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I. SQUEEZING OF THE WIGNER DISTRIBUTION

In this section, we provide a mathematical description of squeezing by analyzing the evo-

lution of a nuclear spin state characterized by a Gaussian Wigner distribution. As discussed

in the main text, for a large spin initially oriented in the x direction, and for short times

before the Wigner distribution extends significantly around the Bloch sphere, the Wigner

distribution in a locally flat patch of Bloch sphere evolves as ft(Iy, Iz) = Ae− 1
2
vTQv, see

Eq.(10), with

v =

 Iy

Iz

 , Q =
1

∆I2

 1 λIt

λIt 1 + (λIt)2

 . (S1)

Here ∆I = ∆Iy,z0 characterizes the transverse fluctuations in the initial nuclear spin state.

For times t > 0, the circular Wigner distribution is deformed to an ellipse, with major

and minor axes determined by the quadratic form Q in Eq.(S1). As shown in Fig.3 of the

main text, stretching in one direction (y′) is accompanied by squeezing in the perpendicular

direction (z′), such that the phase space volume of the Wigner distribution is preserved.

The major and minor axes y′ and z′, which lie parallel to the eigenvectors of Q, are rotated

relative to y and z by an angle θ: Iy
′

Iz
′

 =

 cos θ − sin θ

sin θ cos θ

 Iy

Iz

 . (S2)

The angle θ can be found by extremizing the quantity

W = wT
θ Qwθ, wθ =

 cos θ

− sin θ

 (S3)

with respect to θ. Using the identity [1− tan2 θ]/2 tan θ = cot 2θ, we find

cot 2θ = λIt/2. (S4)

Note that Eq.(S4) has two solutions θ1,2 separated by 90◦, as expected for a symmetric form.

In the eigenbasis, we write

ft(I
y′
, Iz

′
) = A exp

[
−1

2

(
Iy

′

∆I+(t)

)2

− 1

2

(
Iz

′

∆I−(t)

)2
]
, (S5)
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with

∆I2
±(t) = ∆I2

(
1 +

(λIt)2

2

[
1∓

√
1 +

4

(λIt)2

])−1

. (S6)

In the long time limit λIt � 1, the width ∆̃I(t) ≡ ∆I−(t) of the squeezed component

reduces to Eq.(11).

II. PHASE DIFFUSION

The effect of time-dependent fluctuations of electron spin polarization about the mean

field value can be analyzed within the rate equation model by introducing a time-dependent

quantity

S̃z(t) = Sz + δSz(t). (S7)

The fluctuating part δSz can be modeled as delta-correlated noise 〈δSz(t′)δSz(t′′)〉 ∝ δ(t′ −

t′′), with an intensity determined by the rate process, Eq.(5). As shown in Supplementary

Section III, such noise generates phase diffusion,

〈δθ2(t)〉 = κt, κ = 2A2 (W + Γ1)W

(2W + Γ1)3
, (S8)

where δθ is the fluctuating part of the Larmor precession angle, Ix + iIy ∝ ei(θ+δθ). The

phase diffusion can be accounted for by adding a diffusion term with diffusivity κ̃ = I2κ to

the equation describing the time evolution of the Wigner distribution.

An important consequence of phase diffusion is non-conservation of phase volume, which

can be illustrated by the evolution of a Gaussian Wigner distribution. Similar to the mean-

field case, Eq.(10), such a distribution evolves in time as

ft(I
y, Iz) = A′(t) exp

[
− (Iz)2

2∆I2
− (Iy + IλtIz)2

2(∆I2 + κ̃t)

]
, t > 0. (S9)

Initially, phase diffusion leads to a broadening of the Wigner distribution, characterized by

the factor
√

1 + κ̃t/∆I2, which grows like t1/2 for κ̃t > ∆I2. At later times, ∆IλtI >∼
√
κ̃t,

the behavior is dominated by the linear in t twisting/stretching dynamics. Therefore for

times satisfying t > tnoise = 2A2κ
Nλ2 , the coherent stretching overwhelms the effect of phase

diffusion.

The efficiency of squeezing in the presence of phase diffusion can be estimated as follows.

At long times t � tnoise, the factor
√

1 + κ̃t/∆I2 describes an increase of the width of the
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Wigner distribution compared to its ideal squeezed value ∆̃I in Eq.(11). Combining the

t1/2 smearing due to phase diffusion with the t−1 squeezing, we find that the width of the

Wigner distribution decreases as t−1/2 at long times:

∆̃Inoise = ∆̃I(t)
√

1 + κ̃t/∆I2 ≈ κ̃1/2

λI
t−1/2 (S10)

This expression describes the slowing of squeezing due to phase diffusion.

III. CALCULATION OF THE PHASE DIFFUSION CONSTANT

To analyze phase diffusion, we need to calculate the generating function for spin fluctu-

ations driven by up-down and down-up switching. Denoting the two switching rates as W

and W ′, we can obtain the generating function for spin fluctuations during the time interval

0 < t′ < t by approximating a continuous Poisson process by a discrete Markov process with

a small time step ∆� W−1, (W ′)−1, t. We have

χ(λ) =

 1

1

T [
ei∆(λ/2)σ3R∆

]N  1/2

1/2

 (S11)

R∆ =

 1−W∆ W∆

W ′∆ 1−W ′∆

 , N =
t

∆
,

where W ′ = W + Γ1. Taking the limit ∆→ 0, N →∞ we obtain an expression

χ(λ) =

 1

1

T

eM

 1/2

1/2

 , (S12)

M = t

 iλ/2−W W

W ′ −iλ/2−W ′

 . (S13)

The generating function (S12) provides a full description of the statistics of phase fluctua-

tions, θt =
∫ t

0
SZ(t)dt, by encoding all its cumulants:

lnχ(λ) =
∞∑
k=1

mk
(iλ)k

k!
, (S14)

withm1 andm2 giving the expectation value 〈Sz〉t and the variance 〈(θt−〈θt〉)2〉, respectively.

The latter quantity yields the phase diffusion constant via m2 = κt.
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Matrix exponential eM can be evaluated by writing it in terms of Pauli matrices, M =

x0 + xiσi, where

x0 = −W+, x1 = W+, x2 = iW−, x3 = iλ/2−W−, (S15)

and we defined W± = (W ±W ′)/2. We have

eM = ex0t

(
cosh(Xt) +

sinh(Xt)

X
xiσi

)
(S16)

where X2 = x2
1 +x2

2 +x2
3 = W 2

+−λ2/4− iλW−. Plugging this expression for eM in Eq.(S12),

we find

χ(λ) = 2ex0t

(
cosh(Xt) +

sinh(Xt)

X
x1

)
, (S17)

an exact expression which is valid both at short times and at long times.

To analyze fluctuations in the steady state, we focus on the long times t� W−1, (W ′)−1.

In this limit, the behavior of χ(λ) can be understood by replacing coshXt and sinhXt by

eXt, giving

lnχ(λ) ≈ (X −W+)t = −λ
2/4 + iλW−
X +W+

t (S18)

Taylor expanding this expression up to order λ2 we find the first and second cumulants of

phase fluctuations:

lnχ(λ) = −iλW−t
2W+

+
(iλ)2

2

(W 2
+ −W 2

−)t

4W 3
+

+O(λ3) (S19)

Substituting W ′ = W+Γ1, we obtain the time-averaged polarization and the phase diffusion

constant

〈Sz〉 =
1

2

Γ1

2W + Γ1

, κ = 2
(W + Γ1)W

(2W + Γ1)3
(S20)

Crucially, the phase diffusion slows down when the switching rates W and W ′ grow, which

justifies our motional averaging approximation.
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