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I. MICROSCOPIC MODEL

In this section, we derive the two-body Lippmann-
Schwinger equation for an inhomogeneous density and
show that the spatially varying scattering length a(z) is
well defined when the density varies slowly compared to
the blockade radius.

The effective Hamiltonian, including decay, that de-
scribes the Rydberg polariton system is (~ = 1)

H = −ic
∫
dz Ê†(z)∂zÊ(z) (S1)

−
∫
dz gc(z)

[
P̂(z)Ê†(z) + h.c.

]
+Hp +Hint,

Hp = −
∫
dz(∆ + iγ)P̂†(z)P̂(z) (S2)

− iγsŜ†(z)Ŝ(z)− Ω[P̂†(z)Ŝ(z) + h.c.],

Hint =

∫
dzdz′V (z − z′)Ŝ†(z)Ŝ†(z′)Ŝ(z′)Ŝ(z), (S3)

where Ê(z), P̂(z), and Ŝ(z) are bosonic annihilation op-
erators for a photon, excited atom, and Rydberg state at
position z. They satisfy [Ê(z), Ê†(z′)] = [P̂(z), P̂†(z′)] =

[Ŝ(z), Ŝ†(z′)] = δ(z − z′). The parameters ∆, Ω, γ, and
gc(z) are defined in the main text and γs is the halfwidth
of the s-state.

For an inhomogeneous medium it is convenient to solve
the scattering problem in real space. For a single polari-
ton we can find the propagator at frequency ω from the
equations of motion

−iωE(z) = −c∂zE + igc(z)P (z), (S4)

−iωP (z) = −(γ − i∆)P (z) + igc(z)E(z) + iΩS(z),
(S5)

−iωS(z) = −γsS(z) + iΩP (z). (S6)

The solution is given by

Eω(z, z0) =
1

Nω(z)
exp

[
i

∫ z

z0

dz′q(ω, z′)

]
, (S7)

q(ω, z) =
ω

c

(
1− [gc(z)]

2

∆̃δ̃

)
, (S8)

Pω(z, z0) = −gc(z)
∆̃

(
1 +

Ω2

∆̃δ̃

)
Eω(z, z0), (S9)

Sω(z, z0) =
gc(z)Ω

∆̃δ̃
Eω(z, z0), (S10)

where ∆̃ = ∆ + ω + iγ, δ̃ = −Ω2/∆̃ + ω + iγs, Nω(z)

is a normalization constant chosen to satisfy |Eω(z)|2 +

|Pω(z)|2 + |Sω(z)|2 = 1, and q(ω, z) is defined in Eq. (1)
in the main text for γ = γs = 0.

To each of these wavefunctions, we associate the oper-
ator

ψ̂†ω(z0) =

∫
dz
√
ρ(ω, z0)

[
Eω(z, z0)Ê†(z)

+ Pω(z, z0)P̂†(z) + Sω(z, z0)Ŝ†(z)
]
.

(S11)

where ρ(ω, z0) = dq(ω, z0)/dω is the local density of
states. For an infinite, homogeneous medium this opera-
tor creates a dark-state polariton [S1]. For a sufficiently
slowly varying density, this field becomes approximately
bosonic with the commutation relation

[ψ̂ω(z0), ψ̂†ω′(z0)] =

∫
dzρ(ω, z0)e

i
∫ z
z0
dz′[q(ω,z′)−q(ω′,z′)]

≈ ρ(ω, z0)δ[q(ω, z0)− q(ω′, z0)] = δ(ω − ω′). (S12)

When ω is on the Raman resonance ∆̃δ̃ = 0, these
solutions need to be treated with care because Eω → 0
and these states do not propagate. The Raman resonance
condition

∆̃δ̃ = (ω + iγs)(∆ + ω + iγ)− Ω2 = 0 (S13)

has the solutions

ω± = −∆ + i(γ + γs)

2

±
√

[∆ + i(γ + γs)]2

4
+ Ω2 + (γ − i∆)γs.

(S14)

We work in the limit of large ∆ and small γs, where these
resonances can be treated as if they were on the real axis.

For these two eigenstates, ψ̂†±(z0) = P±P̂†(z0)+S±Ŝ†(z0)
with

P± =
ω±√

Ω2 + ω2
±
, (S15)

S± =
Ω√

Ω2 + ω2
±
. (S16)
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FIG. S1: Diagrammatic representation of the two-body
Lippmann-Schwinger equation in real space, ν is the total
frequency of the two polaritons, dots are V (z1 − z2), and the
lines are the single-polariton propagator gss0 (z, z′, ν).

To solve the interacting problem, Eq. (S3) implies that
we only need the propagator projected onto the Rydberg
states. We can use the eigenstates ψ†ω(z0)|0〉 to find the
propagator in a vicinity of z0

gss0 (z, z0, ν) = 〈Ŝ(z)
1

ν −H0 + i0+
Ŝ†(z0)〉 (S17)

=

∫
dω
〈Ŝ(z)ψ†ω(z0)〉〈ψω(z0)Ŝ†(z0)〉

ν − ω + i0+

= ρ(ν, z0)Sν(z, z0)S∗ν(z0, z0) + χ(ν)δ(z − z0),

χ(ν) =
∑
s=±

|Ss|2
ν − ωs

=
∆ + ν

(∆ + ν)ν − Ω2
. (S18)

As discussed in the main text, the χ(ν) contribution
arises from the two Raman resonances and accounts for
the saturation of the propagator at large momentum.

With this representation of the single particle prop-
agator, we can now write down the explicit Lippmann-
Schwinger equation for the transition matrix for Rydberg
polaritons in an inhomogeneous medium, represented di-
agrammatically in Fig. S1,

T2(z, z′, ν) = V (z1 − z2)
[
δ(z − z′) (S19)

+

∫
dz′′ gss,ss0 (z, z′′, ν)T2(z′′, z′, ν)

]
,

gss,ss0 (z, z′′, ν) =

∫
dωgss0 (z1, z

′′
1 , ω)gss0 (z2, z

′′
2 , ν − ω).

(S20)

To find the EFT parameters, we replace gss0 (z1, z
′′
1 , ω)

with the first term in the last line of Eq. (S17) and
approximate the dispersion by the formula given be-
low Eq. (1) in the main text ω = vg(z)q + q2/2m(z).
We then replace V (z1 − z2) with the pseuodopotential
−2~2δ(r)/m(z)a(z), where z = (z1+z2)/2 and r = z1−z2

and derive an effective solution for T2. This can then
be matched to the asymptotic solution for the exact T2.
When the propagator varies slowly with z compared to
the potential (i.e., the density changes slowly on the scale
of rb), we can find T2 using the anlysis of Ref. [S2] for
a uniform density. In the next section, we discuss sev-
eral regimes where a can be found analytically with this
approach.

II. EFFECTIVE RANGE CORRECTIONS

In this section we give approximate formulas for the
scattering length a and effective range parameter r0 at
each scattering resonance for weak and strong attractive
interactions.

These parameters can be found by solving the mi-
croscopic two-body problem using Eq. (S19). Assum-
ing the density is slowly varying, we can make the local
density approximation discussed in the main text and
eliminate the center of mass momentum from Eq. (S19).
In Ref. [S2], it was shown that the solution to the re-
sulting integral equation can be found by solving a 1d
Schrödinger-like equation

− 1

m
∂2
rψ + V 2

eff(r)ψ = νψ, (S21)

where r = z1 − z2 is the relative distance between the
two polaritons and V 2

eff(r) = V (r)/[1− χ2V (r)] is shown
in Fig. 3(e) in the main text. For χ2C6 < 0 the effective
potential has no poles. In this case, the core of the po-
tential, r < rb, is approximately flat, while for r > rb it
decays as 1/r6. The relative importance of the core ver-
sus the tail of the potential can be determined by com-
paring the associated length scales: the blockade radius
rb versus the van der Waals length rvdw = (mC6)1/4, re-
spectively. Here we focus on the regime Ω� |∆|, where
rvdw can be expressed in terms of the interaction param-
eter ϕ = g2rb/c∆ as rvdw ≈ rb

√
ϕ. The scaling of rvdw

with ϕ indicates that, for weak interactions ϕ � 1, the
low-energy scattering will be dominated by the core of
the potential, while, for strong interactions ϕ � 1, the
low-energy scattering will be dominated by the van der
Waals tail. We now give approximate expressions for a
and r0 in these two regimes for attractive interactions
(m/χ2 > 0).

1. Weak Attractive Interactions

In the regime ϕ� 1, the low-energy scattering is dom-
inated by the core of the potential, which can be well
approximated by a square well of width 2rb. We parame-
terize the depth as −β2rb/χ2, where β is a free parameter
chosen to match the observed scattering resonances. In
this case, the scattering states can easily be found ana-
lytically and a and r0 take the form [S3]

a = rb +
rb

β ϕ tan(β ϕ)
, (S22)

r0

rb
= 2− 2

rb
a

+
2

3

r2
b

a2
−
(

1− rb
a

)2(
tanβϕ

βϕ
+

1

cos2 βϕ

)
.

(S23)

In this approximation, the scattering resonances occur
when ϕ crosses nπ/β. Expanding near each resonance
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gives

n = 0, a =
rb

β2ϕ2
,
r0

rb
=

2

3
β2ϕ2, (S24)

n > 0, a =
rb

βnπ δϕ
,
r0

rb
= 1− βδϕ

nπ
, (S25)

where δϕ = ϕ− nπ/β is assumed to be small.
We fix β by comparing Eq. (S24) to the asymptotic

result for ϕ → 0. In this limit, one can replace the
effective potential by a delta function 2v0 δ(r), with
v0 =

∫∞
0
drV 2

eff(r) = −(π/3)rb/χ2. The scattering

length takes the form a ≈ (3/π)rb/ϕ
2 [S2], which fixes

β =
√
π/3. With this choice of β, we find Eq. (S22) is in

good agreement with the n = 0 and n = 1 scattering res-
onances characterized in Ref. [S2], but begins to deviate
at the n = 2 scattering resonance.

2. Strong Attractive Interactions

When ϕ � 1, the effective potential for the polari-
tons has many features in common with the potentials
considered in models of atomic scattering [S4]. In these
models, the atomic potential U(r) is treated as having a
deep attractive core, while for large r

U(r) ≈ −Cn
rn
, (S26)

where n = 6 for van der Waals forces. For s-wave scatter-
ing, a and r0 can be found from the zero energy solution
to the radial Schrödinger equation

∂2
rψ0 + [p(r)]2ψ0 = 0, (S27)

where p(r) =
√
−mU(r) and the boundary condition for

s-wave scattering is ψ0(0) = 0.
For the 1d Rydberg polariton problem considered

here, Eq. (S27) is equivalent to Eq. (S21) with

p(r) = ϕ/
√
r2
b + r6/r4

b , but with the boundary condition
∂rψ0|r=0 = 0. Due to the similarity in the equations,
for ϕ � 1, we can follow Ref. [S4, S5] to find analyti-
cal solutions for a and r0. In particular, we can solve
for ψ0 for small r using a WKB approximation, which
can then be matched to the known asymptotic solution
for ψ0 at large r. The WKB solution is valid in the re-
gion r � √ϕ rb, while the asymptotic solution is valid
when r � rb [S4]. Thus, the existence of an intermediate
regime rb � r � √ϕ rb is equivalent to the requirement
of strong interactions ϕ� 1.

With these points in mind, we write the zero energy
solution as

ψ0(x) =


C√
p(r)

cos
[∫ r

0
dr′p(r′)

]
, r � √ϕ rb

√
x

[
AJ1/4

(
ϕ r2b
2 r2

)
−BN1/4

(
ϕ r2b
2 r2

)]
, r � rb

(S28)

where A, B, and C are unkown coefficients which have
to be determined by matching the two solutions in the
intermediate region and Jα (Nα) are Bessel functions of
the first (second) kind. The WKB solution is chosen to
satisfy the boundary condition that ψ0 has zero derivative
at the origin. Following a similar analysis to Ref. [S4, S5]
we solve for the coefficients A, B, and C, which determine
a and r0 as

a = ā
[
1− tan

(
Φ + π/8

)]
, (S29)

ā =
Γ(3/4)

Γ(1/4)

√
2ϕ rb ≈ 0.478

√
ϕ rb, (S30)

Φ =

∫ ∞
0

drp(r) =
Γ(1/3)Γ(7/6)√

π
ϕ ≈ 1.40ϕ, (S31)

r0 = 1.39
√
ϕ rb − 1.333

ϕ r2
b

a
+ 0.637

ϕ3/2 r3
b

a2
(S32)

where ā is the scattering length averaged over Φ (exclud-
ing the resonances) and Γ(·) is the gamma function. The
scattering resonances occur when Φ = Φn = nπ + 3π/8.
Expanding near the nth resonance gives

a ≈ ā

Φ− Φn
, (S33)

while the effective range becomes r0 ≈ 1.39 rvdw.

III. EFT INCLUDING RAMAN RESONANCES

In this section, we write down an EFT that describes

the coupling between the polariton field ψ̂ and the Raman
resonance excitations.

We account for the presence of the constant term in the
propagator gss0 (q, ν) by adding a fictitious pair of parti-
cles d± to the EFT

H = − 1

2m
ψ̂†∂2

z ψ̂ +
∑
s=±

ωsd
†
sds (S34)

+

∫
dz′Ψ†(z)Ψ†(z′)V (z − z′)Ψ(z′)Ψ(z),

Ψ(z) = α ψ̂(z) + S+d+(z) + S−d−(z), (S35)

where ω± is given by Eq. (S14) and the interaction term
accounts for all of the allowed interactions between the
fictitious particles. The terms α = gc/

√
Ω2 + g2

c ≈ 1 and
S± (given by Eq. (S16)) account for the overlap of these
particles with the |s〉 state. Integrating out the fields
d± gives rise to the N -body interactions discussed in the
main text and in the section below.

IV. NON-PERTURBATIVE N-BODY
INTERACTION POTENTIAL

When |χNV (r)| > 1, the perturbative solution for V Neff
given in Eq. (8) of the main text breaks down. We now
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show how to find the non-perturbative solution to V Neff
recursively using the Rosenberg integral equations for
the connected transition matrix [S6]. We explicitly solve
these equations for N = 2, 3, and 4. Finally, we show
that, inside the blockade radius, V Neff oscillates between
attraction and repulsion with every increase in N .

Before writing the Rosenberg equations, we first intro-
duce some basic concepts needed to describe N -particle
scattering [S7]. The notion of connected scattering dia-
grams, illustrated in Fig. 3 in the main text, leads to the
cluster decomposition for the N -body transition matrix

TN =
∑
α∈P

[TN ]α, (S36)

where P is the set of all partitions of N particles into dis-
joint clusters. For example, for three particles there are
five such partitions (1)(2)(3), (12)(3), (13)(2), (23)(1),
and (123). We define nα as the number of clusters within
the partition α. We denote the particles represented
in each cluster as i1, . . . , imn , where 1 ≤ n ≤ nα and
mn is the length of the nth cluster. For the partition
(12)(3) nα = 2, m1 = 2 with i1 = 1, i2 = 2 and m2=1
with i1 = 3. We also introduce the notion of an order-
ing ≺ of the clusters: α ≺ β if every cluster in α is a
subset of the elements in clusters of β. For example,
(12)(3)(45) ≺ (123)(456), but (12)(3)(45) ⊀ (1234)(56).

To find each term in Eq. (S36), one needs to evalu-
ate the sum of all scattering diagrams where each clus-
ter in the partition is disconnected from the others, but
fully connected internally. For example, the diagram
in Fig. 3(b) of the main text contributes to [TN ]α with
α = (12)(345). In Eq. (8) of the main text we derived a
perturbative solution for the fully connected contribution
to TN , V Neff = [TN ]α with α = (1, . . . , N). However, this
equation breaks down for r � rb where |χNV (r)| > 1.
In this limit, V Neff has to be found non-perturbatively.

The key insight into the connected N -body scattering
diagrams is that they can each be written as the product
M `
αχNL`, where L` is a diagram that ends with interac-

tion V` on the left and M `
α can be broken into two disjoint

clusters α such that ` ⊀ α [S8, S6]. For the connected dia-
gram in Fig. 3(a) in the main text M `

α = (χN )2V12V23V24

and L` = V45, with α = (1234)(5) and ` = (45). The
Rosenberg integral equations (which are algebraic equa-
tions for a constant propagator) take advantage of this
structure to recursively define [S6, S7]

T cN` =
∑
`′

∑
α�`,nα=2

[T`]α∆̄α`′χNT`′ , (S37)

T` = V` + V`χNTN =
V`

1− χN
∑
`′ V`′

, (S38)

V Neff(z; ν) =
∑
`

T cN`(z; ν), (S39)

where TN =
∑
` T`, ` = (ij) denotes a particle pair and

ranges over all N(N − 1)/2 pairs (note, we changed no-
tation from Eq. (8) in the main text), T` groups all dia-
grams contributing to TN that end with the interaction

V` on the left, and ν is the total frequency of the incom-
ing photons. The sum in Eq. (S37) is over all partitions
α with two clusters, which contain the pair `. The ma-
trix ∆̄α`′ = 1 if `′ ⊀ α and zero otherwise. ∆̄α`′ reflects
the structure of the connected diagrams described above
and enforces that all the terms in Eq. (S37) are fully con-
nected. Using the results from Sec. I, we can also give an
explicit expression for the N -body propagator

χN (ν) =
∑

{(s1,...,sN ),si=±}

1

ν −∑N
i=1 ωsi

N∏
i=1

|Ssi |2. (S40)

Equation (S37) is recursive because [T`]α can be ex-
pressed in terms of the connected transition matrices for
1 ≤ k ≤ N − 2

[T`]α = TNcN−1,`(zi1 , . . . , ziN−1
), (k = 1) (S41)

[T`]α =

(
N − 3

k − 1

)
χNT

Nc
N−k,`(zi1 , . . . , ziN−k) (S42)

×
∑

`′≺(i1...ik)

TNck`′ (zi1 , . . . , zik), (k > 1)

where the superscript N denotes that TNcm` is found using
Eq. (S37) for m particles, but with the propagator χN
replacing χm. The binomial factor in front of Eq. (S42)
counts the number of ways to arrange the scattering
events between the two clusters, with the constraint that
the pair ` always interact first.

For N = 3, we find the non-perturbative solution

T c3(12) =
χ3

1− χ3

∑
` V`

V12

1− χ3V12
(V13 + V23), (S43)

T c3(13) =
χ3

1− χ3

∑
` V`

V13

1− χ3V13
(V12 + V23), (S44)

T c3(23) =
χ3

1− χ3

∑
` V`

V23

1− χ3V23
(V12 + V13), (S45)

V 3
eff(z1, z2, z3; ν) =

∑
`

T c3`(z1, z2, z3; ν), (S46)

which agrees with the perturbative result from Eq. (8) in
the main text to lowest order in |χ3V`|. For N = 4, the
full expression involves considerably more terms:

T c4(12) =
χ4

1− χ4

∑
` V`

[
T 4c

3(12)(z1, z2, z3)(V14 + V24 + V34)

+ T 4c
3(12)(z1, z2, z4)(V13 + V23 + V34) (S47)

+ χ4T
4c
2(12)T

4c
2(34)(V13 + V14 + V23 + V24)

]
,

and similarly for the other `. Here T 4c
3(12)(z1, z2, z3) is

given by T c3(12)(z1, z2, z3) from Eq. (S43) with χ3(ν) re-

placed by χ4(ν), T 4c
2(12) = V12/(1 − χ4V12) and similarly

for T 4c
3(12)(z1, z2, z4) and T 4c

2(34). The resulting expression

for V 4
eff, to lowest order in χ4V`, contains 96 tree diagrams

(16 unique) and agrees with Eq. (8) in the main text.
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By construction, Eq. (S37) accounts for all connected
scattering diagrams. To check that these recursive for-
mulas give the same number of terms as the perturbative
result, we use Eq. (S37)-(S42) to find a recursive formula
for the number of terms contributing to T cN`

t`2 = 1, (S48)

t`N = t`N−1(N − 2)(N − 1) (S49)

+

N−2∑
k=2

t`N−kt
`
k

k(k − 1)

2

(
N − 3

k − 1

)(
N − 2

k

)
(N − k)k,

where
(
N−2
k

)
is the number two-cluster partitions con-

taining ` with m1 = N − k and m2 = k and (N − k)k
is the number of non-zero elements in ∆̄α`′ for each two-
cluster partition α. Based on Eq. (8) in the main text
we expect t`N = 2(N − 2)!NN−3. This can be proved by
induction using Eq. (S49) combined with an application
of the binomial formula [S9]

(a+ b)n

a
=

n∑
k=0

(
n

k

)
(a− kc)k−1(b+ kc)n−k, (S50)

with a = 1, c = −1, b = N−1, and n = N−3. This result
helps confirm that Eq. (8) of the main text is consistent
with our non-perturbative solution for V Neff .

When all the photons are separated by much less than
the blockade radius, we can approximate V (r) by ±∞.
In this limit, TNck` saturates to a constant value that de-
pends only on N and k. By adapting the counting ar-
guments used to derive Eq. (S49), after some simplifica-
tions, we then arrive at a similar recursive formula for
V Neff (z1, . . . , zN ; ν) in this regime

V Neff (z1, . . . , zN ; ν) ≈ (−1)N−1 cN
χN

, (S51)

cN = 2cN−1 + 2

N−2∑
k=2

(
N − 3

k − 1

)(
N − 2

k − 1

)
cN−kck, (S52)

where c2 = 1 and c3 = 2. Since cN is a positive integer for
every N , we find that, similar to the perturbative result
from Eq. (10) in the main text, V Neff alternates between
attraction and repulsion for every increase in N .
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