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Abstract. A method that allows the calculation of mag- 
netic fields produced by cylindrically symmetric con- 
figurations of permanent magnets and high permeability 
materials is presented. The method is based on a non- 
iterative finite-element algorithm and can be utilized on 
small-scale computing facilities. As an example, the de- 
sign of a magnetic trap for neutral atoms is discussed. 
Comparisons of calculations with analytical and experi- 
mental data are also reported. 

PACS: 02.70.Dh, 07.55. + x, 85.70.Nk 

The careful design of homogeneous and inhomogeneous 
magnetic fields is of critical importance to many applica- 
tions in physics. The traditional sources of these fields are 
conventional or superconducting currents. Though these 
systems are well understood, reliable, and quite con- 
venient for many applications, they can also be cumber- 
some, complicated, and expensive. Recently, the use of 
Rare-Earth permanent Materials (REMs) has emerged 
as a suitable alternative to traditional sources, not only 
duplicating the features of the older techniques, but in 
some cases achieving better results [1]. In particular, if 
the experimental requirements include a large magnetic 
gradient, then the combination of high permeability 
materials with REMs can yield a gradient substantially 
larger than possible with traditional sources. However, 
the resulting fields and gradients are notoriously difficult 
to calculate for such a combined system. In this paper, 
we present a technique which substantially simplifies the 
calculation for cylindrically symmetric configurations. 
We also present experimental confirmation of the tech- 
nique's accuracy. 

Though the remanence of REMs is comparable with 
that of traditional magnets (e.g., Alnico), they have an 
almost linear demagnetization curve and a much higher 
coercivity. Therefore, a relatively small REM can store 
a remarkably high magnetic energy density and produce 
a considerable amount of magnetic field flux, while main- 
taining the operation point sufficiently far away from the 

"knee" of the demagnetization curve. Two of the more 
common REMs are samarium-cobalt and neodymium- 
iron-boron. These magnetic materials are already em- 
ployed to generate magnetic multipoles with both 
translational symmetry and high intensity for nuclear 
magnetic resonance applications [2], twisters, wigglers 
and undulators in free-electron lasers [3], and accel- 
erators, The design of magnetic multipoles with 
translational symmetry is extensively treated in the litera- 
ture [4, 5]. Potential applications of REMs are the con- 
struction of magnetic dipoles with high field uniformity 
for Penning traps [6], mass spectroscopy, and the purely 
magnetic confinement of paramagnetic neutral atoms 
[7 - 9]. For this last goal, with the exception of the dipole 
field, magnetic spherical multipole fields with cylindrical 
symmetry are suitable. The magnetic potential for a 
given 2n-pole field is described by the n-th Legendre 
polynomial r"P, (cos 0). A detailed description of the 
analytical design of such fields by using cylindrical mag- 
nets only is given in [10]. The design can even be opti- 
mized to obtain a desired multipole field of arbitrary 
purity, i.e., with small contributions from other mul- 
tipoles. 

As already mentioned, very significant advantages can 
be achieved by using combinations of permanent 
magnets, as sources of the field, and materials with high 
permeability (g-metal), as conductors of the magnetic 
flux. With properly tailored g-metal, it is possible to 
concentrate the magnetic field lines, and thereby increase 
the field magnitude. The largest field obtainable is the 
saturation induction, Bs~,, of the material. From this 
point of view, the best material is the alloy iron-cobalt 
(~  50-50%), with Bs,t = 2.3 T. For magnetic field values 
smaller than this, the permeability is always larger than 
103. Not only are these materials cheaper than REMs, 
they can be machined to tolerances of 10 gin, a factor of 
ten higher than the tolerances achievable with REMs. 
One can therefore construct miniaturized configurations 
and experimentally realize magnetic multipoles with high 
purity. As a consequence of the high field intensities and 
the small dimensions achievable, it is possible to obtain 
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extremely large field gradients. This fact assumes a cru- 
cial importance in constructing atom traps for spectros- 
copy: the steeper the trap potential, the higher the mo- 
tional averaging of the Zeeman broadening experienced 
by a trapped atom [11]. Moreover, steep traps are neces- 
sary in order to observe the quantum motion of trapped 
atoms [12]. In addition, a clear advantage of the com- 
bined system is that one can construct different g-metal 
surrounds, which produce different magnetic fields, while 
using the same permanent magnets. The g-metal-REM 
combination also simplifies the implementation of other 
trap requirements, like optical access to the trapping 
region. Finally, the use of combined configurations al- 
lows a simple adjustment of the REM operating point on 
the demagnetization curve. 

In contrast to a system built only with permanent 
magnets, the inclusion of g-metal severely complicates 
the calculation of the field. The calculation of a field, 
when the source is defined and the permeability is uni- 
form, is always reducible to the evaluation of a straight- 
forward integral. In such cases, it is possible to optimize 
the source distribution to achieve a particular potential 
and field configuration having high magnitude and puri- 
ty (for example 2n-pole plane or spherical potential). On 
the other hand, when two media with different per- 
meabilities (e.g., vacuum and ~t-metal) are present, it is 
not possible to construct a simple solution, except in the 
most elementary cases. Usually these problems are solved 
by iterative, numerical methods and large computing 
facilities. 

The method we discuss is a non-iterative finite- 
element algorithm that allows the calculation of the mag- 
netic field from a cylindrically symmetric combination 
of permanent magnets and unsaturated g-metal. The 
algorithm is based on Galerkin's method [13] and can be 
easily implemented on small-scale computers. In addi- 
tion to magnetic problems, one can also apply the meth- 
od to the evaluation of electric potentials (and conse- 
quently electric fields and capacitance matrices) in con- 
figurations where conductors and electric charges are 
present. As an example, we will refer to the design of a 
spherical quadrupole magnetic trap for neutral atoms. 

1 Calculation of the field 

In a current-free region of space it is always possible to 
define a potential fo such that the magnetic field H is given 
by H = - V~0. If the magnetic potential is produced by a 
magnetization distribution M (x), one can define a "mag- 
netic charge density" ~ -  - V • M. The potential ~o is then 
calculated by integrating the Poisson equation. With 
these assumptions, the static Maxwell equations for the 
magnetic and the electric case are formally identical, and 
the determination of the magnetic field is completely 
equivalent to the determination of the electric field. For 
a homogeneous magnetization inside the magnets, the 
potential is given by the surface integral: 

M(r')- da' Br fl(r')-fa' 
~0(r) = ! i r Z r ; i  - ~ !  I r - r  I " 

(1) 

In (1) Br indicates the remanence of the material; the 
expression is valid if the permeability is uniform every- 
where. Since the instrinsic permeability of a rare-earth 
magnet differs very little from that of vacuum 
(1.04--<#REM<I.07), (1) provides an accurate and 
straightforward way to calculate the magnetic field 
generated in free space by a REM distribution. The same 
would not hold for Alnico, for example, for which # ~ 5. 
If, in addition to REMs, the configuration contains ma- 
terials with permeability # # 1, the magnetization induced 
by the magnets in this material has to be taken into 
account. As already mentioned, the calculation of the 
field is not, in such cases, a trivial task. However, if the 
permeability # of a material is much larger than one, it 
can be shown that the surface interface between the 
vacuum and this material is an equipotential for ~0 [14]. 
Therefore, the problem of determining the magnetic field 
of a configuration of permanent magnets in the presence 
of g-metal reduces to the determination of the electric 
field produced by a distribution of surface charges in the 
presence of conducting bodies. Because of the equiv- 
alence between the magnetic and the electric cases and 
because the electric case is more intuitive, we will treat 
the electrostatic problem. 

If no conductors are present, the potential can be 
determined via (1). As an example, let us consider the 
distribution shown in Fig. la. The charge distribution is 
equivalent to two rings of permanent magnet (Fig. lb), 
magnetized along the axis and with the north poles facing 
each other. We name this potential Vo (x). Let us now 
introduce an arbitrary number M of electrically neutral 
conductors, isolated from one another. Figure lc shows 
the conducting bodies added to the charge distribution 
of Fig. la. Note that the three conducting bodies have 
a hole along the axis. Because of the already existing 
electric field, there is a redistribution of the surface 

symmetry symmetry 
a) axis b) axis 
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Fig. l a d .  Sample model with cylindrical symmetry. Surface charges 
(a) equivalent to two rings of permanent magnets (b). The electric 
field resulting by the insertion of the conductors (c) can be evaluated 
by the partition (d) 
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charges on each conductor, such that the new electric 
potential V (x) assumes a constant value on each conduc- 
tor's surface. We define V~ as the potential and Q~ as the 
total charge on the c~-th conductor. In the magnetic case 
we can set Q~ = 0 because there is no magnetic monopole. 
We wish to calculate the new charge distribution on each 
conductor. Once this is known, it is possible to determine 
the potential, and consequently the field, everywhere. 

We first partition the surface of the conductors into 
elements. The partition elements need not be contiguous. 
Elements belonging to the same conductor are assumed 
to be electrically connected. The dimensions of the ele- 
ments are chosen such that the potential Vo (x) remains 
constant on the surface of each of them to the calcula- 
tional accuracy desired. Let N~ be the number of ele- 
ments into which the e-th conductor is divided. The 
partition order N is then defined as 

M 

N - ~ N ~ .  
c (= l  

A possible partition into rings of the sample conductors 
is illustrated in Fig. ld. We name the potential, the 
charge and the value of the potential Vo(x) at the i-th 
element (i= 1...N) respectively v, q~ and v0~. The presence 
of a charge on the i-th element induces a change A V~ (x) 
in the potential. The previous condition on the size must 
still hold for any potential contribution A Vi(x). We name 
this general requirement condition 1. From super- 
position, the change in the potential on the j-th element 
due to a charge q~ on the i-th element can be written as, 

N 

Avj -- ~ Djiqi. (2) 
i = l  

In order to simplify the following argument, it is con- 
venient to introduce a vectorial notation to describe the 
potential and the charge on the elements and the interac- 
tions between them. The potential and the charge on all 
the elements can be described by considering the N-di- 
mensional vectors v, Vo, Av and q (v, Vo, Av, q ~ ~N), 
whose i-th component gives respectively the potentials 
v~, Vo~, Av~ and the charge q~ on the i-th conducting ele- 
ment. The scalar product and common matrix operations 
are defined as usual. Equation (2) becomes Av = Dq. The 
matrix D is the inverse of the capacitance matrix C of the 
system of N elements : 

D=C-1 

D can be calculated from the shape of the elements. 
Completing the definitions, let w~ be the vector such that: 

(w~)i = { 1 if the i-th element bel°ngs t° the c°nduct°r ~ } 0  otherwise. 

The potential v is now given by: 

v = vo+Dq = vo+C-lq .  '(3) 

The conditions that on every conductor c~ the poten- 
tial must keep the same value V~ and that the whole 

charge Q~ must be zero are now written: 

v = w~ V~, (4) 

Q =w~q=0, (5) 

where we assume a sum on the repeated index. By using 
(4), (3) becomes 

q = C(v-vo) = V~Cw~-Cvo. (6) 

In the last expression the capacitance matrix C ap- 
pears, which is calculated by direct inversion of the matrix 
D. Since both matrices have dimension N 2 and N is 
usually not a small number, the main effort in the calcula- 
tion lies in the inversion operation of D. By forming the 
product w/~" q in (6), and using (5), we have: 

0 = Q/s = w/3q = V~w/3Cw~-wBCvo, (7) 

and 

w/:Cw=V= = w~Cvo, 1 _<~, f l<M.  (8) 

The last relation is a system of equations in the vari- 
ables V~, whose order is equal to the number M of conduc- 
tors. The M x M matrix K formed by the elements w~ C% 
is determined solely by the geometry of the conductor 
system. The system of equations can be easily solved by 
numerically inverting this matrix. By putting the V~ coef- 
ficients back into the (6), it is now possible to evaluate 
the amount of charge on every element, and consequent- 
ly to calculate the potential, and then the field, every- 
where. 

Note that it is not difficult to recognize the matrix K 
as the capacitance matrix of the system of the M conduc- 
tors. In fact, assuming no charge distribution (Vo = 0) and 
that each conductor ~ has a charge Q,, one gets an 
expression similar to (7): 

Q/~ = w/~Cw~V~. 

The M-dimensional vector formed by the M values of 
w~Cv0 is again determined by the conductor geometry 
together with the details of the distribution of charges 
producing the field. 

Like all other finite-element numerical methods, the 
choice of the partition (mesh) constitutes a crucial step 
of the procedure. We have already given condition 1 
dictating the size of the partition elements. For a given 
partition order, this condition can be always satisfied if 
the dimensions of the elements are chosen small enough. 
However, there is a limit to the smallness of the elements. 
This can be shown by using the following argument. 
Assume an arbitrary surface to be described by a par- 
tition with small spheres, for example by replacing it with 
a layer of sp~heres having radius e and reciprocal distances 
di~. In such a case, the matrix D = C- 1 is simply given by: 

1 
Dij = - ,  if i=j; 

1 
D i j -  ai~j' i f i # j .  
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In order to satisfy condition 1, e<< d u, for every i, j #  i. We 
can define D' such that" 

1 
D = - I + D ' ,  

where I is the identity matrix. Therefore, the matrix D / 
has the diagonal elements equal to zero and the off-diag- 
onal ones equal to those of C -1. It follows: C -z = 
(I/e) ( I+  eD') and so C = e  ( I+  eD1) -~. I fe  is such that for 
all eigenvalues 2' of D', e I 21 [ << 1, and one can write: 

C = e [ I -  eD / + O (e2)], 

where O (e2) is a matrix with eigenvalues of order e 2. 
Evaluating the capacitance of  the conductor ~: 

w~Cw~ ~e"  w~ ( I -  eD') w~ -- sN~-e2w~D'w~. 

Note the capacitance vanishes as the radius of the 
spheres becomes smaller and smaller. The physical rea- 
son for this behavior is clear: if e--,0, the mutual interac- 
tion D u between two spheres becomes negligible in com- 
parison with the self-interaction D,  of a single sphere. 
Generalizing, we have an additional condition on the 
partitioning of the configuration: the diagonal elements 
of the matrix C-z,  describing the self-interaction, must 
have the same magnitude as the largest off-diagonal 
elements, which describe the mutual interaction. We call 
this condition 2. 

The previous argument also shows that a finite set of 
spheres cannot provide a "good" partition. In fact, in the 
case of a partition with spheres, the condition 2 corre- 
sponds to e~d u (for some i and j# i ) .  Such a relation 
does not agree with the condition 1, e << d u (for every i and 
j# i ) .  

2 Cylindrically symmetric configurations 

Let us restrict now the discussion to problems exhibiting 
a cylindrical symmetry. In this case, the most natural 
candidates for the elements are tori, whose axes are 

coincident with the symmetry axis of the configuration 
(Fig. 2). This partition geometry is also illustrated in the 
sample configuration of Fig. 1. For each element j, the 
thickness 2e must be much smaller than the torus radius 
pj. We assume a unity charge uniformly distributed over 
its surface. In this case, the potential generated by torus 
j at coordinates (Qi, z3 is: 

Vj (oi, zO 

where 

, = d = l / ( o , -  oJ) 2 + zJ) 2 .  

Qj and zj are the cylindrical coordinates of the intersec- 
tion of the torus j with the half-plane (0 = 0. The function 
E is the elliptic integral[15]: 

E(m) = 

n 
2 dO 

0 V l - m  sin 2 0'  

On the surface of torus j, d=  e, and the potential (9) can 
easily be evaluated using the limiting form of 
E (m): lim E (rn) = log ( 4 / 1 ~  m). The result is: 

m ~ /  

1 89j 
Vj (Qi, zi on the surface) ~ - - l o g  - - .  

TC~j e 
(10) 

Equations (9) and (10), respectively, give the off-diagonal 
and the diagonal terms of the matrix D. Because of the 
logarithmic dependence, it is possible to choose the pa- 
rameter e and the partition order N in order to satisfy 
both condition 1 and condition 2 for the size and shape 
of the elements. 

We first tested the method by calculating the capa- 
citance of a sphere with unity radius (C = 1), by using a 
partition of rings. Figure 3 shows the results: the curves 
give the percent error 1 -  C e a l c / C  for different values of 
the radius e and for N = 50, 100, 200 and 400. Note that 
the precision increases with the partition order and that 

(Pi,Zi) r 

2~ 

X 

Fig. 2. Geometry of a parti t ion in tori 
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"~ o " " ~  * N=200 

c5 5 

0 
i I I f i I i 1 %  

10-10 10-8 10-6 10-4 10-2 

Radius ~ (in sphere radius units) 
Fig. 3. Capacitance of a conducting sphere, calculated with torus 
partit ions of different order N, as a function of the torus radius e 
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the result has only a mild logarithmic dependence on e. 
In analogy to the partit ion with spheres discussed 
previously, the precision becomes worse if e-~0. For  this 
and all other calculations we have used a workstation 
(Personal Iris, Silicon Graphics Inc.). 

We have also tested the method for the case described 
in Fig. 4a. For  such a configuration, a simple analytical 
calculation of  the magnetic field does not exist. The 
calculated quantity is the ratio between the axial com- 
ponent of  the magnetic field with and without the g-metal 
cone (iron). The parti t ion order N used in the calculation 
is 400. The same quantity was also measured with a Hall 
probe. The measured and calculated values are compared 
in Fig. 4b. The agreement between calculation and mea- 
surements is evident. 

3 Design and test of a magnetic trap 

We used the method to calculate the magnetic field for 
the configuration of  Fig. lc. This electric configuration 
is equivalent to the magnetic quadrupole trap shown in 
Fig. 5. The field magnitude on the Q - z  plane is shown 
with a grey scale in Fig. 6. The diameter of  the trapping 
region is 15 mm. The magnetic flux is generated by eight 
permanent  magnets (samarium-cobalt, Br= 1 ± 0.05 T) 
and is guided into the configuration center with a g-metal 
surround (iron-cobalt). In the trapping region, the field 
has a quadrupole structure. The trap has eight apertures 
into the center. Furthermore,  both g-metal endcaps have 

Fig. 5. Explosion representation of the trap. The small cross indi- 
cates the center of the trap (Q = 0, z = 0). The z-axis is vertical 

z 

Fig. 6. Magnetic field magnitude in the central region of the trap. 
The field difference between two adjacent lines (representing sur- 
faces with equal field intensity) is 40 roT. The center of the picture 
corresponds to the center of the trap (Q = 0, z = 0). 

5 mm diameter cylindrical holes, allowing access along 
the symmetry axis. 

The magnetic materials near the center of  the trap are 
cylindrically symmetric, and therefore the dominant  con- 
tribution to the trapping field is also cylindrically sym- 
metric. The outer bulk of  the trap is clearly not cylindric- 
ally symmetric, but it is far from the trapping region; its 
influence is therefore weak enough that we can assume 
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Fig. 8a, 5. Fluorescence spectra (a) from a point on the trap axis for 
both circular polarizations of the excitation laser• The laser fre- 
quency is given relative to the Dz transition frequency of 7Li. The 
dependence of the measured magnetic field on the position of the 
trap axis point is shown in (b) 

cylindrical symmetry for purposes of calculation. The 
magnets fill only half the possible volume of two com- 
plete rings; we compensated by halving the remanence. 
Moreover,  the self-capacitance of  the partition rings cor- 
responding to the external part of  the bulk was also 
reduced by a factor of  two. The calculated value of  the 
z-component of the field gradient on the axis is: 
0.81 + 0.04 T/cm. The error is due to the uncertainty in 
the remanence of  the material. The axial gradient is 
constant within 2% inside a length of  8 mm on the axis, 
which corresponds to a quadrupole field of  high purity. 
A second version of  the trap was also constructed, with- 
out the two axial holes and with a smaller trapping 
region. The calculated value of  the gradient for this 
configuration is 5 T/cm. 

The shape and the gradient of  the magnetic field were 
then determined spectroscopically. An atomic beam of  
lithium was sent through the trap along the z-axis. The 
atomic beam was illuminated with a laser beam (beam 
waist 1 ram) carefully aligned along the same axis. The 
laser beam was generated by a 671 nm laser diode, grat- 
ing stabilized at a linewidth of  2 MHz [16]. The laser light 
was tuned to the D2 resonance of  lithium. With imaging 
optics (Fig. 7) the fluorescence of  the atoms was mea- 
sured at successive points on the axis. The atoms are 
excited in the Paschen-Back regime. Figure 8a shows two 
spectra, obtained with a + and a -  polarized light, respec- 
tively. The spectra are broadened due to the Doppler 
effect, the hyperfine structure of  the lines, and the finite 
size of  the laser beam. The frequency of  the spectra's 
maxima was determined by fitting a parabola to each 
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maximum and minimizing X 2. The difference Av between 
the two frequencies depends only on the magnetic field 
at the imaged axial point. Measuring the Zeeman split- 
ting at different points and knowing the magnification of  
the imaging optics, it is possible to determine the value 
of the field gradient. Figure 8b shows the measured fields 
at three points. The fact that the points lie precisely on 
a straight line, corresponds to a constant gradient and 
thus to a quadrupole field. The calculated value for the 
gradient is 0.71:t:0.04 T/cm. The assigned error takes 
into account the uncertainty in the alignment of  both the 
atomic and laser beams and in the determination of  the 
imaging magnification. The 12% deviation from the cal- 
culated value is mainly caused by the flux losses in the 
eight apertures. These apertures break the external cylin- 
drical symmetry of  the trap, an effect that is very difficult 
to calculate. Moreover,  the fact that the REM permeabil- 
ity is slightly larger than one (1.04_<~_< 1.07), can also 
cause a reduction of  the field coupled into the trapping 
region. The results are however in good agreement with 
the calculations. In addition, the method was also em- 
ployed to design a successful Penning trap. 

4 Conclusion 

In summary, we have theoretically described a method 
that allows the calculation of  magnetic (electric) fields 
produced by permanent  magnets (charges) and in the 
presence of  highly permeable materials (conductors). We 
have discussed in detail the case of cylindrically symmet- 
ric configurations. The method can be easily implement- 
ed on a small scale computer  and provides results that are 
in very good agreement with experimental measure- 
ments. As an example we have reported the design of a 
magnetic trap for neutral atoms, for which the magnetic 

field shape and gradient were also determined experi- 
mentally. 
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