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We demonstrate a heralded quantum memory where a photon announces the mapping of a light

polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles.

The magnon can be converted at a later time into a single polarized photon with polarization fidelity over

90(2)% for all fiducial input states, well above the classical limit of 2
3 . The process can be viewed as a

nondestructive quantum probe where a photon is detected, stored, and regenerated without touching

its—potentially undetermined—polarization.
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Among systems for the storage of light, one can distin-
guish between a device that can retain an initially prepared,
and thus known, state [1,2], a quantum receiver that can
receive and retain any (unknown) incoming state [3], and a
quantum memory that can receive, retain, and recreate any
(unknown) incoming state for further processing [4–7].
The attribute ‘‘quantum’’ indicates that the device outper-
forms any ‘‘classical’’ device (that attempts to measure and
recreate the state) when averaged randomly over the
Hilbert space of operation [3]. For instance, a classical
polarization memory for single photons has a fidelity limit
of 2

3 since a single measurement allows only incomplete

characterization of an unknown input state.
Quantum communication can benefit from quantum re-

ceivers and memories [8–10]. Moreover, the detrimental
effects of photon loss can be largely remedied by a herald-
ing (‘‘state purification’’ [8]) feature that announces photon
arrival and storage without destroying or revealing the
stored quantum state. Heralded quantum memories may
thus advance long-distance quantum communication [8–
10], linear-optics quantum computing [11], and schemes
aimed at breaking quantum encryption [12], or convert
probabilistic [2,13,14] into heralded entanglement.

A continuous-variable quantum receiver has been real-
ized by Julsgaard et al. [3] who mapped a weak coherent
electromagnetic field containing up to eight photons onto
the collective spin of an atomic ensemble with a fidelity of
F ¼ 0:67 after 0.7 ms of storage. Recently, squeezed
vacuum has been stored in and retrieved from an atomic
ensemble [15], and a weak coherent state has been stored in
a single atom [5].

Work with quantized excitations demonstrated capture
and release of a single photon of fixed polarization [16,17]
and coherent adiabatic transfer of a single photon between
two ensembles via an optical resonator [18]. Matsukevich
and Kuzmich [1] first introduced two ensembles, each
capable of storing a single photon of fixed polarization,
as a two-state system that can be mapped onto a single
photon of variable polarization [19]. The two states can

also be implemented as momentum states of the stored spin
wave [2] or, as in the present work, using atoms in two
different magnetic sublevels. The latter allows the direct
mapping of the spin polarization onto a single spatial mode
of an optical resonator.
The first system capable of functioning as a quantum

memory was realized by Choi et al., who mapped the
polarization state of an incoming photon onto two ensem-
bles, and later retrieved the photon [6]. This (unheralded)
device was tested for a single input polarization, for which
it achieved a fringe visibility of 0.91 at a photon retrieval
probability of 0.17 and a lifetime of 8 �s. A recent tele-
portation experiment by Chen et al. can also be viewed as a
quantum memory, where the polarization state of an in-
coming photon is erased in a two-photon measurement,
and teleported with probability between 17% and 95%
onto two atomic ensembles [7] at polarization fidelities
F between 0.74 and 0.87. If this experiment were per-
formed with a single input photon, heralded storage would
occur with a probability of �10�4.
In this Letter, we demonstrate a heralded quantum mem-

ory where a single photon announces polarization storage
in the form of a single collective-spin excitation (magnon)
that is shared between two spatially overlapped atomic
ensembles. The heralded storage occurs rarely (h � 10�6

per photon in our nonoptimized setup), but when it does,
the stored photon can later be recreated with good effi-
ciency (" � 0:5) and sub-Poissonian statistics (g2 ¼ 0:24),
while its polarization state is restored with very high
fidelity (F > 0:9). In the absence of a second setup for
the production of narrowband single photons [13,17,20],
we test the quantum memory with coherent states of arbi-
trary polarization (containing typically 500 photons per
pulse to improve the data collection rate). The scheme,
however, is designed for single-quantum storage and stores
only one photon even for coherent input beams [8,21].
Heralded storage is achieved by means of a spontaneous

Raman process that simultaneously creates the herald and
the magnon. To store an arbitrary polarization state
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jc i ¼ cos�jRi þ ei� sin�jLi; (1)

written as a superpositions of right (left) circularly polar-
ized states jRi (jLi) with two arbitrary angles �, �, we use
two spatially overlapped atomic ensembles A, B inside an
optical resonator. The atomic levels are chosen such that
ensemble A (B) absorbs only jRi (jLi) polarized light,
while both can emit a photon of the same polarization
(�) into the resonator on the Raman transition of interest
[Fig. 1]. The detection of the emitted � photon heralds the
mapping of the input polarization state onto a magnon, but
does not provide ‘‘which-path’’ information to distinguish
between A and B. The ‘‘write’’ process thus maps a polar-
ization state jc i onto a magnon superposition state

jc i ! j�i ¼ cos�j1iAj0iB þ ei� sin�j0iAj1iB; (2)

where jnik denotes n magnons in ensemble k (k ¼ A, B).
At a later time, the stored state can be retrieved on demand
as a single photon by utilizing the strong coupling of the
magnon to the resonator [8,21] (‘‘read’’ process).

The heralding serves to enhance the fidelity of the write
process by announcing successful events. In our present
nonoptimized setup, the heralding probability per incom-
ing photon is h ¼ ��q � 10�6, where � ¼ 0:01 is the
absorption probability, � ¼ 10�3 is the single atom coop-
erativity (the emission probability into the resonator in this
case), and q ¼ 0:1 is the photon detection efficiency.
Whenever there is a heralding event, however, a single
magnon corresponding to the input-field polarization is
stored with high fidelity and can be retrieved with good
efficiency. The single-photon nature of the retrieved field is
confirmed by a conditional autocorrelation measurement
indicating sub-Poissonian statistics [g2 ¼ 0:24ð5Þ< 1].
The heralding process may thus be viewed as a quantum
nondemolition measurement where a single photon is de-
tected and stored while preserving its polarization.

The quantum memory uses precessing spins [22] in
order to take advantage of resonator emission in both
heralding and read processes, and of atomic symmetries;
the former provides mode selection and high photon
collection efficiency and the latter good polarization fidel-
ity. We choose a � transition for heralding, while any input
state is expressed as a superposition of �� polarizations
[Fig. 1(b)]. Given the corresponding atomic angular emis-
sion patterns, we then need to rotate the atomic-spin di-
rection by 90� between the heralding and the readout.
This is achieved with a magnetic field of �1:4 G that
induces Larmor spin precession with a period of �L ¼
2 �s [Fig. 1(a) and 1(c)], enabling us to access the same
magnon with different light polarizations at different times.
Note that a spatially homogeneous magnetic field main-
tains the interatomic coherence and does not affect the
magnon momentum, or equivalently, the phase matching
condition for the read process [23].

We load cesium atoms from a magneto-optical
trap into a far-detuned (trap wavelength 	t ¼ 1064 nm)
one-dimensional optical lattice overlapped with

the mode of a medium-finesse (f ¼ 140) optical reso-
nator [21]. Ensembles A and B consist of approximately
8000 atoms each at a temperature of 30 �K, optically
pumped into hyperfine and magnetic sublevels jg�i �
j6S1=2, F ¼ 3, mF ¼ �3i, respectively, in the rotating

frame. (The quantization axis is defined to rotate with the
atomic spins and coincide with the propagation direction of
the write beam at the optical-pumping time top ¼ 0.)

Optical pumping is achieved by periodic application of a
short (100 ns � �L), linearly (x̂-) polarized optical-
pumping pulse, resonant with the 6S1=2, F ¼ 3 ! 6P3=2,

F0 ¼ 2 transition. The ensembles A, B thus form macro-
scopic spins in opposite directions that Larmor precess in
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FIG. 1 (color online). (a) Setup. The small arrows indicate
beam polarizations. OP is the optical pumping beam. NPBS,
PBS, QWP, and HWP denote a nonpolarizing beam splitter, a
polarizing beam splitter, a quarter wave plate, and a half wave
plate, respectively. D1, D2, D3 are single-photon counting
modules for herald detection and polarization analysis. A static
magnetic field induces magnon precession. (b) Energy levels.
Ensembles A and B are initially prepared in jg�i �
jF ¼ 3, mF ¼ �3i. The write (green) and the read (red) pro-
cesses are ��-� and �-�� spontaneous Raman transitions,
respectively. (c) Precession of the two macroscopic spins, as
measured via cavity transmission, and timing of the optical-
pumping (top), write (tw), and read (tr) processes.
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the x-z plane with a period �L [Fig. 1(c)]. We choose a
pumping period of �op ¼ 3�L=2 ¼ 3 �s, such that the

ensembles are interchanged at every trial, which reduces
population imbalance between jg�i.

The atomic-spin precession and the efficiency of the
optical pumping are monitored via resonator transmission
of a weak, linearly (x̂-) polarized beam. In the frame
rotating with the atomic spin, the probe beam polarization,
and thus the coupling to the polarized atoms, change
periodically with time. Since the states jg�i do not couple
to �-polarized light on the chosen transition F ¼ 3 !
F0 ¼ 2 [see Fig. 1(c)], the otherwise observable atom-
induced splitting of the cavity resonance [24] disap-
pears. By optimizing the sinusoidal variation of the split-
ting [Fig. 1(c)], we prepare more than 99% of the F ¼ 3
population in either of the jg�i sublevels.

The photon storage and readout processes are timed to
match the sample precession [Fig. 1(c)]. A sequence of
optical-pump, write, and read pulses is applied once every
�op for 30 ms, corresponding to a total of 104 trials before

the sample is recooled.
The light whose polarization state is to be stored (write

beam) is tuned to the F ¼ 3 ! F0 ¼ 2 atomic transition,
propagates along the x̂ direction, and is pulsed on for
50 ns � �L at tw ¼ �L=2 ¼ 1 �s, when the macroscopic
spins are aligned along �x̂. At this time, ensembles A and
B can absorb only jRið�þÞ and jLið��Þ photons, respec-
tively [Fig. 1(b)]. For equal populations in A and B, a
�-polarized photon originating from a spontaneous
��-� (absorbing a �� photon and emitting a � photon)
Raman process has the same probability for having been
emitted by either ensemble. Thus, it does not provide any
‘‘which-path’’ information, and, if detected by detector D1
[Fig. 1(a)], serves as a herald that announces the storage of
a (not revealed) polarization state jc i as a magnon j�i.

At tr ¼ tw þ �L=4 ¼ 1:5 �s, when the atomic spins
point along the resonator axis �ẑ, the ẑ-polarized read
beam, tuned to the F ¼ 3 ! F0 ¼ 2 transition, is applied
for 100 ns � �L. The read beam addresses a � transition,
such that collectively enhanced [8] �-�� Raman scatter-
ing maps the magnon state onto a single-photon polariza-
tion state. If the populations, j cos�j2, j sin�j2, and the
relative phase � of the magnons in ensembles A, B are
preserved between the write and read processes [Eq. (2)],
the polarization of the regenerated single photon is a
faithful copy of the write beam polarization.

To quantify the performance of the heralded memory,
we determine the density matrix 
meas of the output polar-
ization [examples are shown in Fig. 2(a)] by measurements
in three polarization bases [25]: 1

ffiffi

2
p ðjLi � jRiÞ (H-V), jLi

and jRi (L-R), and 1
ffiffi

2
p ðjLi � ijRiÞ (S-T). The polarization

fidelities F of the retrieved single photons for ten states of
varying angle � [Fig. 3] as well as for the six fiducial input
states, H, V, L, R, S, and T [Fig. 2], are evaluated as F ¼
Trð
measjc ihc jÞ, where jc i is the input state in Eq. (1).
Figure 3 shows that F is close to unity with no systematic

dependence on the zenith angle �, and we have verified
separately that the same is true for the azimuth angle �.
For any of the six fiducial states, the measured fidelity F
without any background subtraction is significantly above
the classical limit of 2=3 for state-independent storage
[Fig. 2(b)]. [The larger fluctuation of the fidelities in
Fig. 3 (measured over �8 hours) relative to Fig. 2(b)
(measured over �1 hour) is due to a slow uncompensated
magnetic field drift.] If we correct the fidelities presented
in Fig. 2(b) for the effect of the independently measured
photon backgrounds, all fidelities are unity within statisti-
cal errors of a few percent.
The major source of photon backgrounds is the finite

Larmor precession of 0.3 rad during the 100-ns read pro-
cess. The read pump beam acquires a small admixture of
�� components in the frame precessing with the atomic
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FIG. 3 (color online). Polarization fidelity of the stored photon
as a function of � for � ¼ 0 [Eq. (1)]. Insets (i)–(iii): The results
of projection measurements of the output field in three mutually
orthogonal bases, H-V, L-R, and S-T. The solid curves are a
simultaneous fit for all 60 data points. No backgrounds have
been subtracted.
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FIG. 2 (color online). (a) Density matrices 
meas of the re-
trieved single photons for fiducial input states H, L, and S.
(b) The measured degrees of polarization (pout) and fidelities
(F ) of the retrieved single photons.
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spin [Fig. 1(b)], which results in strong resonator emission
by atoms in jg�i. These backgrounds deteriorate not only
the stored polarization, but also the single-photon character
of the retrieved field. The predicted autocorrelation due to
this effect is g2 � 0:2, in good agreement with the mea-
sured value of g2 ¼ 0:24ð5Þ. These backgrounds can be
reduced by slowing down the Larmor precession, which
requires an increase in the memory lifetime which is
currently �3 �s. With a lifetime of a few milliseconds
as demonstrated recently [26], the autocorrelation will then
be g2 � 0:02, limited only by the rare storage of two pho-
tons. The current lifetime is set by the magnon Doppler
decoherence [21] that is presently faster than polarization
(spin) decoherence. The one-dimensional optical lattice in
the setup does not confine the atoms along the direction of
momentum transfer in the write process [21], and thus an
additional lattice is required for long lifetime.

Finally, we discuss the performance limits for the her-
alded quantum memory scheme investigated here. The
success probability may be improved upon by adding a
second resonator to increase the absorption probability of
the incident photon. The fundamental limit for the herald-
ing probability h for N 	 1 would then be given by h ¼
�

1þ� q. Under realistic conditions (N ¼ 100, � ¼ 10, q ¼
0:6), one could thus achieve h� 0:5 for an incident single
photon with retrieval efficiencies near 90% [21]. With a
lifetime of �6 ms [26], Larmor precession and spin deco-
herence would limit the polarization fidelity only at the
10�3 level.

By applying this scheme to photons of undetermined
polarization from a probabilistic source of entangled
photon-magnon pairs [2,13,14], it should be possible to
realize a heralded source of entangled-photon pairs for
various tasks in quantum information processing. If loaded
by a photon from a high-purity Bell pair, the estimated Bell
parameter for the heralded source employing our current
quantum memory would be 2:5ð1Þ> 2, exceeding the clas-
sical limit. For the above improved parameters, such a
source would then produce heralded Bell pairs at a rate
of �500 s�1.
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