7 3 104 (c), 2.7 3 104 (d) and 3.6 3 104 (e). Blue lines
correspond to the CSS and red lines correspond to the heralded states. The
shaded area indicates an uncertainty of 1 s.d.
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Extended Data Table 1 | Resonator parameters

The mode waists are calculated at the position of the atoms. Outside this table, all resonator values refer to the probe wavelength l 5 780 nm.
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