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I. PHOTON SHOT NOISE LIMITED ATOM NUMBER RESOLUTION

In this Section, the details of the derivation that lead to the expression of the phase shift

∆φph in Equation (2) of the main text are provided.

In order to obtain this result, a simpler system is first considered, with a single transition

from a ground to an optically excited state. The result will then be generalized to the scheme

described in the main text, with four atomic levels, two momentum states in the ground 1S0

level and two momentum states for the excited 3P1 level (see Fig. 1 b) of the main text).

The simplified system can be represented as a collection of N two-level atoms each with

ground state |g〉i and optically excited state |e〉i, where the index i = 1, · · · , N labels the

atoms. The energy of the transition |g〉i − |e〉i between the two atomic levels is denoted by

~ω0 and the excited state decay rate is denoted by Γ. The atomic ensemble is probed through

the light field, at frequency ωr, circulating in an optical cavity with resonance frequency ωc

and photon decay rate κ. The detuning of the probe laser from atomic resonance will be

indicated as ∆ = ωr − ω0 and the detuning of the probe from cavity resonance will be

indicated as δ = ωr − ωc.
The evolution of the coupled atoms-cavity system can be described in the framework

of input-output theory [1, 2] through the equations of motion for the variables σ− =

〈∑N
i=1 |g〉i 〈e|i〉 and c, the expectation values of the collective (atomic) ladder operator and

∗ vuletic@mit.edu
† guglielmo.tino@unifi.it



2

of the annihilation operator of the cavity field, respectively. In a frame rotating at the

frequency of the probe laser ωr, these are written as

d

dt
σ− = i

(
∆ + i

Γ

2

)
σ− − igNc, (1)

d

dt
c = i

(
δ + i

κ

2

)
c− igσ− −

√
κinβ, (2)

where β is the amplitude of the field that is incident onto the optical cavity, with units

of
√

photons/s. With reference to Fig. 1 a) of the main text, the input field is such that

〈b̂in〉 = β. Moreover, κin is the contribution of the input mirror transmission to the total

photon loss rate κ. These equations are written assuming negligible excitation of the two-

level systems.

The steady-state response of the system is then derived for vanishing time derivatives:

d
dt
σ− = 0, d

dt
c = 0. In particular, the cavity field is expressed by

c = −i 2
√
κin

κ
β

2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]
, (3)

where La(∆) = Γ2/(Γ2 + 4∆2) and Ld(∆) = −2∆Γ/(Γ2 + 4∆2) are the absorption and

dispersion profiles, respectively, and η = 4g2/(κΓ) is the single-atom cooperativity.

The collective measurement of the atomic state populations is performed, as seen in Fig.

1 a) of the main text, by detecting the light, with amplitude 〈b̂out〉, that is reflected from

the optical cavity. This is the superposition of the amplitude of the light reflected from the

input mirror
√
Rinβ and of the light that entered the cavity and is transmitted after a round

trip from the input mirror
√
κinc. For a high-finesse cavity, the reflection coefficient can be

approximated by Rin ' 1. As a result, the output field is expressed as

〈b̂out〉 = β − i 2κin

κ
β

2δ
κ

+NηLd(∆) + i[1 +NηLa(∆)]
. (4)

As anticipated, these results can be extended to the scheme considered in Fig. 1 b)

of the main text. The two optical transitions |1S0, 0〉 − |3P1, ~kr〉 and |1S0, 2n~kb〉 −
|3P1, 2n~kb + ~kr〉, with frequency splitting 2δωr, are considered and an effective spin-

1/2 is associated with the two momentum components of the ground state with spin down

|↓〉 ≡ |1S0, 0〉 and spin up |↑〉 ≡ |1S0, 2n~kb〉. The collective spin is given by S = N/2 and

the population difference between the number N↑ of atoms in state |↑〉 and the number N↓

of atoms in state |↓〉 is given by N↑ −N↓ = 2Sz.
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!!r � !LO !r = !c

FIG. 1. Conceptual scheme for the measurement of the photon phase shift of the light reflected

from the cavity. Blue line: intracavity photon number for the empty cavity, red segments: incident

laser spectrum. The phase shift ∆φph is detected through the interference of the probe light at

frequency ωr, resonant with the bare cavity mode at frequency ωc, with a strong field at frequency

ωr − ωLO. (see text for more details)

With this notation, the expression for the output field in Eq. (4) can be written for the

case where the probe laser is tuned halfway between the two optical transitions. In the limit

of negligible atomic excitation, the polarizabilities of the optical transitions are additive [3]

and the following replacements can be performed:

NLa(∆)→ (S − Sz)La(δωr) + (S + Sz)La(−δωr) = 2SLa(δωr) (5)

NLd(∆)→ (S − Sz)Ld(δωr) + (S + Sz)Ld(−δωr) = −2SzLd(δωr). (6)

These equalities hold because La and Ld are even and odd functions, respectively.

The population difference can be measured through the photon phase shift of the light re-

flected from the cavity. In Fig. 1, a possible scheme for the phase shift measurement is shown

that is conceptually similar to the Pound-Drever-Hall method. This relies on probing the

cavity resonance, with ωr = ωc, and on detecting the interference of the reflected light with

a strong frequency component that is offset from cavity resonance by the local oscillator fre-

quency ωLO. By denoting the amplitude of the strong local oscillator as βLOe
−i[(ωr−ωLO)t+φLO]

and by considering the interference with the field reflected from the cavity 〈b̂out〉 e−iωrt, the
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photon flux of detected photons β2
det (in units of photons/s) can be written as

β2
det = 〈b̂out〉

2
+ β2

LO︸ ︷︷ ︸
≡N 2/Tm

+

{
ββLOe

i(ωLOt+φLO)

[
1− 2iκin

κ

i[1 +NηLa(δωr)]− 2SzηLd(δωr)

]
+ c.c.

}
︸ ︷︷ ︸

≡S/Tm

.

(7)

The two terms in curly brackets account for the interference between the two fields, that

is identified as the signal S and can be written as

S
Tm

= 2ββLO

2κin

κ
− 1−NηLa(δωr)

1 +NηLa(δωr)
cos(ωLOt+ φLO + π −∆φph). (8)

In this form, Eq. (8) suggests that S is the number of signal photons collected during the

measurement time Tm.

The photon phase shift ∆φph is determined by the argument of S, is given by

∆φph = 4
κin

κ

SzηLd(δωr)
[2κin

κ
− 1−NηLa(δωr)][1 +NηLa(δωr)]

, (9)

which is the expression in Eq. (2) of the main text, showing the relation between the

momentum state population difference 2Sz and the photon phase shift ∆φph. We note that

this expression is valid for δωr � |Sz|Γ. For an initial coherent state that is an equal

superposition of the two momentum states, an upper limit on Sz can be estimated by the

atomic shot noise fluctuations, so in other terms, Eq. (9) is valid for δωr � Γ
√
N/2.

The photon phase shift is measured by mixing the detected electronic signal with the

local oscillator source and by tuning the phase φLO in order to maximize the sensitivity of

S to variations of ∆φph.

The next step is the determination of the photon shot noise limited atom number res-

olution 2(∆Sz)
2/S in Eq. (3) of the main text. The photon number variance ∆N 2 is

determined by recalling that, for an initial equal superposition of the states |↑〉 and |↓〉,
the average spin component 〈Sz〉 = 0. The photon number variance is therefore given by

∆N 2 = (〈b̂out〉
2

+ β2
LO)Tm ' β2

LOTm (see Eq. (7)). If the photodetector operates at the shot

noise limit, the atom number resolution is determined by the condition (S/∆N )2 = 1.

In order to derive the squeezing limits from the collective population measurement, it is

convenient to express the number of incident photons in the probe field nin = β2Tm in terms

of the number of photons scattered into free space per atom nsc. This conversion is achieved

by first considering the atomic scattering rate Γsc = ΓsLa(δωr)/2, where s = 2Ω2/Γ2 is the
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saturation parameter and Ω = 2g|c| is the Rabi frequency [4]. With nsc = ΓscTm and by

inserting the expression of the cavity field amplitude Eq. (3),

nsc

nin

=
4η κin

κ
La(δωr)

[1 +NηLa(δωr)]2
. (10)

The squared atom number resolution (2∆Sz)
2, normalized to the atom shot noise variance

2S is then given by
2(∆Sz)

2

S
=

[1 +NηLa(δωr)]2La(δωr)
4Nη κin

κ
nsc[Ld(δωr)]2

. (11)

The term κin/κ is the fraction of detected-to-incident photons when the cavity is empty

and ωr = ωc. This term can therefore be interpreted as the detection efficiency εd. In the

definition of the detection efficiency, the effect of cavity losses, of detector quantum efficiency

and of any additional loss in the path from the cavity input mirror to the photodetector

are included. With κin/κ → εd, the atom number resolution in Eq. (3) of the main text is

derived.

II. LIMITS ON ATTAINABLE SQUEEZING

The optimum squeezing attainable through the collective population measurement, ex-

pressed by Eq. (4) in the main text, is set by scattering into free space. For the considered

scheme, after scattering one photon into free space, the coherent momentum state superpo-

sition of an atom is destroyed and the resulting recoil in a random direction will in general

cause the trajectory to deviate from the vertical direction. As a result, the atom is lost from

the interferometer even though it will be detected in the nondestructive pre-measurement.

Photon scattering into free space additionally causes diffusion of the spin component Sz.

The amount of added spin noise is determined by computing the population imbalance

arising from the scattering of psc = Nnsc photons into free space, in the limit psc � N .

Following the binomial distribution, the probability for scattering l photons from atoms in

|1S0, 0〉 and psc − l photons from atoms in |1S0, 2n~kb〉 is given by

Pl =
1

2psc

 psc

l

 . (12)

In this expression, the probability for scattering from one of the two momentum states is

set to 1/2. The mean and variance of the distribution are given by 〈l〉 = psc/2 and Var(l) =
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psc/4, respectively. As a result, the spin variance increase due to free space scattering can

be written as

(2∆Sz)
2
sc = Var(psc − 2l) = psc. (13)

The squeezing limit can then be determined by summing the atom number resolution of the

measurement given by Eq. (11) and the relative variance increase 2(∆Sz)
2
sc/S. This gives

the total atom number variance normalized to the atom shot noise as[
2(∆Sz)

2

S

]
tot

=
[1 +NηLa(δωr)]2La(δωr)

4Nηεdnsc[Ld(δωr)]2
+ nsc. (14)

The above expression is minimized by the optimum value of nsc given by Eq. (4) in the

main text:

nsc =

√
[1 +NηLa(δωr)]2La(δωr)

4Nηεd[Ld(δωr)]2
. (15)

The resulting optimum squeezing is given by[
2(∆Sz)

2

S

]
opt

=

√
[1 +NηLa(δωr)]2La(δωr)

Nηεd[Ld(δωr)]2
. (16)

In the dispersive limit NηLa(δωr) � 1, the metrological gain reaches the maximum value

ξm =
√
Nηεd.

In deriving the metrological gain, the loss of contrast C due to scattering into free space

should also be considered. However, as a function of nsc, the contrast decays as C = e−nsc

[2] and, for realistic values of the parameters, the optimum nsc � 1. In this limit, the effect

of contrast loss can be neglected.

III. SQUEEZING ENHANCEMENT BY ELECTROMAGNETICALLY

INDUCED TRANSPARENCY

In this Section, squeezing enhancement by electromagnetically induced transparency

(EIT) is considered by deriving the modified atomic response. As explained in the main

text, EIT can be generated through Raman coupling of the 3P1 and 3P0 states via the 3S1

state. A possible practical scheme, closely related to the diagram in Fig. 3 a) of the main

text, is formed by a probe light with linear polarization that couples to the |3P1,mJ = 0〉
state and by two Raman beams R1 and R2 with Rabi frequencies ΩR1 and ΩR2, respectively.

The field R1, with frequency ω1, couples the states |3P0〉 and |3S1,mJ = +1〉, whereas the
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field R2, with frequency ω2, couples the states |3P1,mJ = 0〉 and |3S1,mJ = +1〉. It is nota-

tionally convenient to make the replacements |1S0〉 → |a〉, |3P1,mJ = 0〉 → |b〉, |3P0〉 → |c〉,
|3S1,mJ = +1〉 → |d〉 and write the atomic Hamiltonian as

Ĥ = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|+ ~ωc |c〉 〈c|+ ~ωd |d〉 〈d|+
~Ω

2
(|b〉 〈a| e−iωrt + |a〉 〈b| eiωrt)

+
~ΩR1

2
(|d〉 〈c| e−iω1t + |c〉 〈d| eiω1t) +

~ΩR2

2
(|d〉 〈b| e−iω2t + |b〉 〈d| eiω2t), (17)

where ~ωi is the unperturbed atomic energy of state |i〉 and Ω is the probe Rabi frequency.

Using first-order perturbation theory for the weak probe field, Ω � Γ, a closed set of

equations of motion for the matrix elements ρij = 〈i|ρ̂|j〉 of the density operator ρ̂ is written

as

ρ̇ab = iωbaρab −
Γ

2
ρab + i

ΩR2

2
ρade

−iω2t + i
Ω

2
eiωrt (18)

ρ̇ac = iωcaρac + i
ΩR1

2
ρade

−iω1t (19)

ρ̇ad = iωdaρad + i
ΩR1

2
ρace

iω1t + i
ΩR2

2
ρabe

iω2t, (20)

where ωij = ωi − ωj is the frequency of the transition |j〉 → |i〉 [5].

Two-photon Raman coupling is favored in comparison to single-photon transitions when

the detuning of the Raman fields from resonance is large compared to the excited 3S1 state

decay rate and compared to the single-photon Rabi frequencies ΩR1 and ΩR2. In this regime,

it is possible to adiabatically eliminate the excited 3S1 state. This is achieved by defining in

(20) the new variables σab = ρabe
−iωbat, σac = ρace

−iωcat, σad = ρade
−iωdat and by observing

that σab and σac are slowly varying compared to σad. The resulting equation can be directly

integrated:

σad =
ΩR1

2∆R

ei∆1tσac +
ΩR2

2∆R

ei∆2tσab, (21)

where ∆1 = ω1 − ωdc, ∆2 = ω2 − ωdb and, in the denominators, the approximation ∆1 '
∆2 ≡ ∆R is made, thus neglecting the difference between the two detunings. Substitution

into equations (18) and (19) yields the effective three-level equations of motion

ρ̇ab = iω′baρab −
Γ

2
ρab + i

Ω

2
eiωrt + i

Ωeff

2
ρace

iωRt (22)

ρ̇ac = iω′caρac + i
Ωeff

2
ρabe

−iωRt. (23)

Here Ωeff = ΩR1ΩR2/(2∆R) is the effective two-photon Rabi frequency, ωR = ω1 − ω2 is

the frequency difference between the two Raman lasers and ω′ba = ωba + Ω2
R2/(4∆R), ω′ca =
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ωca+Ω2
R1/(4∆R) are the transition frequencies corrected for the AC Stark shift of the Raman

fields.

The effect of electromagnetically induced transparency is seen by solving (22) and (23) for

the steady state solution. This is achieved by defining ρab = σ̃abe
iωrt and ρac = σ̃ace

i(ωr−ωR)t

and by setting ˙̃σab = ˙̃σac = 0. The relevant coherence between the states |a〉 and |b〉 is then

found to be

ρab = i
Ω/2

Γ
2

+ i
(

∆− Ω2
eff

4(∆−δ′)

)eiωrt. (24)

The detuning ∆ = ωr − [ωba + Ω2
R2/(4∆R)] in this case also accounts for the AC Stark shift

of the field R2 and δ′ is the two-photon Raman detuning given by

δ′ = ωR −
(
ωbc +

Ω2
R2

4∆R

− Ω2
R1

4∆R

)
. (25)

In the absence of EIT, Eq. (24) with Ωeff = 0 describes the atomic absorption and disper-

sion features already considered in the previous sections. The effect of induced transparency

is seen from the additional term Ω2
eff/(4∆) that is subtracted, for δ′ = 0, from the single-

photon detuning ∆. As a result, the dispersive Ld(∆) and absorption La(∆) profiles are

described, in the presence of EIT, by computing these functions at the effective detuning

∆E = ∆− Ω2
eff/(4∆).

The validity of adiabatic elimination in this system was verified numerically by accounting

for the population and decay of the excited 3S1 state. In this computation, the losses in

the metastable 3P2 state were considered. The decay and losses were treated by the Monte-

Carlo wavefunction method [6]. The validity of adiabatic elimination for this scheme was

confirmed by observing quantitative agreement between the computation results and the

effective three-level model derived above.

The replacement ∆→ ∆E in Eq. (4) yields the expression of the output field 〈b̂out〉 in the

presence of EIT. By then repeating the same procedure that led to Eq. (11) and Eq. (16), it is

seen that, in generalizing the results to the optical transitions involving the two momentum

states, the Doppler splitting δωr should be replaced with δωE = δωr−Ω2
eff/(4δωr), when the

two-photon resonance δ′ = 0 is fulfilled, as stated in the main text.
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IV. PHOTON SCATTERING FROM THE EXCITED 3S1 STATE IN

RAMAN-DRIVEN ELECTROMAGNETICALLY INDUCED TRANSPARENCY

In this Section, a criterion for the choice of the Raman laser intensity and detuning

that avoids additional scattering into free space (with a consequent squeezing reduction) is

provided. The average 3S1 population in the limit ΩR1,ΩR2 � |∆R| is given by [4]

P (3S1) =
Ω2

R1 + Ω2
R2

4∆2
R

Pexc, (26)

where Pexc is the average population of the 3P1 state. This expression is written by account-

ing for the fact that, in the presence of Raman coupling, Pexc is also the average population

of the 3P0 state. With the assumption that ΩR1 = ΩR2 ≡ ΩR and that nLsc is the upper

limit for the number of photons per atom scattered into free space per atom by decay from

the 3S1 state, the corresponding limit on the ratio ΩR/∆R between the single-photon Rabi

frequency and the Raman detuning is then estimated as(
ΩR

∆R

)
L

=

√
2nLsc

ΓTPexcTm
. (27)

For the 3S1 state, ΓT ' 2π × 12.4 MHz is the total decay rate. The parameters of the main

text are considered, with a measurement time duration Tm = 200 µs, Pexc = 5 × 10−4 and

nLsc = 5×10−5 which is a hundred times smaller than the value of nsc that yields the optimum

squeezing. As a result, (ΩR/∆R)L ' 4×10−3. The requirements on Raman detuning for the

proposed scheme are less severe than for standard Raman transitions because of the reduced

population of the 3P1 state. This small population yields a reduction in the scattering rate

by a factor Pexc. This improvement in turn allows to operate the Raman lasers closer to

atomic resonance with a resulting larger effective Rabi frequency Ωeff .
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