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Strictly nonclassical behavior of a mesoscopic system
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We experimentally demonstrate the strictly nonclassical behavior in a many-atom system using a recently
derived criterion [E. Kot et al., Phys. Rev. Lett. 108, 233601 (2012)] that explicitly does not make use of quantum
mechanics. We thereby show that the magnetic-moment distribution measured by McConnell et al. [Nature
(London) 519, 439 (2015)] in a system with a total mass of 2.6 × 105 atomic mass units is inconsistent with
classical physics. Notably, the strictly nonclassical behavior affects an area in phase space 103 times larger than
the Planck quantum h̄.
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Ever since the advent of modern quantum theory almost a
century ago, one perplexing question has been the boundary
between quantum mechanics and classical physics. Consider-
ing just two particles, Bell showed [1,2] that reasonable as-
sumptions consistent with classical physics lead to predictions
that are inconsistent with the measurement results [3–7]. For
macroscopic systems, Schrödinger’s gedanken experiment of
a simultaneously dead and alive cat highlights the question
about the quantum-classical boundary in larger and larger
systems [8–15]. Within the conceptual framework of quantum
mechanics, one can establish definite and quantitative criteria
for entanglement [16–20], and hence potential nonclassicality.
However, one may argue that an experiment never confirms a
theory as valid, but only fails to violate it. Therefore, mere
consistency with results derived from quantum mechanics
does not rule out a description within classical physics. It is
therefore interesting to identify and experimentally test criteria
that are formulated within classical physics, without assuming
the validity or concepts of quantum mechanics [21].

In quantum optics, criteria that distinguish nonclassical
states of light from classical ones [22–29] were developed
early, and tested successfully in experiments [30,31], such
as antibunching [22,23,30], Klyshko’s criterion [24,25], and
nonclassical statistical properties [22,26–29,31]. Some of
these demonstrations [30,31] have become standard methods
to verify classes of nonclassical states, such as the single-
photon states [30], and sub-Poissonian states [31].

More tests have been performed on atomic and molecular
systems. One such approach is to test the wave properties of
larger and larger molecules, and one day perhaps even living
objects, through double-slit interference experiments [32]. The
largest objects to date for which matter-wave interference
fringes have been observed are molecules consisting of 430
atoms, with a total mass of 6910 atomic mass units (amu)
[12], and interference experiments with even larger molecules
appear possible [13–15]. Another possible test ground are
superconducting qubits, where superpositions of current in-
volving several thousand electrons have been inferred [33].

Other methods to detect the breakdown of classical physics
have been proposed [34–36], and some of them have been
verified experimentally by measurements on weak light fields
[35,37]. Recently, Kot et al. [38] have extended the results
of Ref. [36] to show that certain phase space distributions

are inconsistent with classical physics, and have derived a
quantitative formalism to identify such distributions without
involving quantum mechanical concepts. We term this the
phase space distribution (PSD) criterion. The PSD criterion has
already been experimentally verified for the electromagnetic
field associated with a single photon [38], and expanded the-
oretically to some more general cases [39] in quantum optics.

In this Rapid Communication, we apply a modified PSD
criterion to the magnetization measurement of the atomic
ensemble reported in Ref. [40]. We verify the breakdown of any
description of the system in terms of a classical distribution
of the magnetic moment with 98% confidence. This shows
that a system with total mass M = 2.6 × 105 amu and a
size of a few millimeters can be manifestly nonclassical,
further extending the nonclassical domain to more massive
systems without involving quantum mechanical concepts in the
analysis. Notably, unlike the single-photon case [38], where
the breakdown of the classical description is associated with
small structures in phase space of area ∼ h̄, in our N -atom
system the classical description is violated by features in the
phase space distribution function of size ∼Nh̄ ∼ 103h̄, which
contains 103 allowed states [41].

The experiment reported in Ref. [40] uses a cold gas
of N = 3 × 103 rubidium 87 atoms trapped in an optical
cavity to generate the phase space distribution of interest.
The atoms are prepared in the 5S1/2, F = 1 ground-state
hyperfine manifold where each atom has a magnetic moment
of one Bohr magneton μB . All atoms are initialized with their
magnetic moment pointing along the x̂ axis, perpendicular to
the cavity axis. Weak probe light, linearly polarized along x̂, is
incident onto the cavity. It is resonant with a cavity mode and
detuned �/(2π ) = −200 MHz from the 87Rb D2 hyperfine
transition F = 1 to F ′ = 0. The incident light experiences
a weak Faraday polarization rotation due to magnetization
fluctuations of the atomic ensemble. In about 5% of the
cases, a photon emerges with a polarization orthogonal to the
incident polarization and is detected on detector D (Fig. 1);
subsequently the magnetic moment of the ensemble �M is
measured with a stronger pulse. We consider only those
magnetizations of the atomic ensemble where the detector
D has registered a photon, and show that the associated
magnetization distribution for this set of ensembles violates
the PSD criterion. We emphasize that while the preparation
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FIG. 1. (a) Experimental setup. N = 3 × 103 87Rb atoms are trapped in an optical cavity by a far-detuned dipole trap, and prepared in the
state 5S1/2, F = 1. The magnetic moment of the atomic ensemble M = NμB is initialized along the x̂ axis, perpendicular to the cavity axis.
A vertically polarized weak incident light pulse experiences a weak Faraday polarization rotation due to the atomic magnetization such that
a horizontally polarized photon is sometimes detected. If detector D measures such a photon, the magnetization of the Rb gas is measured
along ŷ, ẑ, or 1√

2
(ŷ ± ẑ), yielding magnetization distributions schematically indicated in (b). In classical physics, the measured distributions

should arise from an underlying probability distribution ρ(My,Mz). Here, using a variation of the criterion in Ref. [38], we show that there is
no classical probability distribution ρ(My,Mz) consistent with the measured result, thereby ruling out any classical description of the magnetic
moment.

process, using particular atomic states, is rooted in quantum
mechanics, the subsequent classical analysis performed here
merely considers an ensemble of prepared magnetizations, and
does not rely on the specifics of the preparation procedure.

In order to observe the magnetic-moment distribution along
different axes, the magnetic moment of each atom in the
ensemble is rotated by an angle β = 0,π/4,π/2,3π/4 along
the x̂ axis before measuring the squared magnetic moment
M2

z . Thus β = 0 corresponds to measuring M2
z , and β = π/2

corresponds to measuring M2
y . We combine all the data

for different angles β to obtain the rotationally averaged
distribution in the y-z plane. This eliminates all structures due
to higher-order moments that are not rotationally invariant.

The measurement in Ref. [40] is achieved by sending a
stronger light pulse and measuring its Faraday polarization
rotation due to the atomic magnetization. By measuring the
light emerging with orthogonal polarization compared to
the input polarization (along x̂), we can then determine the
square of the magnetization M2

z . For a given magnetization
Mz, the ensemble rotates the light polarization by a small
angle θ = φMz, where φ = 0.0012/μB and μB is the Bohr
magneton [42]. The mean photon number registered on the
detector D is then χ (M2

z ) = qnin(φMz)2, where q = 0.3 is
the overall detection efficiency, and nin = 2 × 104 is the
average number of photons in the measurement pulse. For
a given Mz, individual photons in the measurement pulse are
transmitted independently from one another; therefore for nin

input photons the probability to detect exactly n photons is
given by the Poisson distribution

p
(
n,M2

z

) = e−χ(M2
z )

[
χ

(
M2

z

)]n

n!
. (1)

For any chosen measurement angle θ the detected photon
distribution gθ (n) is related to the underlying magnetic-
moment distribution Fθ (M2

θ ) by

gθ (n) =
∫

d
(
M2

θ

)
Fθ

(
M2

θ

)
p
(
n,M2

θ

)
, (2)

and the angle-averaged measured photon number
distribution g(n) = (2π )−1

∫
dθgθ (n) is related to the

angle-averaged magnetic-moment distribution F̄ (M2) =
(2π )−1

∫
dθFθ (M2

θ = M2) by g(n) = ∫
d(M2)F̄ (M2)

p(n,M2).
To find F̃ (M2) from g(n), we introduce a new function,

G(M̃) =
∑

n

g(n)e−qnin(φM̃)2 n!

(2n)!
[4qnin(φM̃)2]n. (3)

It can be shown that G(M̃) equals the convolution of
MF̄ (M2) with the function f (M) = e−qninφ

2M2
, G(M̃) =∫ +∞

−∞ d(M)Me−qninφ
2(M−M̃)

2

F̄ (M2). The Fourier transform of
a convolution equals the product of the Fourier transform of
the two individual functions, i.e., SG(ω) = SMF̄ (ω) × Sf (ω),
where SG denotes the Fourier transform of the function G, and
ω is the variable after the Fourier transformation.

We find G(M̃) from the measured photon number distribu-
tion g(n) according to Eq. (3), Fourier transform it, and apply
the inverse Fourier transform to SG(ω)/SMF̄ (ω) = Sf (ω) to
find the underlying magnetic-moment distribution F̄ (M2)
(Fig. 2). In this process, only the Poissonian character of the
detected photon number distribution for a given M2 is used to
reconstruct F̄ (M2).

To show that the obtained distribution F̄ (M2) cannot be
obtained from classical physics, we follow the procedure

for the PSD criterion [38]. We define Mρ =
√

M2
z + M2

y

for convenience and calculate the mean value 〈F 〉 for a
non-negative trial function, defined as

F (Mρ) =
(

1 +
Nc/2∑
k=1

C2kM
2k
ρ

)2

(4)

for a given magnetization distribution F̄ (M2), where the
coefficients are chosen according to the relation

Nc/2∑
l=1

〈
M2(l+j )

ρ

〉
C2l = −〈

M2j
ρ

〉
(5)
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FIG. 2. Reconstructing the rotationally averaged marginal atomic
magnetic-moment distribution F̄ (M2) from the measured photon
number distribution g(n). (a) shows g(n) (red solid circles) for the
distribution of interest after registering a heralding click on detector
D. The blue squares show the distribution for the initial state with the
atomic magnetic moments prepared along the x̂ axis for reference.
For the red solid line, we first apply Eq. (3) solving for the magnetic-
moment distribution F̄ (M2), and then convert the distribution back
into expected photon counts. This tests the numerical reliability of our
data processing method. The inset shows a log-linear scale plot of the
same data, which displays the large-photon-number behavior more
clearly. (b) The reconstructed magnetic-moment distribution F̄ (M2)
using our method. The blue line is for the reference state. The inset
shows for illustration purposes the rotationally averaged distribution
P (M) assuming 〈M〉 = 0. All the error bars and error bands represent
one standard deviation.

for all j = 1,2, . . . ,Nc/2, in order to minimize the mean value
〈F 〉. Note that here the moments are the measured values from
the experiment. There is a simple relation between the moment
for the radical distance M2k

ρ and the moment along a particular
axis M2k [38],

〈
M2k

ρ

〉 = 〈M2k〉22k(2k

k

) = 22k(2k

k

) ∫
d(M2)F̄ (M2)M2k. (6)

Within classical theory the ensemble is described by a joint
non-negative probability distribution ρ(My,Mz). Therefore,
〈F 〉 must remain non-negative since F � 0 and hence

〈F 〉 =
∫

dMydMzρ(My,Mz)F
(√

M2
z + M2

y

)
� 0. (7)

FIG. 3. The mean value 〈F 〉 of the trial function vs the cutoff
order Nc. The blue squares correspond to the reference state with all
magnetic moments aligned, which has 〈F 〉 > 0, and does not violate
classical physics. The analytic asymptotic limit for the reference state
(blue squares) is 2/(Nc + 2). The solid line here only joins the points
in the plot. The red circles correspond to the state of interest. When
Nc is larger than 10, 〈F 〉 becomes negative, which is forbidden by
classical physics. 〈F 〉 is monotonically decreasing and approaching
−0.024 when Nc is increasing. Here, all error bars represent one
standard deviation.

Here, the trial function F � 0 acts as a local probe in My-Mz

phase space, projecting out a region, and testing the positivity
of the joint probability distribution ρ(My,Mz) in that region.
Given a distribution function and its moments 〈M2j

ρ 〉, F is
defined via Eq. (5), so that it is maximally sensitive to a
potentially negative region ρ(My,Mz) < 0.

Therefore, we calculate 〈F 〉 for the magnetic-moment
distribution of interest reported in Ref. [40] and plot the
result versus the cutoff order Nc in Fig. 3. For Nc � 10,
we find 〈F 〉 < 0 which is impossible for a classical system
where a positive joint probability distribution ρ(My,Mz) � 0
can be defined. When Nc is increasing, 〈F 〉 monotonically
approaches −0.024, and the standard deviation approaches
0.01. To calculate the latter, we randomly select 150 times half
of the data for calculating 〈F 〉. For comparison, we also plot
〈F 〉 for the (classically allowed) reference state with all atomic
magnetic moments aligned, where we find always 〈F 〉 � 0,
as expected.

Compared to the previous analysis of the experiments
[40] first reporting a negative Wigner function of an atomic
ensemble, here we do not require any knowledge of the
total spin, nor do we involve the quantum formalism to
define the quantum state [43] and the Wigner function [44].
Following Ref. [38], we only use the marginal magnetic-
moment distributions, which are insufficient to reconstruct the
full quantum state, to demonstrate that the observed ensemble
magnetization cannot be explained with classical physics.

There is an interesting distinction between the violation
found here for a large atomic system, and that observed in
quantum optics for a single-photon Fock state [38,45,46].
In the case of quantum optics, the violation of the classical
description is associated with a small structure in phase space
of area �x�p/h̄ ∼ 1, which is the level at which, according
to the usual argument, quantum mechanics must be applied,
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as the number of allowed states in this area is on the order
of one. However, in the many-particle system we observe a
much larger structure of area �My�Mz/μ

2
B ∼ 103 in phase

space. Nevertheless, this mesoscopic system defies a classical
description. It shows that the breakdown of the classical theory
can be observed far aboveh̄, the characteristic scale of quantum
mechanics.

In conclusion, by analyzing the marginal magnetic-moment
distribution of an atomic ensemble with a total mass as large
as 2.6 × 105 amu, we verify the nonclassical character of
the atomic magnetization distribution without using quantum
mechanical assumptions about the atomic spin or magnetic
moment, and with limited information that is insufficient to

reconstruct the full quantum state. Remarkably, the detection
of a single photon that has interacted with the atomic ensemble
is sufficient to create a magnetization distribution that violates
the laws of classical physics. This violation is ultimately a
consequence of the fact that the magnetic moment cannot
be simultaneously sharply defined along different directions.
This, in turn, can affect the outcomes of mesoscopic or even
macroscopic measurements.
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grants through AFOSR and ARO and the European Union
Seventh Framework Programme through the ERC Grant QIOS
(Grant No. 306576).
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