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THEORETICAL DESCRIPTION

The system consists of atoms with a four-state N -type level structure |f〉 ↔ |d〉 ↔ |c〉 ↔ |e〉 as described in the
text. Including the decay, the effective Hamiltonian for this system can be written as

Heff/~ =
∑
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+ (ωfd − iΓ/2)
∑
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∑
j

|e〉j 〈e|+ (ωfc − iγ/2)
∑
j

|c〉j 〈c|

+
∑
x

(
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) (1)

Here, c is the speed of light, k is the wavenumber of the signal (free-space) field, ωc is the cavity frequency and κ is
the decay rate of the cavity. The electric field operators for the signal (free-space) and cavity fields can be written as

Ês(x) =
√

~ck0
ε0V

a(x) and Êc =
√

~ωc

ε0V
b, where a(x) = N−1/2

∑
k e

ikxak and b are bosonic annihilation operators, ck0

is the center frequency of the signal field, and V is the quantization volume. Additionally, E is the amplitude of the
cavity input field, ωµν is the atomic transition energy between states µ and ν, Ω is the classical Rabi frequency for
the coupling field, Γ is the linewidth of the excited states |d〉 and |e〉, γ is decoherence rate of two stable ground states
|f〉 and |c〉, and gs, gc are the bare couplings of the atomic transition to the two fields. We take the gate and signal
fields to be resonant with the atoms so that ck0 = ωfd and ωc = ωce.

The use of this effective Hamiltonian is sufficient to describe the steady state for the case of weak coherent state
input fields gs 〈a〉 � Ω2/Γ and gc 〈b〉 � κ. In this limit, we can take the approach of [Ref. [1]] to calculate the
two-time correlation function between the fields

g(2)(x, τ) =
〈b†(t)a†(x, t+ τ)a(x, t+ τ)b(t)〉
〈a†(x, t)a(x, t)〉〈b†(t)b(t)〉

(2)

In this limit, we also can write the density matrix as a product state ρ = |χ(τ)〉 〈χ(τ)| and truncate the available
states in the system at the level of two excitations from the state with zero photons and all atoms in |f〉, which we refer
to as |f, 0, 0〉. The one-excitation states are |f, 1x, 0〉 = a†(x) |f, 0, 0〉, |f, 0, 1〉 = b† |f, 0, 0〉, |cx, 0, 0〉 ≡ σxcf |f, 0, 0〉,
and |dx, 0, 0〉 ≡ σxdf |f, 0, 0〉, where σxµν ≡ |µ〉x 〈ν|. The two-excitation states that are relevant for g(2) are |f, 1x, 1〉 ≡
a†(x) |f, 0, 1〉, |cx, 0, 1〉 ≡ b† |cx, 0, 0〉, |dx, 0, 1〉 ≡ b† |dx, 0, 0〉, and |ex, 0, 0〉 ≡ σxec |cx, 0, 0〉.

We then expand |χ(t)〉 in these states and find the evolution according to id|χ〉dt = Heff |χ〉 applying the boundary
condition that the free space input field is a weak coherent state. The only terms in Heff which create excitations are
the driving fields, which are perturbative implying that the amplitude of the one-excitation states are proportional to
E and the two-excitation amplitudes are proportional to E2.

To calculate g(2)(τ) we take the picture where the detection corresponds to a quantum jump from the steady state
|χss〉 into the state a(x, t) |χss〉 for τ < 0 and b(t) |χss〉 for τ > 0 [Ref. [1]]. To find g(2)(τ) we can then simply evolve
the operator ns(t) or nc(x, t) for a time τ under Heff starting from the jump state.

To find the steady state we expand |χ(t)〉 in the zero-, one- and two- excitation states

|χ(x, t)〉 = |f, 0, 0〉+A1
0(x) |f, 1x, 0〉+A1

1(x) |cx, 0, 0〉+A1
2(x) |dx, 0, 0〉+A1

3 |f, 0, 1〉
+A2

1(x) |f, 1x, 1〉+A2
2(x) |cx, 0, 1〉+A2

3(x) |dx, 0, 1〉+A2
4(x) |ex, 0, 0〉

(3)
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where we neglect the one- and two- excitation states in the normalization because they are perturbative. The equations

of motion are for the Aji are found from id|χ〉dt = Heff |χ〉.

(∂t + c ∂x)A1
0(x) = −igs
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N A1

2(x), (4)

∂tA
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√
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∂tA
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∂tA
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3 = −κ/2A1

3 + E , (7)

(∂t + c ∂x)A2
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√
NA2

3(x), (8)

∂tA
2
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√
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1(x)− iΩ/2A2
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2(x), (9)

∂tA
2
2(x) = −(κ+ γ)/2A2

2(x)− igcA2
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3(x) + EA1
1(x), (10)

∂tA
2
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4(x)− igcA2
2(x) (11)

These eight equations are the only ones relevant for g(2)(t), they give the steady state

Ā1
0(x) = α exp
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x

L

)
(12)
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L
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where α is the amplitude of the input coherent state, N is the number of atoms, N = 4g2sNL/cΓ is the optical depth,
L is the length of the medium, η = 4g2c/κΓ is the cooperativity, and we have defined

ζ =

(
1 +

γΓ

Ω2

)(
1 +

Ω2/κΓ + γ/κ

1 + η

)
(17)

a correction factor that accounts for finite γ and cooperativity η.
When τ < 0 the free space photon is detected first leading to a quantum jump into the state

|χJ〉 =
a(L, τ) |χss〉√

〈χss| a†(L, τ)a(L, τ) |χss〉
= |f, 0, 0〉+

Ā2
1(L)

Ā1
0(L)

|f, 0, 1〉 (18)

Now

g(2)(τ) =
〈χJ(t)| b†(τ)b(τ) |χJ(t)〉
〈χss| b†(τ)b(τ) |χss〉

=
|Ã1

3(t)|2∣∣Ā1
3

∣∣2 (19)

=

[
1−

(
1− e−N/2ζ

)
η

1 + η
e−κ<|τ |/2

]2
(20)

where κ< = κ and Ã1
3(t) is found from Eq. 7 with the initial condition Ã1

3(0) = Ā2
1(L)/Ā1

0(L).
For τ > 0 the procedure is the same, except we have to evolve Eqs. 4-6 starting from the initial conditions

A1
0(x, τ) = Ā2

1(x), A1
1(x, τ) = Ā2

2(x), and A1
2(x, τ) = Ā2

3(x). This corresponds to the state |χJ〉 ∝ b |χss〉. The result
can be expressed in the same form as Eq. 19 with κ< replaced by κ> = Ω2/Γ + γ.

SCHEME TO PRODUCE POLARIZATION-ENTANGLED STATES

Continuous entanglement of two light beams can be achieved in the following way: prepare the atomic ensemble in
the |F = 3,mF = 3〉 and |F = 3,mF = −3〉 states with equal population in a small magnetic field oriented at small
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angle to the cavity mode, and apply the signal beam along the magnetic field. The scheme we demonstrate in the
manuscript then works independently for both circular polarizations, so that |σ+〉s |σ+〉c (the subscript indicates the
signal and cavity mode, respectively, and σ± indicates circular photon polarization) becomes |σ+〉s |0〉c or |0〉s |σ+〉c,
|σ−〉s |σ−〉c becomes |σ−〉s |0〉c or |0〉s |σ−〉c, and the states |σ+〉s |σ−〉c and |σ−〉s |σ+〉c are unchanged. When linearly
polarized beams are sent into both the signal and cavity paths and we post-select for detecting a photon in each mode,
the output is the entangled (Bell) state 1√

2
(|σ−〉s |σ+〉c + |σ+〉s |σ−〉c).
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